BAB 4. TEOREMA FERMAT DAN WILSON

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4. TEOREMA FERMAT DAN WILSON"

Transkripsi

1 BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012

2 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor prima yang tidak melebihi n. Diasumsikan n bulat ganjil. Metoda Fermat didasarkan pada ide penemuan bilangan bulat x dan y sehingga n = x 2 y 2. Karena dapat ditulis n = (x + y)(x y) maka (x + y) dan (x y) adalah faktor-faktor dari n. Sebaliknya bila n = ab, a b 1, maka dapat ditulis ( ) a + 2 ( ) b a 2 b n =. 2 2 Karena n ganjil maka a dan b harus ganjil (mengapa?), oleh karena itu a+b dan a b taknegatif. 2 2 Bilangan bulat dapat difaktorkan bhb ia dapat disajikan sebagai selisih kuadrat bil taknegatif

3 Algoritma 1 Tulis x 2 n = y 2 2 Tentukan k bilangan bulat pertama dimana k 2 n 3 Urutkan bilangan berikut Example k 2 n, (k + 1) 2 n, (k + 2) 2 n, (k + 3) 2 n, hingga langkah ke m sehingga (k + m) 2 n adalah bilangan kuadrat. Faktorkan bilangan n = Penyelesaian. Menentukan k sehingga k Cek! = , = Ambil k = 346. Urutkan bilangan (k + m) 2 n,m = 0, 1, 2,. Hasilnya sebagai berikut:

4 Algoritma (lanjutan...) n = n = n = n = n = n = n = 4761 Ternyata sampai pada m = 6 sudah menghasilkan bil kuadrat yaitu ( ) = 4761 = Diperoleh x = 352,y = 69. Faktorisasi yang diperoleh adalah = (x + y)(x y) = ( )(352 69) =

5 Ciri bilangan kuadrat: Angka terakhirnya kemungkinannya 0, 1, 4, 5, 6 dan 9 (mengapa?) Dua angka terakhirnya ada 22 kemungkinan, temukan angka berapa saja! Petunjuk: Gunakan modulo 10 untuk mendeteksi kemungkinan 1 angka terakhir, dan modulo 100 untuk 2 angka terakhir. Latihan 1: Faktorkan bilangan dengan metoda Fermat! Lengkapi keterangan setiap langkahnya! Metoda faktorisasi Fermat akan sangat efektif jika selisih magnitud kedua faktornya kecil. Example Faktorkan bilangan n = Mulailah dengan k = 154 maka hanya dibutuhkan 2 langkah, diperoleh faktorisasi yang dimaksud adalah =

6 Generalisasi metoda faktorisasi Fermat Pada metoda sebelumnya, bilangan bulat x dan y memenuhi n = x 2 y 2. Sekarang x dan y lebih umum, yaitu cukup memenuhi x 2 y 2 (mod n). Misalkan d = gcd(x y,n) atau d = gcd(x + y,n), maka d n. Permasalahannya, apakah d faktor sejati, yaitu 1 < d < n? Dengan asumsi n = pq, p,q prima dengan p < q maka kemungkinan d adalah 1,p,q atau pq. x 2 y 2 (mod n) pq (x y)(x + y) Lemma Euclid p dan q membagi salah satu faktornya. Bila yang terjadi adalah p (x y) dan q (x y) pq (x y) x y(mod n), atau p (x + y) dan q (x + y) pq (x + y) x y(mod n). Situasi dimana x ±y(mod n) dikesampingkan. Jadi, d adalah salah satu p atau q.

7 Example Kita ingin memfaktorkan n = 2189 dengan memperoleh (mod 2189). Hitung gcd masing-masing, yaitu gcd(579 18, 2189) = gcd(561, 2189) = 11 gcd( , 2189) = gcd(597, 2189) = 199 maka diperoleh 2189 = Bagaimana mendapatkan (mod 2189)? Jelaskan langkah-langkahnya?

8 Metoda Kraitchik (1920) Idenya adalah mencari bilangan x 1,x 2,,x k sehingga (x 1 n) (x k n) bil kuadrat, katakan y 2. Akibatnya dapat ditulis (x 1 x k ) 2 y 2 (mod n). Ini menghasilkan faktor taksejati n seperti sebelumnya. Example Kita akan memfaktorkan n = Inspeksi awal = Dimulai dari k = 112. Tidak diurutkan seperti metoda Fermat, tetapi cukup n = (mod 12499) n = (mod 12499) n = (mod 12499) Kita kalikan hasil-hasil ini diperoleh ( ) ( ) 2 (mod ) (mod 12499) gagal?

9 Example (lanjutan) Ambil kemungkinan lain, mis (mod 12499) (mod 12499) maka diperoleh ( ) 2 ( ) 2 (mod 12499) (mod 12499). Karena 1852 ±990(mod 12499) maka kita berhasil. Hitung gcd masing-masing seperti sebelumnya diperoleh faktorisasi =

10 Teorema Litle Fermat Theorem Misalkan p prima dan andaikan p a maka a p 1 1(mod p). Ilustrasi: p = 3 maka untuk a = 5 berlaku (mod 3), tetapi untuk a = 6 tidak berlaku bahwa = 36 1(mod 3). Proof. Kumpulkan p 1 kelipatan pertama a, yaitu V = {a, 2a, 3a,,(p 1)a}. Diperoleh fakta Tidak ada anggota V yang kongruen satu sama lainnya (mengapa?) Tidak ada anggota V yang kongruen dengan nol (mengapa?) Maka setiap anggota V pasti kongruen modulo p terhadap salah satu 1, 2,,p 1. Kalikan semua kongruensi ini diperoleh a 2a 3a (p 1)a (p 1)(mod p) a p 1 (p 1)! (p 1)!(mod p) a p 1 1(mod p) (Why?).

11 Akibat Teorema Fermat Corollary Bila p prima maka a p a(mod p)untuk sebarang bil bulat a. Proof. Ada 2 kemungkinan: bila p a maka pernyataan otomatis berlaku. Bila p a maka mk dg Teorema Fermat diperoleh a p 1 1(mod p). Kalikan kedua ruas dengan a, Akibat ini terbukti. Example Kita akan membuktikan (mod 11). Ambil p = 11, a = (mod 11). Dengan fakta 5 2 3(mod 11) maka diperoleh 5 38 = = (5 10 ) 3 (5 2 ) (mod 11) 4(mod 11).

12 Uji Primalitas dengan Teorema Fermat Bila kongruensi a n a(mod n) tidak berlaku untuk suatu a maka dipastikan n komposit. Example Misalkan n = 117. Ambil a = 2. Tulis = ( 2 7) Karena 2 7 = (mod 117) maka berlaku (121) (mod 117). Tetapi 2 21 = ( 2 7) = (mod 117). Akhirnya diperoleh (mod 117). Jadi disimpulkan 117 komposit, faktanya 117 = 9 13.

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 24, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo May 25, 2014 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1 Pengembangan Teorema Pada penelitian dan perancangan algoritma ini, akan dibahas mengenai beberapa teorema uji primalitas yang telah ditemukan baru

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

Pemfaktoran prima (2)

Pemfaktoran prima (2) FPB dan KPK Konsep Habis Dibagi Definisi: Jika a suatu bilangan asli dan b suatu bilangan bulat, maka a membagi habis b (dinyatakan dengan a b) jika dan hanya jika ada sebuah bilangan bulat c demikian

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 1 (2015), hal 85 94 METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Sari Puspita, Evi Noviani, Bayu Prihandono INTISARI Bilangan prima

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MAKALAH KRIPTOGRAFI CHINESE REMAINDER MAKALAH KRIPTOGRAFI CHINESE REMAINDER Disusun : NIM : 12141424 Nama : Ristiana Prodi : Teknik Informatika B SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2016 1. Pendahuluan

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

BAB V BILANGAN BULAT

BAB V BILANGAN BULAT BAB V BILANGAN BULAT PENDAHULUAN Dalam bab ini akan dibicarakan sistem bilangan bulat, yang akan dimulai dengan memperluas sistem bilangan cacah dengan menggunakan sifat-sifat baru tanpa menghilangkan

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

Induksi Matematika. Fitriyanti Mayasari

Induksi Matematika. Fitriyanti Mayasari Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar

Lebih terperinci

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA MODUL PERSIAPAN OLIMPIADE Oleh: MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2007 1 TEORI BILANGAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA HANDOUT TEORI BILANGAN MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 1 RELASI KETERBAGIAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 10

Pengantar Teori Bilangan. Kuliah 10 Pengantar Teori Bilangan Kuliah 10 Materi Kuliah Chinese Remainder Theorem (Teorema Sisa Cina) 2/5/2014 Yanita, FMIPA Matematika Unand 2 Pengantar Chinese Remainder Theorem (Teorema sisa Cina) adalah hasil

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

Metoda Pembuktian: Induksi Matematika

Metoda Pembuktian: Induksi Matematika Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011 ILUSTRASI Figure: Ilustrasi Induksi Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan I Bilangan Bulat dan Operasinya Pembekalan dan pemahaman dasar tentang bentuk bilangan pada suatu kelompok/set/himpunan salah satunya adalah bilangan bulat (yang lazim disebut

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON

PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON Andy Sumantri Harsono NIM : 0992980008 ABSTRAK Di era globalisasi seperti saat ini, arus dan perkembangan teknologi sangatlah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 4

Pengantar Teori Bilangan. Kuliah 4 Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE

MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE MENENTUKAN PRIMALITAS SEMUA BILANGAN YANG TERDAPAT PADA SELANG TERTENTU SECARA BRUTE FORCE E.Z. Adnan Kashogi 13505094 Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Lebih terperinci

Pembagi Persekutuan Terbesar dan Teorema Bezout

Pembagi Persekutuan Terbesar dan Teorema Bezout Latest Update: March 10, 2017 Pengantar Teori Bilangan (Bagian 3): Pembagi Persekutuan Terbesar dan Teorema Bezout M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga

Lebih terperinci

TEORI BILANGAN (3 SKS)

TEORI BILANGAN (3 SKS) BAHAN AJAR: TEORI BILANGAN (3 SKS) O l e h Drs. La Misu, M.Pd. (Dipakai dalam Lingkungan Sendiri) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALU OLEO KENDARI

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

KATA PENGANTAR. Yogyakarta, November Penulis

KATA PENGANTAR. Yogyakarta, November Penulis KATA PENGANTAR Puji syukur penulis panjatkan kepada Alloh SWT atas anugrah yang diberikan sehingga penulisan Buku Diktat yang dilengkapi dengan Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Pertama)

Sistem Bilangan Kompleks (Bagian Pertama) Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian

Lebih terperinci

ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS

ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS Kelly Swandana NIM : 0500583315 ABSTRAK Di era globalisasi seperti saat ini, arus dan perkembangan teknologi sangatlah

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT Apriadi, Sri Gemawati 2, Musraini 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER. Dosen Pengampu: Rina Agustina, M.Pd. NIDN

RENCANA PEMBELAJARAN SEMESTER. Dosen Pengampu: Rina Agustina, M.Pd. NIDN RENCANA PEMBELAJARAN SEMESTER Mata kuliah Kode / sks Program studi Semester : Teori Bilangan : MAT-/ 2 sks : Pendidikan Matematika : IV (Empat) Dosen Pengampu: Rina Agustina, M.Pd. NIDN 0212088701 FAKULTAS

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

PERKONGRUENAN POLINOMIAL MODULO m

PERKONGRUENAN POLINOMIAL MODULO m PERKONGRUENAN POLINOMIAL MODULO m Nunung Fajar Kusuma Program Studi Pendidikan Matematika Pasca Sarjana Universitas Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta, e-mail: nfjar@yahoo.com

Lebih terperinci

FAST EXPONENTIATION. 1. Konsep Modulo 2. Perpangkatan Cepat

FAST EXPONENTIATION. 1. Konsep Modulo 2. Perpangkatan Cepat FAST EXPONENTIATION 1. Konsep Modulo 2. Perpangkatan Cepat Fast Exponentiation Algoritma kunci-publik seperti RSA, Elgamal, Rabin-Williams Cryptosystem, DSA, dan sebagainya, sederhana dalam perhitungannya

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN)

LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN) Nama Siswa Kelas PETA KONSEP: LEMBAR AKTIVITAS SISWA BENTUK PANGKAT (EKSPONEN) Latihan :. :. 3. A. PANGKAT BULAT POSITIF Jika a R dan bilangan bulat positif n, maka a n didefinisikan sbg berikut: a n =

Lebih terperinci

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1. Pengembangan Teorema Dalam enelitian dan erancangan algoritma ini, akan dibahas mengenai beberaa teorema uji rimalitas yang terbaru. Teorema-teorema

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar

Lebih terperinci

Pertemuan 4 Pengantar Teori Bilangan

Pertemuan 4 Pengantar Teori Bilangan INSTITUT PERTANIAN BOGOR FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Jl. Meranti, Kampus IPB Dramaga, Telp./Fax 0251-8625481/8625708 Email: fmipa@apps.ipb.ac.id, https://www.fmipa.ipb.ac.id Pertemuan

Lebih terperinci

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Mario Tressa Juzar (13512016) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS.

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. 15, 20, 23, 25 HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. Dst. KESIMPULAN : (hubungkan dengan SIKAP yang harus Anda miliki untuk memilih dan memberikan alasan) PROBLEM

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN MATA KULIAH : TEORI BILANGAN KODE : MKK206515 DOSEN : JANUAR BUDI ASMARI, S.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

Analisis dan Implementasi Serangan Kunci secara Konkuren pada Algoritma RSA

Analisis dan Implementasi Serangan Kunci secara Konkuren pada Algoritma RSA Analisis dan Implementasi Serangan Kunci secara Konkuren pada Algoritma RSA Rezan Achmad / 13508104 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

PENGUJIAN BILANGAN CARMICHAEL. (Skripsi) Oleh SELMA CHYNTIA SULAIMAN

PENGUJIAN BILANGAN CARMICHAEL. (Skripsi) Oleh SELMA CHYNTIA SULAIMAN PENGUJIAN BILANGAN CARMICHAEL Skripsi Oleh SELMA CHYNTIA SULAIMAN JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2016 ABSTRAK PENGUJIAN BILANGAN CARMICHAEL Oleh SELMA

Lebih terperinci

Integer (Bilangan Bulat)

Integer (Bilangan Bulat) Integer (Bilangan Bulat) Learning is not child's play, we cannot learn without pain. Aristotle 1 Tipe Data Integer Pada Bahasa Pemrograman Signed (bertanda +/- ) Unsigned (bulat non- negadf) Contoh: Misal

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Paa bab ini ipelajari aritmatika moular yaitu aritmatika tentang kelas-kelas ekuivalensi, imana permasalahan alam teori bilangan iseerhanakan engan cara mengganti setiap bilangan bulat engan sisanya bila

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN

BAB III HASIL DAN PEMBAHASAN BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan hal-hal yang berhubungan dengan masalah dan bagaimana mengeksplorasinya dengan logaritma diskret pada menggunakan algoritme Exhaustive Search Baby-Step

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

Kelipatan Persekutuan Terkecil (KPK)

Kelipatan Persekutuan Terkecil (KPK) Kelipatan Persekutuan Terkecil (KPK) Ada suatu konsep yang paralel dengan konsep faktor persekutuan terbesar (FPB), yang dikenal faktor persekutuan terkecil (KPK). Suatu bilangan bulat c disebut kelipatan

Lebih terperinci

STUDI SEJARAH DAN PERKEMBANGAN BILANGAN PRIMA

STUDI SEJARAH DAN PERKEMBANGAN BILANGAN PRIMA STUDI SEJARAH DAN PERKEMBANGAN BILANGAN PRIMA Jansen - NIM : 13506028 Jurusan Teknik Informatika ITB, Bandung email: if16028@students.if.itb.ac.id Abstract Makalah ini membahas tentang perkembangan salah

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

DAFTAR ISI. Pengamanan Pesan Rahasia Menggunakan Algoritma Kriptografi Rivest Shank Adleman (RSA)

DAFTAR ISI. Pengamanan Pesan Rahasia Menggunakan Algoritma Kriptografi Rivest Shank Adleman (RSA) DAFTAR ISI PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LAMPIRAN... xi ARTI LAMBANG... xii BAB 1 PENDAHULUAN

Lebih terperinci