5. Fungsi dari Peubah Acak

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "5. Fungsi dari Peubah Acak"

Transkripsi

1 5. Fungsi dari Peubah Acak EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono

2 Sebaran cuplikan (n-1)s 2 / σ 2 TEOREMA 5.16 Jika S 2 adalah variansi dari cuplikan acak berukuran n yang diambil dari populasi tersebar normal dengan variansi σ 2, maka peubah acak X 2 = (n-1)s 2 / σ 2 akan memiliki sebaran chi-kuadrat dengan v=n-1 derajat bebas. Nilai dari setiap peubah acak X 2 dihitung dari setiap cuplikan dengan rumus χ 2 = (n-1)s 2 /σ 2 Peluang bahwa cuplikan acak menghasilkan nilai χ 2 lebih besar dari nilai tertentu akan sama dng daerah dibawah kurva dibagian kanan dari nilai ini. Biasanya batas ini disebut α dan luas daerah disebelah kanannya ditulis χ α2. 0 χ α 2 α χ Tabel VI menampilkan nilai χ 2 α untuk berbagai harga α dan derajat bebas v. Sebagai contoh χ = untuk v=7 = untuk v=7 χ

3 Contoh 5.19 Soal: Sebuah pabrik batere (aki) mobil menjamin akinya tdk akan rusak selama rata-rata 3 tahun dengan simpangan baku 1 tahun. Jika lima dari batere ini dapat bertahan selama 1.9, 2.4, 3.0, 3.5, dan 4.2 tahun, apakah pabrik ini masih yakin bahwa simpangan baku waktu hidup batere 1 tahun? Jawab: Kita temukan bahwa variansi cuplikan adalah s 2 = {(5)(48.26) (15) 2 }/{(5)(4)}=0.815 Maka χ 2 = (5-1)(0.815)/1 = 3.26 adalah nilai dari sebaran chi-kuadrat dengan 4 derajat bebas. Karena 95% dari χ 2 dengan 4 derajat bebas akan jatuh antara (yaitu χ ) dan (yaitu χ ) dan nilai χ 2 =3.26 berada didalam selang nilai ini, maka variansi σ 2 =1 adalah masuk akal dan tidak perlu ada kecurigaan bahwa simpangan bakunya bukan 1 tahun.

4 Sebaran-t atau Sebaran Student Seringkali nilai variansi populasi tdk diketahui. Jika besar cuplikan n 30, maka variansi cuplikan S 2 adalah estimasi yang cukup baik untuk σ 2. Apa yng terjadi dng statistik (X- μ)/(σ/ n) pada Teorema 5.14 jika σ 2 digantikan S 2? Jika n 30 sebaran statistik (X- μ)/(s/ n) akan mendekati normal baku Jika n<30, S 2 akan berfluktuasi dan sebaran statistik (X- μ)/(s/ n) tidak lagi normal baku. Sebagai gantinya, kita akan menganalisis statistik T yng diberikan oleh T=(X-μ)/(S/ n) Selama penurunan, cuplikan acak dilakukan terhadap populasi yang tersebar normal.

5 Lanjutan Bisa kita tuliskan bahwa T = {(X-μ)/(σ/ n)}/ (S 2 /σ 2 ) = Z/ [V/(n-1)] dimana Z=(X-μ)/(σ/ n) tersebar normal dan V=(n-1)S 2 /σ 2 tersebar chi-kuadrat dengan v=n-1 derajat bebas. Dapat ditunjukkan bahwa X dan S 2 saling bebas, demikian pula Z dan V. TEOREMA 5.17 Andaikan Z peubah acak normal baku dan V peubah acak chi-kuadrat dengan v derajat bebas. Jika Z dan V saling bebas, maka sebaran dari peubah acak T dimana T = Z/ (V/v) diberikan oleh h(t) = {Γ[(v+1)/2]/Γ[(v/2) ( πv)]} [1+(t 2 /v)] -(v+1)/2, - <t< Sebaran ini dikenal sebagai sebaran-t dengan v derajat bebas.

6 Student Sebaran dari T dipublikasikan pd tahun 1908 oleh WS Gosset. Tempat kerja Gosset melarang hasil riset dipublikasikan, karena itu dipakai nama samaran Student. Sebaran T midirp dengan sebaran Z, yaitu simetrik terhadap mean nol. Keduanya berbentuk lonceng, tetapi sebaran T lebih bervariasi akibat fluktuasi nilai X dan S 2, sdngkan Z hanya bergantung pd X. v= v=5 v=2 Kedua sebaran akan sama ketika n mencapai takhingga Nilai sebaran T diberikan pada Tabel V Tepat 95% dari sebaran-t berderajat (n-1) jatuh antara t dan t Dengan demikian, t diluar selang ini menggambarkan kejadian yang sangat jarang terjadi atau asumsi terhadap μ salah. Artinya, kalau mean yang sebenarnya sedikit berbeda dengan yang diklaim tidak menjadi masalah, interval t sebaiknya diperlebar ke t 0.01 dan t 0.01 dimana t pasti jatuh disini.

7 Contoh 5.20 Soal: Pabrik bolam (bola lampu listrik) meng-klaim bahwa produknya memiliki waktu hidup rata-rata 500 jam. Untuk menjaga nilai ini, setiap bulan 25 buah bolam diuji. Jika t hasil hitungannnya jatuh dalam interval -t 0.05 dan t 0.05 hasilnya dianggap memuaskan. Jika dari cuplikan diperoleh mean x=518 jam dan simpangan baku s=40 jam dan sebaran waktu hidup adalah normal, kesimpulan apa yng bisa diambil? Jawab: Dari Tabel V kita temukan bahwa t 0.05 =1.711 untuk 24 derajat bebas. Oleh karena itu, pabrik puas dengan klaim-nya jika cuplikan 25 bolam menghasilkan t antara dan Karena mean μ = 500, maka t=( )/(40/ 25) = 2.25 sebuah nilai diatas Peluang mendapatkan nilai t, dengan v=24, sama dengan atau lebih dari 2.25 adalah sekitar Untuk μ>500, nilai t yang terhitung dari cuplikan akan lebih masuk akal. Dengan demikian, pemilik pabrik akan menyimpulkan produknya lebih bagus yang dikira.

8 Latihan: {12, 14}, 17, 26, 31

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono 6. Teori Estimasi EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Pendahuluan Inferensi statistik adalah metoda untuk menarik inferensi atau membuat generalisasi dari suatu populasi. Ada

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka MODUL DISTRIBUSI t 1. PENDAHULUAN Pengujian hipotesis dengan distribusi t adalah pengujian hipotesis yang menggunakan distribusi t sebagai uji statistik. Tabel pengujiannya disebut tabel t-student. Distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan

Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan PENGUJIAN HIPOTESIS Hipotesis Statistik adalah pernyataan atau dugaan mengenai satu atau lebih populasi. Dengan mengambil suatu sampel acak dari populasi tersebut dan menggunakan informasi yang dimiliki

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

MODUL DISTRIBUSI T. Objektif:

MODUL DISTRIBUSI T. Objektif: MODUL DISTRIBUSI T Objektif: 1. Membantu mahasiswa memeahami materi Distribusi t 2. Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi t I. PENDAHULUAN Pengujian hipotesis

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT)

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT) STATISTIKA II Distribusi Sampling (Nuryanto, ST., MT) 1. Pendahuluan Bidang Inferensia Statistik membahas generlisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan

Lebih terperinci

STATISTIK PERTEMUAN IV

STATISTIK PERTEMUAN IV STATISTIK PERTEMUAN IV PRINSIP DAN DISTRIBUSI PROBABILITAS A. PERANAN PROBABILITAS Pembuatan model, analisis matematis, simulasi komputer dan sebagainya, banyak didasarkan atas asumsi-asumsi yang diidealisir,

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

Ayundyah Kesumawati. April 27, 2015

Ayundyah Kesumawati. April 27, 2015 Kesumawati Prodi Statistika FMIPA-UII April 27, 2015 Estimasi interval Jika diperhatikan, terdapat kesamaan rumus-rumus yang dipakai pada saat pengujian hipotesis dan pendugaan selang kepercayaan. Untuk

Lebih terperinci

QUIZ AKHIR SEMESTER GANJIL 2004/2005 TULISKAN PADA LEMBAR JAWABAN ANDA :

QUIZ AKHIR SEMESTER GANJIL 2004/2005 TULISKAN PADA LEMBAR JAWABAN ANDA : QUIZ KHIR SEMESTER GNJIL 2004/2005 TULISKN PD LEMR JWN ND : NM : NIM : MT KULIH : STTISTIK PROILITS KELS / RUNG : D3.. /. TNGGL UJIN :. 2004 1. Dalam pendugaan interval rata-rata µ, distribusi t digunakan

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

Pengantar Statistika Bab 1

Pengantar Statistika Bab 1 BAB 14 PENGUJIAN HIPOTESA SAMPEL KECIL 1 Pengujian Hipotesa Sampel Kecil 4 DEFINISI Pengertian Sampel Kecil Sampel kecil yang jumlah sampel kurang dari 30, maka nilai standar deviasi (s) berfluktuasi relatif

Lebih terperinci

BAB 9 DISTRIBUSI PELUANG KONTINU

BAB 9 DISTRIBUSI PELUANG KONTINU BAB 9 DISTRIBUSI PELUANG KONTINU A. Pengertian Distribusi Peluang Kontinu Distribusi peluang kontinu adalah peubah acak yang dapat memperoleh semua nilai pada skala kontinu. Ruang sampel kontinu adalah

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

STATISTIKA II (BAGIAN

STATISTIKA II (BAGIAN STATISTIKA II (BAGIAN - ) Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 008 Wijaya : Statistika II (Bagian-) 0 VI. PENGUJIAN HIPOTESIS Hipotesis

Lebih terperinci

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd Definisi Pengujian hipotesis deskriptif pada dasarnya merupakan proses pengujian generalisasi hasil penelitian yang didasarkan pada satu

Lebih terperinci

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION)

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) Andaikan ada suatu populasi dengan jumlah anggotanya sebanyak N diambil contoh sebanyak n. Apabila dari setiap kemungkinan contoh tersebut dihitung suatu

Lebih terperinci

Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan)

Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Metode Statistika Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Pengantar Seringkali kita tertarik dengan karakteristik umum dari suatu populasi parameter Misalnya saja berapa rata-rata

Lebih terperinci

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50

Lebih terperinci

statistika untuk penelitian

statistika untuk penelitian statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,

Lebih terperinci

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa

Lebih terperinci

ANALISIS KARAKTERISTIK POLA PERJALANAN PENGGUNA DAN NON PENGGUNA INTERNET

ANALISIS KARAKTERISTIK POLA PERJALANAN PENGGUNA DAN NON PENGGUNA INTERNET BAB 5 ANALISIS KARAKTERISTIK POLA PERJALANAN PENGGUNA DAN NON PENGGUNA INTERNET 5.1 Uji Hipotesis Karakteristik Pola Perjalanan Uji hipotesis ini untuk membuktikan apakah terdapat perbedaan karakterisitik

Lebih terperinci

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan. II. TINJAUAN PUSTAKA Distribusi generalized,,, adalah salah satu distribusi probabilitas kontinu. Distribusi ini pertama kali diperkenalkan McDonald dan Newey 988 untuk mengestimasi parameter regresi.

Lebih terperinci

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis.

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis. Konsep: PENGUJIAN HIPOTESIS Agus Susworo Dwi Marhaendro Hipotesis: asumsi atau dugaan sementara mengenai sesuatu hal. Dituntut untuk dilakukan pengecekan kebenarannya. Jika asumsi atau dugaan dikhususkan

Lebih terperinci

PENGUJIAN HIPOTESIS 1

PENGUJIAN HIPOTESIS 1 PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang

Lebih terperinci

PENGUJIAN HIPOTESA #1

PENGUJIAN HIPOTESA #1 PENGUJIAN HIPOTESA #1 Materi #3 TIN309 DESAIN EKSPERIMEN Pengujian Hipotesa Hipotesa: asumsi atau dugaan mengenai sesuatu hal yang dibuat untuk menjelaskan sesuatu masalah. Pengujian Hipotesa: langkah-langkah

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

PENGERTIAN PENGUJIAN HIPOTESIS

PENGERTIAN PENGUJIAN HIPOTESIS PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET Pertemuan 7. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET 4. Pendahuluan 4.2 Distribusi seragam diskret 4.3 Distribusi binomial dan multinomial

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

TEORI PENDUGAAN (TEORI ESTIMASI)

TEORI PENDUGAAN (TEORI ESTIMASI) TEORI PENDUGAAN (TEORI ESTIMASI) Tujuan Pembelajaran Mempelajari bagaimana cara melakukan pendugaan parameter populasi berasarkan statistik yang dihitung dari sampel A. Pendahuluan Pendahuluan : Tujuan

Lebih terperinci

Makalah Statistika Distribusi Normal

Makalah Statistika Distribusi Normal Makalah Statistika Distribusi Normal Disusun Oleh: Dwi Kartika Sari 23214297 2EB16 Fakultas Ekonomi Jurusan Akuntansi Universitas Gunadarma 2015 Kata Pengantar Puji syukur kehadirat Tuhan Yang Maha Esa

Lebih terperinci

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

PENAKSIRAN PARAMETER TM_3

PENAKSIRAN PARAMETER TM_3 PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 IV. PENDUGAAN PARAMETER Populasi Sampling Sampel N n Rata-rata : μ Simp.

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

Pertemuan 9 II. STATISTIKA INFERENSIAL

Pertemuan 9 II. STATISTIKA INFERENSIAL Pertemuan 9 II. STATISTIKA INFERENSIAL Tujuan Setelah perkuliahan ini mhs. diharapkan mampu: Menjelaskan pengertian statistika inferensial Menjelaskan konsep sampling error Menghitung tingkat kepercayaan

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/ Muhammad Arif Rahman arifelzain@ub.ac.id Populasi Keseluruhan objek penelitian atau keseluruhan elemen yang akan diteliti. Sampel Sebagian dari populasi Representatif dapat memberi gambaran yang tepat

Lebih terperinci

2. Peubah Acak (Random Variable)

2. Peubah Acak (Random Variable) . Peubah Acak (Random Variable) EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 0. Review dari EL009 KonsepPeubahAcak Sebaran Peluang Diskrit Sebaran Peluang Kontinyu Sebaran Empiris Sebaran

Lebih terperinci

Pokok Bahasan: Chi Square Test

Pokok Bahasan: Chi Square Test Pokok Bahasan: Chi Square Test Start Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness of Fit Test) (Kontigensi Table Test) 1 Instruksional Umum Memberi penjelasan tentang distribusi

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

UJI HIPOTESIS UNTUK PROPORSI

UJI HIPOTESIS UNTUK PROPORSI PENGUJIAN HIPOTESIS UJI HIPOTESIS UNTUK PROPORSI Uji Hipotesis untuk Proporsi Data statistik sampel: - = Proporsi kejadian sukses dalam sampel - p = Proporsi kejadian sukses dalam populasi - - Statistik

Lebih terperinci

TeoriPenaksiran. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

TeoriPenaksiran. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB TeoriPenaksiran Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Telah dijelaskan pada bagian sebelumnya bahwa tujuan utama pengambilan sampel

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Maret hingga April 2011 dengan lokasi penelitian berada di Hutan Pendidikan Gunung Walat, Kabupaten Sukabumi.

Lebih terperinci

Pengujian Hipotesis. Oleh : Dewi Rachmatin

Pengujian Hipotesis. Oleh : Dewi Rachmatin Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. DESKRIPSI DATA HASIL PENELITIAN 1. Analisis Uji Coba Instrumen Uji coba instrumen dilakukan terhadap kelas uji coba yaitu pada peserta didik kelas VII A, jumlah

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Hasil Penelitian 1. Data Nilai Awal Kelas Eksperimen (VIIIA) Tes awal yang diberikan pada kelas eksperimen sebelum peserta didik diajar dengan model

Lebih terperinci

UJI HIPOTESIS SATU-SAMPEL

UJI HIPOTESIS SATU-SAMPEL UJI HIPOTESIS SATU-SAMPEL Pengantar 1. Tulisan ini terkait dengan artikel berjudul KETIKA ILMU HUKUM SEIRING STATISTIKA pada laman www.edscyclopedia.com. Pada website tersebut, mengenai uji hipotesis secara

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean

Lebih terperinci

Ayundyah Kesumawati. May 31, 2015

Ayundyah Kesumawati. May 31, 2015 Kesumawati Prodi Statistika FMIPA-UII May 31, 2015 Dalam praktek, pengujian hipotesis dapat mencakup lebih dari dua proporsi. Misalnya, persentase sejenis barang yang rusak 3 pabrik adalah sama (tidak

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali

Lebih terperinci

STK 511 Analisis statistika. Materi 6 Pengujian Hipotesis

STK 511 Analisis statistika. Materi 6 Pengujian Hipotesis STK 5 Analisis statistika Materi 6 Pengujian Hipotesis Pendahuluan Dalam mempelajari Karakteristik Populasi kita sering telah memiliki pernyataan/anggapan tertentu. pemberian DHA pada anak-anak akan menambah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Kinerja Karyawan Kinerja karyawan adalah seberapa efektif dan efisiennya hasil yang dihasilkan oleh karyawan yang pada umumnya diukur dari beberapa faktor seperti : 2.1.1. Kecepatan

Lebih terperinci

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana)

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana) KURVA NORMAL (Sumber: Buku Metode Statistika tulisan Sudjana) Distribusi Normal (Distribusi GAUSSE) Kurva Normal Suatu alat statistik yang sangat penting untuk menaksir dan meramalkan peristiwa-peristiwa

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1.

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1. 11 BAB III UJI STATISTIK DAN SIMULASI 3.1 Interval Kepercayaan Sebuah interval kepercayaan terdiri dari berbagai nilai-nilai bersama-sama dengan persentase yang menentukan seberapa yakin bahwa parameter

Lebih terperinci

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh:

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh: Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi, SP., MSc. Start Home Contact Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Contingency Table Test)

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30 Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskripsi Data Hasil Penelitian Awal. Kondisi Awal Penelitian Dari hasil observasi, siswa MTs Darul Huda Mlagen Rembang dalam kegiatan pembelajaran Al-Qur an Hadits,

Lebih terperinci

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα PENGUJIAN HIPOTESIS. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh :. Pernyataan

Lebih terperinci

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung

Lebih terperinci

CIRI-CIRI DISTRIBUSI NORMAL

CIRI-CIRI DISTRIBUSI NORMAL DISTRIBUSI NORMAL CIRI-CIRI DISTRIBUSI NORMAL Berbentuk lonceng simetris terhadap x = μ distribusi normal atau kurva normal disebut juga dengan nama distribusi Gauss, karena persamaan matematisnya ditemukan

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. June 2017 TJ (SU) Estimasi dan Confidence Interval June 2017 1 / 31 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

Pertemuan Ke Pengujian hipotesis mengenai rata-rata Nilai Statistik Uji. Wilayah Kritik

Pertemuan Ke Pengujian hipotesis mengenai rata-rata Nilai Statistik Uji. Wilayah Kritik Pertemuan Ke-12 6.4 Uji Hipotesis Langkah langkah pengujian hipotesis : 1. Nyatakan hipotesa nolnya H o bahwa θ = θ o. 2. Pilih hipotesis alternatif H 1 yang sesuai diantara θ < θ o, θ > θ o atau θ # θ

Lebih terperinci

PENGUJIAN HIPOTESIS. 2,5% (Ho ditolak) 2,5% ( Ho ditolak )

PENGUJIAN HIPOTESIS. 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) PENGUJIAN HIPOTESIS 1. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh : 1.

Lebih terperinci

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ;

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Responsi SOAL 1: Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Orang keenam yang mendaftar seleksi adalah orang keempat yang memilih TI

Lebih terperinci

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1 ESTIMASI Podojoyo, SKM, M.Kes Podojoyo 1 Definisi Estimasi Suatu metode dimana kita dapat memperkirakan nilai populasi (parameter) dengan memakai nilai sampel (statistik) Podojoyo 2 Didalam estimasi nilai

Lebih terperinci

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN.1. Karakteristik Data Pengamatan karakteristik tegakan hutan seumur puspa dilakukan pada dua plot di Hutan Pendidikan Gunung Walat dengan luas masing-masing plot berukuran 1

Lebih terperinci

STMIK KAPUTAMA - BINJAI

STMIK KAPUTAMA - BINJAI STMIK KAPUTAMA - BINJAI Pengujian hipotesis merupakan suatu prosedur yang didasarkan pada bukti sampel dan teori probabilitas yang digunakan untuk menentukan apakah suatu hipotesis adalah pernyataan yang

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Metode Penelitian Dalam melakukan penelitian ini,penulis menggunakan metode penelitian eksperimen. Penelitian eksperimen didefinisikan sebagai metode sistematis guna membangun

Lebih terperinci

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan BAB II LANDASAN TEORI 2.1 Data Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan datum yang berisi fakta-fakta serta gambaran suatu fenomena yang dikumpulkan, dirangkum, dianalisis, dan

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. mendekati eksperimen. Desain yang digunakan adalah Nonequivalen Control

BAB III METODOLOGI PENELITIAN. mendekati eksperimen. Desain yang digunakan adalah Nonequivalen Control BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Metode yang digunakan dalam penelitian ini adalah metode quasi eksperimen. Pengertian quasi eksperimen dapat diartikan sebagai penelitian yang mendekati

Lebih terperinci

U JIAN TENGAH SEMESTER S TATISTIKA

U JIAN TENGAH SEMESTER S TATISTIKA U JIAN TENGAH SEMESTER S TATISTIKA DR. IR. ISTIARTO, M.ENG. JUMAT, 1 NOVEMBER 1 15 MENIT OPEN BOOK TANPA KOMPUTER S OAL A Produksi listrik tahunan PLTMH Terangjaya menunjukkan angka yang sangat bervariasi,

Lebih terperinci