Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Ukuran: px
Mulai penontonan dengan halaman:

Download "Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat"

Transkripsi

1 ISSN: Vol. No. (Juni 07) Hal SIFAT-SIFAT FUNGSI PHI EULER DAN BATAS PRAPETA FUNGSI PHI EULER Rizkun As Syirazi, Thresye, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ABSTRAK Teori little Fermat berhasil digeneralisasi oleh Euler menggunakan fungsi phi Euler, Fungsi phi Euler φφ(hh) didefinisikan sebagai banyaknya bilangan asli tidak lebih dari hh dan saling prima dengan hh. Gupta (98) mengatakan tidak semua bilangan asli merupakan elemen range φφ.tujuan dari penelitian ini adalah menentukan sifat-sifat fungsi phi Euler dan menentukan batas bawah dan batas atas prapeta suatu bilangan di bawah fungsi phi Euler. Penelitian ini bersifat studi literatur yaitu dengan mengumpulkan dan mempelajari berbagai referensi yang berkaitan dengan topik penelitian. Hasil yang diperoleh adalah hubungan bilangan asli dengan peta bilangan tersebut ketika dikenakan fungsi phi Euler dan batas prapeta fungsi phi Euler, baik batas bawah maupun batas atas. Batas tersebut dapat digunakan untuk menentukan himpunanprapeta sebuah bilangan di bawah fungsi phi Euler. Kata kunci :Fungsi Phi Euler, Prapeta Phi Euler.. PENDAHULUAN Salah satu teori tentang bilangan prima pada teori bilangan yang terkenal adalah teori little Fermat. Namun, teori tersebut hanya berlaku untuk bilangan prima. [3] mengatakan pada tahun 760, Euler mampu membuat generalisasi dari teori little Fermat untuk semua bilangan asli. Untuk membuat generalisasi tersebut, Euler menggunakan bantuan sebuah fungsi yang kemudian diberi nama fungsi phi Euler dan dinotasikan φφ. Fungsi phi Euler φφ(h) didefinisikan sebagai banyaknya bilangan asli tidak lebih dari h dan saling prima dengan h. Untuk menghitung nilai φφ(nn) tanpa harus mendaftarkan bilangan yang memenuhi syarat, diperlukan sebuah formula φφ(nn) yang diperoleh berdasarkan sifat-sifat dari fungsi φφ. Formula φφ(nn) juga dapat digunakan untuk memperoleh sifat-sifat lainnya dari fungsi φφ [3]. Sebagai sebuah fungsi, φφ tentu memiliki himpunan domain dan range. Menurut [5] tidak semua bilangan asli merupakan elemen range φφ. Salah satu langkah untuk memudahkan mencari nilai prapeta dari mm adalah menentukan batas bawah dan batas atas, sehingga dapat mempersempit ruang pencarian. Berdasarkan analisa masalah yang dikaji, maka dibahas sifat-sifat dari fungsi phi Euler dan batas bawah dan batas atas prapeta suatu bilangan di bawah fungsi phi Euler.. TINJAUAN PUSTAKA. Keterbagian Definisi.. [3] Sebuah bilangan bulat mm bisa dibagi habis dengan bilangan bulat 0, disimbolkan mm, jika ada bilangan bulat c sedemikian sehingga mm =. Ditulis mm untuk menunjuan bahwa m tidak habis dibagi dengan. Teorema.. [3] Untuk semua bilangan bulat, ll, mm, memenuhi 30

2 ISSN: Vol. No. (Juni 07) Hal Jika ll dan mm, maka llll.. Jika l dan ll mm, maka mm. 3. Jika ll dan mm, maka (llll + mmmm) untuk sembarang bilangan bulat xx dan yy.. Faktor Persekutuan Terbesar Definisi.. [3] Diberikan dan ll bilangan bulat, dimana paling tidak salah satu dari keduanya bukan nol. Faktor persekutuan terbesar dari dan ll, ditulis dengan (, ll), adalah bilangan bulat positif ww memenuhi pernyatn berikut :. ww dan ww ll jika cc dan cc ll, maka cc ww.3 Bilangan Prima Definisi.3. [6] Bilangan prima ialah bilangan asli yang lebih besar dari yang hanya bisa dibagi dengan bilangan dan bilangan itu sendiri. Bilangan komposit adalah bilangan asli yang lebih besar dari dan bukan merupakan bilangan prima. Teorema.3. [] Jika nn = = adalah faktorisasi prima dari nn, pembagi positif dari nn maka dapat dinyatakan dalam bentuk = cc =, dimana 0 cc untuk =,,,..4 Kelipatan Persekutuan Terkecil Definisi.4. [3] Diberikan dan ll bilangan bulat, dengan paling tidak salah satu dari keduanya bukan nol. Kelipatan persekutuan terkecil dari dan ll, ditulis dengan [, ll], adalah bilangan bulat positif vv memenuhi pernyatn berikut :. vv dan ll vv. jika cc dan ll cc, maka vv cc. Teorema.4. [3] Pada bilangan asli bb dan berlaku [bb, ](bb, ) = bbbb..5 Fungsi Multiplikatif Definisi.5. [6] Sebuah fungsi yang didefinisikan untuk setiap bilangan bulat positif disebut fungsi multiplikatif jika ff(ssss) = ff(ss)ff(tt) dimana ss tt bilangan asli yang saling prima. Teorema.5. [6] Jika ff adalah fungsi multiplikatif dan misal ss ss adalah faktorisasi prima dari n, maka ff(nn) = ff( )ff( ) ff( ss ss )..6 Fungsi phi Euler Definisi.6. [6] Misal h bilangan bulat positif. Fungsi phi Euler φφ(h) didefinisikan sebagai banyaknya bilangan asli tidak lebih dari h yang saling prima dengan h. Teorema.6. [6] 3

3 ISSN: Vol. No. (Juni 07) Hal Jika ss dan tt adalah bilangan bulat positif yang saling prima maka φφ(ssss) = φφ(ss)φφ(tt)..7 Himpunan Terbatas Definisi.7. [] Misal SS adalah himpunan tak kosong yang merupakan subset R. (a) himpunan bilangan SS disebut terbatas ke atas jika terdapat bilangan tt R sedemikian hingga ss tt untuk setiap ss SS. Semua bilangan yang memenuhi syarat tt dikatakan batas atas SS. (b) himpunan bilangan SS disebut terbatas ke bawah jika terdapat bilangan vv R sedemikian hingga vv ss untuk setiap ss SS. Semua bilangan yang memenuhi syarat vv disebut batas bawah SS. (c) sebuah himpunan dikatakan himpunan terbatas jika himpunan tersebut terbatas ke atas dan terbatas ke bawah. Sebuah himpunan dikatakan himpunan tak terbatas bila himpunan tersebut tidak terbatas. 3. METODE PENELITIAN Penelitian dilakukan dengan cara mengumpulkan referensi pendukung yang berhubungan dengan fungsi phi Euler khususnya sifat-sifat fungsi phi Euler. Referensi tersebut dipahami, dibahas dan diuraikan sehingga diperoleh sifat-sifat fungsi phi euler dan batas prapeta fungsi phi euler. 4. HASIL DAN PEMBAHASAN Teorema 4.. [6] Jika adalah bilangan prima dan adalah bilangan bulat positif, maka φφ( ) = ( )( ) Bilangan kelipatan dan tidak lebih dari ada sebanyak buah, yaitu,, 3,, ( )4T. Sehingga ada sebanyak yang tidak lebih dari dan relatif prima dengan, dengan kata lain φφ( ) = = ( )( ). Teorema 4.. [3] Jika adalah faktorisasi prima dari bilangan asli h, maka φφ(h) bisa dinyatakan dalam satu bentuk berikut (). ( )( ) ( ) (). h (). h ( ) h Karena φφ adalah fungsi multiplikatif maka φφ(h) = φφ φφ φφ = ( ) ( ) ( ) = ( )( ) ( ) = ( )( ) ( ) 3

4 ISSN: Vol. No. (Juni 07) Hal = h = h = h ( h ). Teorema 4..3 [6] Jika nn adalah bilangan bulat positif, maka nn φφ() = nn Bilangan dari sampai nn dibagi ke dalam kelas-kelas. Bilangan mm dimasuan ke dalam kelas CC jika dan hanya jika (mm, nn) =. Karena (mm, nn) = jika dan hanya jika mm, nn =. Sehingga Bilangan bulat mm dimasuan ke kelas CC jika dan hanya jika mm, nn =. Jadi diperoleh Banyaknya bilangan di dalam kelas CC adalah sebanyak bilangan bulat positif tidak lebih dari nn dan relatif prima dengan nn. Berdasarkan definisi.6. maka terdapat φφ nn buah bilangan dalam kelas CC. Karena bilangan sampai nn dibagi ke dalam ke dalam kelas yang saling disjoin dan setiap bilangan hanya dimasuan ke dalam tepat kelas, maka jumlah elemen dari kelas-kelas yang berbeda adalah nn. akibatnya φφ nn nn = nn. Karena adalah sebarang bilangan yang membagi nn, bilangan nn juga yang membagi nn, maka nn φφ() = φφ nn nn = nn. Teorema 4..4 [3] Jika nn bilangan bulat positif lebih besar dari, maka jumlah bilangan bulat positif tidak lebih dari nn dan relatif prima dengan nn adalah nn φφ(nn). Misalkan,,, φφ(nn) adalah bilangan-bilangan bulat positif tidak lebih dari nn dan relatif prima dengan nn. Karena (, nn) = jika dan hanya jika (nn, nn) =, maka bilangan-bilangan nn, nn,, nn φφ(nn) sama dengan bilanganbilangan,,, φφ(nn). sehingga φφ(nn) = (nn ) + (nn ) + + (nn φφ(nn) ) = φφ(nn) nn ( φφ(nn) ) sehingga φφ(nn) = nnφφ(nn). Teorema 4..5 [5] Jika nn 3, maka φφ(nn) adalah bilangan genap. Misal adalah faktorisasi prima dari nn. Karena fungsi φφ adalah fungsi multiplikatif maka φφ(nn) = φφ φφ φφ = φφ =. Berdasarkan teorema 4.. diketahui bahwa φφ = ( ). Karena diberikan nn 3 maka pasti memenuhi dari kondisi berikut. Kondisi, jika nn memiliki faktor prima ganjil. Misal adalah bilangan prima ganjil maka φφ = ( ) adalah bilangan genap karena ( ) genap, sehingga φφ(nn) juga adalah bilangan genap. Kondisi, Jika nn tidak memiliki faktor prima ganjil maka nn = jj dengan jj. Sehingga φφ jj = jj ( ) = jj juga bilangan genap. Akibatnya φφ(nn) adalah bilangan genap untuk nn 3. 33

5 ISSN: Vol. No. (Juni 07) Hal Akibat 4..6 [5] Jika nn adalah bilangan bulat positif, maka peta dari nn dibawah fungsi phi Euler adalah atau bilangan genap, sehingga dipastikan tidak ada bilangan bulat xx yang memenuhi φφ(xx) = tt +, tt. Diketahui φφ() = φφ() = dan berdasarkan teorema 4..5 φφ(nn) adalah bilangan genap untuk nn 3. Sehingga peta dari nn dibawah fungsi phi Euler adalah atau bilangan genap. Teorema 4..7 [5] Jika adalah bilangan prima dengan nn =, maka φφ(nn) = ( )φφ(mm) untuk (, mm) =, dan φφ(nn) = (mm) untuk (, mm). Jika (, mm) = maka berdasarkan teorema.6. φφ(nn) = φφ()φφ(mm) = ( )φφ(mm). Jika (, mm), maka (, mm) =. Karena (, mm) = maka berdasarkan definisi.. mm. Sehingga mm dapat ditulis sebagai, dengan dan (, ) =. Karena (, ) = maka (, ) = ( +, ) =. Karena (, ) = maka berdasarkan teorema.6. dan teorema 4.. φφ(mm) = φφ( ) = φφ( )φφ(). Jadi φφ() = φφ(mm) φφ(mm). Bilangan nn = φφ( ) ( )( ) dapat dijabarkan menjadi nn = = ( ) = +. Karena ( +, ) = dengan bilangan prima maka berdasarkan teorema.6., teorema 4.. dan φφ() = φφ(mm) diperoleh ( )( ) φφ(mm) φφ(nn) = φφ( + ) = φφ( + )φφ() = ( )( ) ( )( ) = (mm). Akibat 4..8 [5] Jika mm adalah bilangan bulat positif, mm adalah bilangan ganjil jika dan hanya jika φφ(mm) = φφ(mm). ( ) diketahui mm adalah bilangan ganjil Akan ditunjuan φφ(mm) = φφ(mm) Karena mm adalah bilangan ganjil maka (, mm) =. Sehingga φφ(mm) = φφ()φφ(mm) = φφ(mm) = φφ(mm) ( )R diketahui φφ(mm) = φφ(mm) Akan ditunjuan mm adalah bilangan ganjil Andaikan mm adalah bilangan genap maka mm = tt. Sehingga (, mm) =. Berdasarkan teorema 4..7, φφ(mm) = φφ(mm) φφ(mm). Hal ini kontradiksi dengan yang diketahui, seharusnya mm adalah bilangan ganjil. Teorema 4..9 [6] Jika nn memiliki faktor prima ganjil sebanyak buah, maka φφ(nn). Karena nn memiliki faktor prima ganjil, maka nn dapat ditulis sebagai bb bb bb dengan 0 dan bb untuk =,,,. Karena fungsi φφ adalah fungsi multiplikatif maka φφ(nn) = φφ( )φφ bb φφ bb φφ bb. Berdasarkan teorema 4..5 maka φφ bb adalah bilangan genap untuk =,,,, sehingga φφ bb. Karena φφ bb untuk =,,,, berdasarkan 34

6 ISSN: Vol. No. (Juni 07) Hal teorema..() maka φφ bb φφ bb φφ bb. Karena φφ bb φφ bb φφ bb, 0 dan φφ( ) adalah bilangan bulat maka berdasarkan teorema.. (3) φφ( )φφ bb φφ bb φφ bb + φφ( ) 0 φφ( bb )φφ bb φφ bb φφ φφ(nn). Teorema 4..0 [6] Jika mm nn dengan mm, nn adalah bilangan positif maka φφ(mm) φφ(nn). Misal nn =, karena mm nn maka berdasarkan teorema.3. mm = cc cc cc dimana 0 cc untuk =,,..,. Misal cc = 0 untuk =,,, jj dan cc untuk = jj +, jj +,, maka cc mm = cc cc jj cc jj jj+ cc jj+ jj+ cc jj+ = cc jj jj+ cc jj+ jj+ cc jj+ cc = jj+ cc jj+ jj+ cc jj+ cc = jj+ cc jj+ jj+ cc jj+ Berdasarkan teorema 4.. φφ(nn) = ( ) ( ) = ( = ) =( ) dan cc φφ(mm) = jj+ cc jj+ cc jj+ ( ) = ( ) ( ) Maka φφ(nn) = ( ) = = ( ) φφ(mm) cc ( ) =jj+ =jj+ ( ) jj = jj = =jj+ =jj+ = ( ( ) ( ) (cc ) =jj+ ) =( ) = ( ( ) ( cc ) jj =jj+ ) =( ) Karena 0 cc untuk =,,.., jj +, jj +,, maka cc 0. jj Sehingga ( ( ) ( cc ) jj =jj+ ) ( ) = φφ(nn) = = bilangan bulat. jj φφ(mm) Karena φφ(nn) bilangan bulat maka berdasarkan definisi.. φφ(mm) φφ(nn). φφ(mm) Teorema 4.. [6] Jika (, bb) = dan [, bb] = cc maka φφ()φφ(bb) = φφ()φφ(cc) Misalkan PP jj adalah himpunan bilangan prima yang membagi, dan PP adalah himpunan bilangan prima yang membagi bb. Jika (PP jj PP ) dan cc PP jj PP maka dan cc cc. Karena nn PP jj + nn(pp ) = nn PP jj PP + nn PP jj PP dan juga elemen pada himpunan tersebut saling identik maka jj PP jj ) ( PP ) = ( (PP jj PP ) ) ( cc cc (PP jj PP ) ) ( jj jj Berdasarkan teorema.4. = (, bb)[, bb] =, jadi φφ()φφ(bb) = jj PP jj )bb ( PP ) = ( jj jj PP jj ) ( ( jj jj = ( (PP jj PP ) ) cc ( cc cc (PP jj PP ) = ( Teorema 4.. [5] (PP jj PP ) ) ( cc cc (PP jj PP ) ) cc cc 35 ) = φφ()φφ(cc). jj cc PP )

7 ISSN: Vol. No. (Juni 07) Hal Setiap himpunan tak kosong φφ (mm),maka φφ (mm) terbatas ke atas dan terbatas ke bawah Misalkan untuk sebarang = nn φφ (mm), maka φφ(nn) = mm. Berdasarkan definisi.6. φφ(nn) tidak lebih dari nn. Sehingga φφ(nn) nn mm nn. Karena mm nn maka berdasarkan definisi.7. mm adalah batas bawah dari φφ (mm). Karena = nn maka berdasarkan teorema 4.. mm = φφ(nn) = ( )( ) ( ) Sehingga jika diberikan nn dan nn maka ( ) mm. Namun jika diberikan mm dan ( ) mm belum dapat dipastikan nn. contohnya φφ(7) = 6, diketahui (3 ) 6 namun 3 7. Akibatnya ( nn ) ( ( ) mm ). nn = φφ(nn) nn ( = nn ( ) ( ) ( ) mm ) Sehingga nn φφ(nn) ( ( ) mm ) = mm ( ( ) mm ) Karena nn mm ( ) mm ) maka berdasarkan definisi.7. mm ( ( ( ) mm ) adalah batas atas dari φφ (mm). Jadi φφ (mm) terbatas ke atas dan terbatas ke bawah. Akibat 4.. [5] Jika qq adalah elemen ganjil terbesar dari himpunan φφ (mm), maka qq mm ( ) ( ) mm Karena qq φφ (mm) maka φφ(qq) = mm. Berdasarkan akibat 4.8 jika qq ganjil maka φφ(qq) = φφ(qq) = mm. Sehingga qq φφ (mm). Berdasarkan teorema 4., qq mm ( ( ) mm ). Sehingga qq mm ( ( ) mm ). 5. KESIMPULAN Kesimpulan yang diperoleh dari penilitian ini adalah. Sifat-sifat fungsi phi Euler terkandung dalam teorema berikut: a. Jika bilangan prima, bilangan bulat positif maka φφ( ) = ( )( ) b. Jika adalah faktorisasi prima dari bilangan bulat positif h. maka φφ(h) = ( )( ) ( ) = h = h ( h ) c. Jika nn bilangan bulat positif dan faktor positif nn maka nn φφ() = nn d. Jika nn bilangan bulat positif lebih besar dari, maka jumlah bilangan bulat positif tidak lebih dari nn dan relatif prima dengan nn adalah nn φφ(nn) e. Jika nn 3 maka φφ(nn) adalah bilangan genap 36

8 ISSN: Vol. No. (Juni 07) Hal f. Jika nn adalah suatu bilangan bulat positif maka peta dari nn dibawah fungsi phi Euler adalah atau bilangan genap g. Jika adalah bilangan prima dengan nn =, maka φφ(nn) = ( )φφ(mm) untuk (, mm) =, dan φφ(nn) = (mm) untuk (, mm) h. Jika mm bilangan bulat positif, maka mm adalah bilangan ganjil jika dan hanya jika φφ(mm) = φφ(mm) i. Jika nn memiliki faktor prima ganjil sebanyak buah, maka φφ(nn) j. Jika mm nn dengan mm, nn adalah bilangan positif maka φφ(mm) φφ(nn) k. Jika FPB (, bb) = dan KPK [, bb] = cc maka φφ()φφ(bb) = φφ()φφ(cc). Batas bawah dan batas atas prapeta bilangan positif mm di bawah fungsi phi Euler adalah sebagai berikut: a. mm adalah batas bawah dari φφ (mm) b. mm ( ) adalah batas atas dari φφ (mm) dengan adalah bilangan ( ) mm prima c. Jika qq adalah elemen ganjil terbesar dari himpunan φφ (mm), maka qq mm ( ) ( ) mm DAFTAR PUSTAKA [] Apostol, T.M. Introduction to analytic Number Theory. California Institu of Tecnology. United States of America. [] Bartle & Sherbet Introduction to Real Analysis Third Edition. Hamilton: United State of America. [3] Burton, D. M. 0. Elementary Number Theory Seventh Edition. McGraw Hill: New York. [4] Coel, W. R Number theory An Introduction To Mathematics: Part A. New York: United Stated of America. [5] Gupta, H. 98. Euler s totient function and its inverse. Indian J. Pure al. Math., (): -30. [6] Rosen. K. H Elementary Number Theory And Its Aplication Fifth Edition. AT&T Laboratories: United States of America. 37

Pemfaktoran prima (2)

Pemfaktoran prima (2) FPB dan KPK Konsep Habis Dibagi Definisi: Jika a suatu bilangan asli dan b suatu bilangan bulat, maka a membagi habis b (dinyatakan dengan a b) jika dan hanya jika ada sebuah bilangan bulat c demikian

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

ALTERNATIF MENENTUKAN FPB DAN KPK

ALTERNATIF MENENTUKAN FPB DAN KPK ALTERNATIF MENENTUKAN FPB DAN KPK Welly Desriyati 1, Mashadi 2, Sri Gemawati 3 1 Mahasiswa Program Studi Magister Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau wellydesriyati@gmail.com

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1

JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 JURNAL SAINS DAN SENI POMITS Vol., No., (203) -6 Kajian Ukuran Keirasionalan pada Bilangan Real Taurusita Kartika Imayanti dan Sunarsini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji *

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji * FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER Sangadji * ABSTRAK FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Dalam makalah ini dibahas fungsi-fungsi

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA

FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA A. KELIPATAN A. KELIPATAN Kelipatan suatu bilangan dapat diperoleh: 1. penjumlahan berulang, dan 2. penjumlahan bilangan dengan bilangan asli Contoh: Tentukanlah

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

Arie Wijaya, Yuni Yulida, Faisal

Arie Wijaya, Yuni Yulida, Faisal Vol.9 No.1 (215) Hal. 12-19 HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya, Yuni Yulida, Faisal PS Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. A. Yani Km. 36

Lebih terperinci

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

ANTI SUBGRUP FUZZY. Kata Kunci: Lower level subset, Anti subgrup fuzzy, Lower Level Subgrup.

ANTI SUBGRUP FUZZY. Kata Kunci: Lower level subset, Anti subgrup fuzzy, Lower Level Subgrup. ANTI SUBGRUP FUZZY Ahmad Yasir, Saman Abdurrahman, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Email: Ahmad.yasir.syahti@gmail.com ABSTRAK Subgrup yaitu himpunan bagian

Lebih terperinci

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR

Jurnal Matematika Murni dan Terapan Epsilon Juni 2014 Vol. 8 No. 1 METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Jurnal Matematika Murni dan Terapan Epsilon Juni 204 Vol. 8 No. METODE KARMARKAR SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PEMROGRAMAN LINEAR Bayu Prihandono, Meilyna Habibullah, Evi Noviani Program Studi

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A Fakultas : FMIPA Program Studi : Pendidikan Matematika Mata Kuliah/Kode : Teori Bilangan MAT 212 Jumlah SKS : Teori= 2 sks; Praktek= - Semester : Genap Mata Kuliah Prasyarat/kode : Logika dan Himpunan,

Lebih terperinci

Beberapa Karakteristik Fungsi Mobius

Beberapa Karakteristik Fungsi Mobius Vol. 10, No. 1, 1-5, Juli 2013 Beberapa Karakteristik Fungsi Mobius Nur Erawaty 1 Abstrak Fungsi Mobius adalah fungsi unik yang terdapat dalam teori bilangan dan transformasi Mobius dalam bidang Geometri.

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN

KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN STUDY OF PROPERTIES OFZERO-DIVISOR GRAPH OF A COMMUTATIVE RING WITH UNITY Satrio Adi Wicaksono (1209 100 069) Pembimbing: Soleha,

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Jurnal Matematika Murni dan Terapan εpsilon Vol.7 No.2 (2013) Hal. 12-19 PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER MELALUI DIAGONALISASI MATRIKS Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Program

Lebih terperinci

Fadly Ramadhan, Thresye, Akhmad Yusuf

Fadly Ramadhan, Thresye, Akhmad Yusuf ISSN: 978-44 Vol.0 No. (06) Hal.8-7 DETERMINAN MATRIKS DENGAN ELEMEN BILANGAN FIBONACCI ORDER- YANG DIGENERALISASI Fadly Ramadhan, Thresye, Akhmad Yusuf Program Studi Matematika Fakultas MIPA Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

BILANGAN RADO 2-WARNA UNTUK m 1

BILANGAN RADO 2-WARNA UNTUK m 1 Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 68 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN RADO 2-WARNA UNTUK m 1 i=1 a ix i = x m DWIPRIMA ELVANNY MYORI Jurusan Teknik Elektro, Fakultas

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu IV. HASIL DAN PEMBAHASAN 4.1 Fungsi Euler Definisi 4.1 Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu bilangan bulat yang sama dengan jumlah dari iterasi Totientnya. yaitu jika

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN. pengembangan sistem yang menggunakan metode SDLC (System Development

BAB IV IMPLEMENTASI DAN PENGUJIAN. pengembangan sistem yang menggunakan metode SDLC (System Development BAB IV IMPLEMENTASI DAN PENGUJIAN A. Implementasi Implementasi adalah suatu proses penerapan rancangan program yang telah dibuat kedalam sebuah pemrograman sesuai dengan rencana yang telah di rancang sebelumnya

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 1 (2015), hal 85 94 METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Sari Puspita, Evi Noviani, Bayu Prihandono INTISARI Bilangan prima

Lebih terperinci

2. Pengurangan pada Bilangan Bulat

2. Pengurangan pada Bilangan Bulat b. Penjumlahan tanpa alat bantu Penjumlahan pada bilangan yang bernilai kecil dapat dilakukan dengan bantuan garis bilangan. Namun, untuk bilangan-bilangan yang bernilai besar, hal itu tidak dapat dilakukan.

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT Apriadi, Sri Gemawati 2, Musraini 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci. Rini Adha Apriani ABSTRACT

FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci. Rini Adha Apriani ABSTRACT FORMULA SELISIH DAN PENJUMLAHAN BARISAN BILANGAN k-fibonacci Rini Adha Apriani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS Anggy S. Mandasary 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

Bizaini, Dewi Sri Susanti, Yuni Yulida Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Bizaini, Dewi Sri Susanti, Yuni Yulida Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat ASURANSI JOINT LIFE SEUMUR HIDUP Bizaini, Dewi Sri Susanti, Yuni Yulida Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Email: smagazbize@yahoo.com ABSTRAK Salah satu jenis asuransi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang BAB II LANDASAN TEORI Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang akan digunakan sebagi landasan pembahasan untuk bab III. Materi yang akan diuraikan antara lain persamaan diferensial,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

SIFAT-SIFAT PEMETAAN BILINEAR

SIFAT-SIFAT PEMETAAN BILINEAR SIFAT-SIFAT PEMETAAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT Let UU, VV and WW are vector

Lebih terperinci

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Yurnalis 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. SIFAT MULTIPLICATIVE PADA HIIMPUNAN SISA Yurnalis 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia

Lebih terperinci

Pertemuan 4 Pengantar Teori Bilangan

Pertemuan 4 Pengantar Teori Bilangan INSTITUT PERTANIAN BOGOR FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Jl. Meranti, Kampus IPB Dramaga, Telp./Fax 0251-8625481/8625708 Email: fmipa@apps.ipb.ac.id, https://www.fmipa.ipb.ac.id Pertemuan

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

BAB V BILANGAN BULAT

BAB V BILANGAN BULAT BAB V BILANGAN BULAT PENDAHULUAN Dalam bab ini akan dibicarakan sistem bilangan bulat, yang akan dimulai dengan memperluas sistem bilangan cacah dengan menggunakan sifat-sifat baru tanpa menghilangkan

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Materi 1: Teori Himpunan

Materi 1: Teori Himpunan Materi 1: Teori Himpunan I Nyoman Kusuma Wardana STMIK STIKOM Bali Himpunan (set) kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Terdapat beberapa cara

Lebih terperinci

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika, Jurusan Pendidikan MIPA, Fakultas Keguruan dan Ilmu Pendidikan, Unveristas Khairun ABSTRAK Let UU,

Lebih terperinci

Induksi 1 Matematika

Induksi 1 Matematika Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF DENGAN KONEKTIVITAS 3

BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF DENGAN KONEKTIVITAS 3 Jurnal Matematika UNAND Vol. No. 4 Hal. 4 3 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BATAS ATAS RAINBOW CONNECTION NUMBER PADA GRAF DENGAN KONEKTIVITAS 3 PRIMA RESA PUTRI Program Studi Magister

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematik 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real

Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real J. Math. and Its Appl. ISSN: 189-605X Vol. 4, No. 1, May 007, 17 5 Konstruksi Matriks NonNegatif Simetri dengan Spektrum Bilangan Real Bambang Sugandi 1 dan Erna Apriliani 1 Jurusan Matematika, FMIPA Unibraw,

Lebih terperinci

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT

MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n ABSTRACT MENGHITUNG BANYAKNYA BILANGAN PRIMA YANG LEBIH KECIL DARI ATAU SAMA DENGAN SUATU BILANGAN BULAT n Polorida 1, Asli Sirait, Musraini M. 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES J. Sains Dasar 2016 5(1) 28-39 RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES Rifki Chandra Utama * dan Karyati Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta *email:

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

KATA PENGANTAR. Yogyakarta, November Penulis

KATA PENGANTAR. Yogyakarta, November Penulis KATA PENGANTAR Puji syukur penulis panjatkan kepada Alloh SWT atas anugrah yang diberikan sehingga penulisan Buku Diktat yang dilengkapi dengan Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan

Lebih terperinci

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jurnal Matematika Murni dan Terapan εpsilon SOLUSI DARI PERSAMAAN DIFERENSIAL BIASA LINIER ORDE 2 DALAM BENTUK POLINOMIAL TAYLOR Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA

Lebih terperinci

Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving

Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving Christianto - NIM : 1350003 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER. Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda

SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER. Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER. Dosen Pengampu: Rina Agustina, M.Pd. NIDN

RENCANA PEMBELAJARAN SEMESTER. Dosen Pengampu: Rina Agustina, M.Pd. NIDN RENCANA PEMBELAJARAN SEMESTER Mata kuliah Kode / sks Program studi Semester : Teori Bilangan : MAT-/ 2 sks : Pendidikan Matematika : IV (Empat) Dosen Pengampu: Rina Agustina, M.Pd. NIDN 0212088701 FAKULTAS

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teori Himpunan Drs. Sukirman, M.Pd. M PENDAHULUAN odul ini memuat pembahasan teori himpunan dan himpunan bilangan bulat. Teori himpunan memuat notasi himpunan, relasi dan operasi dua himpunan atau

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

WOLFRAM-ALPHA PADA TEORI BILANGAN

WOLFRAM-ALPHA PADA TEORI BILANGAN WOLFRAM-ALPHA PADA TEORI BILANGAN T - 7 Nanang Program Studi Pendidikan Matematika STKIP Garut na2ngdr.64@gmail.com Abstrak Kemajuan teknologi informasi dan komunikasi (TIK) saat ini telah dimanfaatkan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN Pada bab ini dibahas mengenai langkah-langkah yang dilakukan untuk menguji kerja daya sisip dari citra terhadap pesan menggunakan kecocokan nilai warna terhadap pesan berbahasa

Lebih terperinci

IDEAL FUZZY NEAR-RING. Saman Abdurrahman, Na imah Hijriati, Thresye

IDEAL FUZZY NEAR-RING. Saman Abdurrahman, Na imah Hijriati, Thresye IDEAL FUZZY NEAR-RING Saman Abdurrahman, Na imah Hijriati, Thresye Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Dalam tulisan ini akan dibahas ideal

Lebih terperinci

Kelipatan Persekutuan Terkecil (KPK)

Kelipatan Persekutuan Terkecil (KPK) Kelipatan Persekutuan Terkecil (KPK) Ada suatu konsep yang paralel dengan konsep faktor persekutuan terbesar (FPB), yang dikenal faktor persekutuan terkecil (KPK). Suatu bilangan bulat c disebut kelipatan

Lebih terperinci

BILANGAN DAN KETERBAGIAN BILANGAN BULAT

BILANGAN DAN KETERBAGIAN BILANGAN BULAT BILANGAN DAN KETERBAGIAN BILANGAN BULAT A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya

Lebih terperinci

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Email: cjacob@upi.edu 3. Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil pertama? Jumlah dari n bilangan bulat ganjil positif pertama

Lebih terperinci

Pembagi Persekutuan Terbesar dan Teorema Bezout

Pembagi Persekutuan Terbesar dan Teorema Bezout Latest Update: March 10, 2017 Pengantar Teori Bilangan (Bagian 3): Pembagi Persekutuan Terbesar dan Teorema Bezout M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR. Putri Octafiani 1, R. Heri Soelistyo U 2

PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR. Putri Octafiani 1, R. Heri Soelistyo U 2 PELABELAN GRACEFUL SISI BERARAH PADA GRAF GABUNGAN GRAF SIKEL DAN GRAF STAR Putri Octafiani 1, R. Heri Soelistyo U 2 1,2 Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang

Lebih terperinci

Himpunan dan Sistem Bilangan Real

Himpunan dan Sistem Bilangan Real Modul 1 Himpunan dan Sistem Bilangan Real Drs. Sardjono, S.U. PENDAHULUAN M odul himpunan ini berisi pembahasan tentang himpunan dan himpunan bagian, operasi-operasi dasar himpunan dan sistem bilangan

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

FUNGSI COMPUTABLE. Abstrak

FUNGSI COMPUTABLE.  Abstrak FUNGSI COMPUTABLE Ahmad Maimun 1, Suarsih Utama. 1, Sri Mardiyati 1 1 Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 ahmad.maimun90@gmail.com, suarsih.utama@sci.ui.ac.id, sri_math@sci.ui.ac.id

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli

BILANGAN. Bilangan Satu Bilangan Prima Bilangan Komposit. Bilangan Asli BILANGAN A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya pola dalam suatu bilangan,

Lebih terperinci