STMIK KAPUTAMA - BINJAI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "STMIK KAPUTAMA - BINJAI"

Transkripsi

1 STMIK KAPUTAMA - BINJAI

2 Pengujian hipotesis merupakan suatu prosedur yang didasarkan pada bukti sampel dan teori probabilitas yang digunakan untuk menentukan apakah suatu hipotesis adalah pernyataan yang beralasan atau tidak beralasan. Lima langkah prosedur yang dapat dijalankan dalam pengujian suatu hipotesis adalah :

3 Langkah 1 : Menyatakan hipotesis Langkah 2 : Memilih level of significance (α) Langkah 3 : Merumuskan suatu aturan pembuatan keputusan Langkah 4 : Mengidentifikasi statistik uji Langkah 5 : Mengambil kesimpulan

4 Langkah awal adalah menyatakan hipotesis yang akan diuji, yaitu hipotesis null (H 0 ) dan hipotesis alternatif (H 1 ). Hipotesis nol ditulis H 0, huruf H menyatakan hipotesis dan angka nol menyatakan tidak ada perbedaan. Hipotesis alternatif di tulis H 1, dimana H 1 kebalikan dari pernyataan H 0.

5 Taraf nyata atau level of significance (α) merupakan probabilitas menolak hipotesis null (H 0 ) yang benar. Dengan kata lain, Taraf nyata (α) merupakan resiko kita menolak hipotesis null (H 0 ) ketika H 0 benar. α berkisar dari 0 sampai 1, tetapi pada umumnya α yang dipakai adalah 5% (0,05). Walaupun α = 1% dan 10% juga bisa digunakan, karena tidak ada aturan ataupun rumusan yang mengatur penentuan α.

6 Kita dapat menentukan kriteria penentuan H 0 dan H 1 atau daerah penentuan H 0 dan H 1. Ada 3 macam pengujian (tergantung pada nilai H 1 ) yang menentukan bentuk daerah penerimaan H 0 dan H 1, yaitu :

7 - 1. Pengujian dua arah Daerah Penerimaan 1 - α α / 2 + Daerah Penolakan Jika H 1 menyatakan tanda tidak sama dengan ( ), maka secara otomatis pengujian yang kita lakukan adalah pengujian dua arah. Dimana α akan dibagi dua.

8 - 2. Pengujian arah kanan Daerah Penerimaan 1 - α α + Daerah Penolakan Jika H 1 menyatakan tanda lebih besar (>), maka secara otomatis pengujian yang kita lakukan adalah pengujian satu arah sebelah kanan. Dimana kita hanya menggunakan kurva bagian kanan saja di dalam pengujian.

9 - 3. Pengujian arah kiri Daerah Penerimaan 1 - α α + Daerah Penolakan Jika H 1 menyatakan tanda lebih kecil (<), maka secara otomatis pengujian yang kita lakukan adalah pengujian satu arah sebelah kiri. Dimana kita hanya menggunakan kurva bagian kiri saja di dalam pengujian.

10 Bagaimana menentukan nilai yang memisahkan daerah penerimaan H 0 dan H 1 (biasanya disebut titik kritis). Kita harus menggunakan bantuan tabel distribusi normal (tabel Z) untuk sampel besar (n > 30 atau n 1 + n 2 > 30) dan tabel distribusi student (tabel t) untuk sampel kecil (n 30 atau n 1 + n 2 30).

11 Pengujian statistik sangat dibutuhkan untuk dapat menentukan penerimaan H 0 dan H 1. Pengujian statistik merupakan penentuan suatu nilai uji berdasarkan informasi sampel yang digunakan untuk menerima atau menolak hipotesis nol.

12 Adapun rumus umum untuk menghitung nilai pengujian statistik adalah : Z atau t = ( statistik sampel parameter populasi ) standar deviasi sampel

13 Langkah terakhir adalah membuat keputusan untuk menerima atau menolak hipotesis nol. Jika nilai statistik uji jatuh di daerah penerimaan H 0, maka H 0 diterima dan H 1 ditolak. Sebaliknya, apabila nilai statistik uji berada di daerah penolakan H 0, maka H 1 diterima dan H 0 ditolak.

14 Sebuah hipotesis menyatakan bahwa ratarata populasi adalah lebih besar sama dengan dari 60. Untuk menguji kebenaran hipotesis tersebut, maka diambil 26 sampel untuk dianalisis. Diketahui rata-rata dan standar deviasi sampel adalah 57 dan 10. Ujilah dengan menggunakan alpha sebesar 1%!

15 Hipotesis yg akan diuji menyatakan bahwa rata-rata populasi adalah lebih besar sama dengan dari 60 Maka kita bisa mengubahnya menjadi : H 0 : rata-rata populasi 60 H 1 : rata-rata populasi < 60

16 Perhatikan soal, ada ditentukan nilai alpha atau tidak. α = 1% (0,01) Ingat!!! Jika tidak ada disebutkan nilai alphanya, maka gunakan alpha standart yaitu 5%.

17 Pengujian 1 arah sebelah kiri (karena H 1 : rata-rata populasi < 60) Menggunakan tabel t (karena sampel = 26) Dengan α = 1% (0,01) dan df = n-1 = 26-1 = 25, Maka nilai kritisnya adalah (t 1%,25 ) : -2,485 Dengan demikian, H 0 diterima jika nilai statistik uji > -2,485

18 Berdasarkan pengujian di atas diperoleh nilai statistik uji sebesar -1,53

19 Karena nilai statistik uji (-1,53) > nilai kritis (-2,485), maka H 0 harus diterima dan H 1 ditolak. Dengan demikian, tidak ada alasan untuk menolak bahwa rata-rata populasi tidak lebih kecil dari 60.

20 Produktivitas karyawan suatu perusahaan terdistribusi secara normal dengan rata-rata 200 dan berdeviasi standar 16. Bagian HRD tidak percaya dan menyatakan rata-rata produktivitas karyawan tidak sama dengan 200. Untuk membuktikannya, mereka mengambil sampel 100 karyawan untuk dianalisis dan diperoleh rata-rata sampelnya sebesar 203,5. Dengan α = 1%, ujilah pernyataan tersebut!

21 Lihat soal, apa yg mau di uji!!!! rata-rata produktivitas karyawan tidak sama dengan 200 Dari pernyataan di atas dpt kita ubah kebentuk hipotesis berikut ini : H 0 : produktivitas = 200 H 1 : produktivitas 200

22 Perhatikan soal, ada ditentukan nilai alpha atau tidak. α = 1% (0,01) Ingat!!! Jika tidak ada disebutkan nilai alphanya, maka gunakan alpha standart yaitu 5%.

23 Pengujian 2 arah (karena H 1 : produktivitas 200) Menggunakan tabel Z (karena sampel = 100) Luas 49,5% di tabel Z adalah ±2,58. Dengan demikian H 0 diterima jika nilai statistik uji berada diantara nilai kritis. (-2,58 < nilai statistik uji < 2,58)

24 Dari pengujian diatas diperoleh nilai sebesar 2,19 Dimana nilai ini akan kita bandingkan dengan kriteria keputusan.

25 Karena nilai statistik uji berada diantara nilai kritis (-2,58 < 2,19 < 2,58), maka H 0 harus diterima dan H 1 ditolak. Dengan demikian, tidak ada alasan bahwa produktivitas karyawan perusahaan tersebut adalah benar sebesar 200.

26 Ada pendapat bahwa tidak ada perbedaan yang berarti antara gaji bulanan di perusahaan A dan B. Hasil interview terhadap sampel 150 karyawan A dan 50 karyawan B, dimana gaji rata-rata karyawan perusahaan A adalah Rp dengan standar deviasinya sebesar Rp , sedangkan karyawan perusahaan B dengan standar deviasi sebesar Rp memiliki rata-rata gaji sebesar Rp Dengan alpha sebesar 1%, ujilah pendapat tersebut!

27 Diketahui : n 1 = 5 n 2 = 6 X 1 = 4 X 2 = 5 S 12 = 8,5 S 22 = 4,4 Dengan taraf nyata (α) = 10%, ujilah hipotesis yang menyatakan tidak ada perbedaan antara rata-rata populasi 1 dan 2!

Hipotesis adalah suatu pernyataan tentang parameter suatu populasi.

Hipotesis adalah suatu pernyataan tentang parameter suatu populasi. PERTEMUAN 9-10 PENGUJIAN HIPOTESIS Hipotesis adalah suatu pernyataan tentang parameter suatu populasi. Apa itu parameter? Parameter adalah ukuran-ukuran. Rata-rata penghasilan karyawan di kota binjai adalah

Lebih terperinci

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)

15Ilmu. Uji t-student dan Uji Z (Distribusi Normal) Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.

Lebih terperinci

pernyataan mengenai sesuatu yang harus diuji kebenarannya Hipotesis statistik adalah suatu pernyataan yang menyatakan harga sebuah/beberapa parameter

pernyataan mengenai sesuatu yang harus diuji kebenarannya Hipotesis statistik adalah suatu pernyataan yang menyatakan harga sebuah/beberapa parameter TEST HIPOTESIS pernyataan mengenai sesuatu yang harus diuji kebenarannya Hipotesis statistik adalah suatu pernyataan yang menyatakan harga sebuah/beberapa parameter atau pernyataan yang menyatakan bentuk

Lebih terperinci

Hipotesis : asumsi atau anggapan bisa benar atau bisa salah seringkali dipakai sebagai dasar dalam memutuskan

Hipotesis : asumsi atau anggapan bisa benar atau bisa salah seringkali dipakai sebagai dasar dalam memutuskan PENGUJIAN HIPOTESIS Hipotesis : Merupakan suatu asumsi atau anggapan yang bisa benar atau bisa salah mengenai sesuatu hal, dan dibuat untuk menjelaskan sesuatu hal tersebut sehingga memerlukan pengecekan

Lebih terperinci

UJI HIPOTESIS SATU-SAMPEL

UJI HIPOTESIS SATU-SAMPEL UJI HIPOTESIS SATU-SAMPEL Pengantar 1. Tulisan ini terkait dengan artikel berjudul KETIKA ILMU HUKUM SEIRING STATISTIKA pada laman www.edscyclopedia.com. Pada website tersebut, mengenai uji hipotesis secara

Lebih terperinci

PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut :

PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut : PENGUJIAN HIPOTESIS A. Pengertian Pengujian Hipotesis Hipotesis berasal dari bahasa Yunani, yaitu hupo dan thesis. Hupo berarti lemah, kurang, atau di bawah dan thesis berarti teori, proposisi, atau pernyataan

Lebih terperinci

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis.

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis. Konsep: PENGUJIAN HIPOTESIS Agus Susworo Dwi Marhaendro Hipotesis: asumsi atau dugaan sementara mengenai sesuatu hal. Dituntut untuk dilakukan pengecekan kebenarannya. Jika asumsi atau dugaan dikhususkan

Lebih terperinci

Pengantar Statistika Bab 1

Pengantar Statistika Bab 1 BAB 14 PENGUJIAN HIPOTESA SAMPEL KECIL 1 Pengujian Hipotesa Sampel Kecil 4 DEFINISI Pengertian Sampel Kecil Sampel kecil yang jumlah sampel kurang dari 30, maka nilai standar deviasi (s) berfluktuasi relatif

Lebih terperinci

Pertemuan 13 &14. Hipotesis

Pertemuan 13 &14. Hipotesis Pertemuan 13 &14 Hipotesis Hipotesis Tujuan: penarikan kesimpulan (menggeneralisir) nilai yang berasal dari sampel terhadap keadaan populasi melalui pengujian hipotesis. Keyakinan ini didasarkan pada besarnya

Lebih terperinci

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka

Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka MODUL DISTRIBUSI t 1. PENDAHULUAN Pengujian hipotesis dengan distribusi t adalah pengujian hipotesis yang menggunakan distribusi t sebagai uji statistik. Tabel pengujiannya disebut tabel t-student. Distribusi

Lebih terperinci

PENGERTIAN PENGUJIAN HIPOTESIS

PENGERTIAN PENGUJIAN HIPOTESIS PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau

Lebih terperinci

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah Pengantar Uji Hipotesis Oleh Azimmatul Ihwah Hipotesis Merupakan pernyataan/dugaan mengenai parameter dari 1 atau lebih populasi. Misalnya seorang guru Kimia ingin mengetahui apakah metode pembelajaran

Lebih terperinci

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji

Lebih terperinci

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah Pengantar Uji Hipotesis Oleh Azimmatul Ihwah Hipotesis Merupakan pernyataan/dugaan mengenai parameter dari 1 atau lebih populasi. Misalnya seorang manufacturer ingin mengetahui apakah zat baru yang ditambahkan

Lebih terperinci

Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis

Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis PENGUJIAN HIPOTESIS Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id 1 Hipotesis Hipotesis adalah suatu pernyataan mengenai nilai suatu parameter populasi yang dimaksudkan untuk pengujian

Lebih terperinci

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )

BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( ) BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H

Lebih terperinci

Hipotesis (Ho) Benar Salah. (salah jenis I)

Hipotesis (Ho) Benar Salah. (salah jenis I) PENGUJIAN HIPOTESIS Hipotesis Suatu pernyataan yang masih lemah kebenarannya dan perlu dibuktikan/ dugaan yg sifatnya masih sementara Hipotesis ini perlu untuk diuji utk kmd diterima/ ditolak Pengujian

Lebih terperinci

ANALYSIS OF VARIANCE

ANALYSIS OF VARIANCE ANALYSIS OF VARIANCE Analisis Varians adalah alat statistika yang digunakan untuk menguji perbedaan mean lebih dari dua populasi. Analisis varians mengguakan distribusi F, yang mempunyai ciri-ciri: Merupakan

Lebih terperinci

Pokok Bahasan: Chi Square Test

Pokok Bahasan: Chi Square Test Pokok Bahasan: Chi Square Test Start Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness of Fit Test) (Kontigensi Table Test) 1 Instruksional Umum Memberi penjelasan tentang distribusi

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

PENGUJIAN HIPOTESIS (1) Debrina Puspita Andriani /

PENGUJIAN HIPOTESIS (1) Debrina Puspita Andriani    / PENGUJIAN HIPOTESIS (1) 1 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id 2 Outline Pengertian Pengujian Hipotesis (1) 3 BAHASA YUNANI HUPO Lemah, kurang, di bawah THESIS Teori,

Lebih terperinci

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa

Lebih terperinci

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα PENGUJIAN HIPOTESIS. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh :. Pernyataan

Lebih terperinci

PERTEMUAN KE 2 HIPOTESIS

PERTEMUAN KE 2 HIPOTESIS PERTEMUAN KE 2 HIPOTESIS DEFINISI Jawaban sementara terhadap masalah penelitian yang kebenarannya masih harus diuji secara empiris. Pernyataan mengenai keadaan populasi yang akan diuji kebenarannya berdasarkan

Lebih terperinci

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. STATISTIKA Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. Statistika deskriptif: pencatatan dan peringkasan hasil

Lebih terperinci

QUIZ AKHIR SEMESTER GANJIL 2004/2005 TULISKAN PADA LEMBAR JAWABAN ANDA :

QUIZ AKHIR SEMESTER GANJIL 2004/2005 TULISKAN PADA LEMBAR JAWABAN ANDA : QUIZ KHIR SEMESTER GNJIL 2004/2005 TULISKN PD LEMR JWN ND : NM : NIM : MT KULIH : STTISTIK PROILITS KELS / RUNG : D3.. /. TNGGL UJIN :. 2004 1. Dalam pendugaan interval rata-rata µ, distribusi t digunakan

Lebih terperinci

SESI 11 STATISTIK BISNIS

SESI 11 STATISTIK BISNIS Modul ke: SESI 11 STATISTIK BISNIS Sesi 11 ini bertujuan agar Mahasiswa dapat mengetahui teori Hipoesa Sampel Besar statistik yang berguna sebagai alat analisis data Ekonomi dan Bisnis. Fakultas EKONOMI

Lebih terperinci

DISTRIBUSI SAMPLING besar

DISTRIBUSI SAMPLING besar DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Risiko adalah kerugian karena kejadian yang tidak diharapkan terjadi. Misalnya, kejadian sakit mengakibatkan kerugian sebesar biaya berobat dan upah yang hilang karena

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial

BAB 2 LANDASAN TEORI. 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial BAB 2 LANDASAN TEORI 2.1 Risiko, Manajemen Risiko, dan Manajemen Risiko Finansial Risiko adalah kerugian akibat kejadian yang tidak dikehendaki muncul. Risiko diidentifikasikan berdasarkan faktor penyebabnya,

Lebih terperinci

PENGUJIAN HIPOTESIS. Nurwahyu Alamsyah, S.Kom wahyualamsyah.wordpress.com. D3 - Manajemen Informatika - Universitas Trunojoyo Madura

PENGUJIAN HIPOTESIS. Nurwahyu Alamsyah, S.Kom wahyualamsyah.wordpress.com. D3 - Manajemen Informatika - Universitas Trunojoyo Madura PENGUJIAN HIPOTESIS Nurwahyu Alamsyah, S.Kom wahyu@plat-m.com wahyualamsyah.wordpress.com HIPOTESIS Berasal dari bahasa Yunani, Hupo (lemah) dan Thesis (teori). Jadi hipotesis dapat diartikan sebagai suatu

Lebih terperinci

Pengujian Hipotesis. Oleh : Dewi Rachmatin

Pengujian Hipotesis. Oleh : Dewi Rachmatin Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan

Lebih terperinci

HIPOTESIS NOL DAN HIPOTESIS ALTERNATIF

HIPOTESIS NOL DAN HIPOTESIS ALTERNATIF 685 JURNAL KIP - Vol. No. III. No. 3 November 2014 Februari 2015 HIPOTESIS NOL DAN HIPOTESIS ALTERNATIF Enos Lolang Program Studi Pendidikan Matematika Universitas Kristen Indonesia Toraja Jl. Nusantara

Lebih terperinci

MODUL DISTRIBUSI T. Objektif:

MODUL DISTRIBUSI T. Objektif: MODUL DISTRIBUSI T Objektif: 1. Membantu mahasiswa memeahami materi Distribusi t 2. Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi t I. PENDAHULUAN Pengujian hipotesis

Lebih terperinci

TEORI PENDUGAAN STATISTIK. Oleh : Riandy Syarif

TEORI PENDUGAAN STATISTIK. Oleh : Riandy Syarif TEORI PENDUGAAN STATISTIK Oleh : Riandy Syarif Pendugaan adalah proses menggunakan sampel (penduga) untuk menduga parameter (Populasi) yg tidak diketahui. Ilustrasi : konferensi perubahan iklim di Bali

Lebih terperinci

Pertemuan Ke Pengujian hipotesis mengenai rata-rata Nilai Statistik Uji. Wilayah Kritik

Pertemuan Ke Pengujian hipotesis mengenai rata-rata Nilai Statistik Uji. Wilayah Kritik Pertemuan Ke-12 6.4 Uji Hipotesis Langkah langkah pengujian hipotesis : 1. Nyatakan hipotesa nolnya H o bahwa θ = θ o. 2. Pilih hipotesis alternatif H 1 yang sesuai diantara θ < θ o, θ > θ o atau θ # θ

Lebih terperinci

PENGUJIAN HIPOTESIS. Wahyu Hidayat, S.Pd., M.Pd

PENGUJIAN HIPOTESIS. Wahyu Hidayat, S.Pd., M.Pd PENGUJIAN HIPOTESIS Wahyu Hidayat, S.Pd., M.Pd HIPOTESIS HIPOTESIS ADALAH PERNYATAAN YANG MASIH LEMAH TINGKAT KEBENARANNYA SEHINGGA MASIH HARUS DIUJI MENGGUNAKAN TEKNIK TERTENTU HIPOTESIS DIRUMUSKAN BERDASARKAN

Lebih terperinci

ANALISIS dan INTERPRETASI DATA

ANALISIS dan INTERPRETASI DATA Pertemuan kelima ANALISIS dan INTERPRETASI DATA Salah satu tugas utama statistika inferensia adalah melakukan pengujian hipotesis. Pengujian hipotesis dilakukan sebagai upaya memperoleh gambaran mengenai

Lebih terperinci

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 7

PENGANTAR STATISTIK JR113. Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI Pertemuan 7 PENGANTAR STATISTIK JR113 Drs. Setiawan, M.Pd. Pepen Permana, S.Pd. Deutschabteilung UPI 2008 Pertemuan 7 HIPOTESIS Asal kata: hupo thesis = sementara = pernyataan/teori Beberapa definisi hipotesis: asumsi

Lebih terperinci

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Eksponensial Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

07Ilmu. Pengujian Hipotesis Menentukan dan menguji Hipotesis penelitian dan mengambil kesimpulan dari hasil uji tersebut. Dra. Yuni Astuti, MS.

07Ilmu. Pengujian Hipotesis Menentukan dan menguji Hipotesis penelitian dan mengambil kesimpulan dari hasil uji tersebut. Dra. Yuni Astuti, MS. Modul ke: Fakultas 07Ilmu Komunikasi Pengujian Hipotesis Menentukan dan menguji Hipotesis penelitian dan mengambil kesimpulan dari hasil uji tersebut Dra. Yuni Astuti, MS. Program Studi Marketing Communication

Lebih terperinci

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh:

Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh: Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi, SP., MSc. Start Home Contact Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Contingency Table Test)

Lebih terperinci

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting

Lebih terperinci

Uji Statistik Hipotesis

Uji Statistik Hipotesis Modul 8 Uji Statistik Hipotesis Bambang Prasetyo, S.Sos. D PENDAHULUAN alam Modul 7, Anda sudah diperkenalkan pada inferensi. yang mencakup estimasi dan uji hipotesis. Dalam Modul 7, Anda juga sudah belajar

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Hipotesis yg bersifat statistik adalah suatu asumsi mengenai parameter fungsi frekuensi variable random. Mis. Hipotesis ttg

Lebih terperinci

Engkau tidak akan memperoleh ilmu kecuali dengan enam hal : Kecerdasan Semangat keras Rajin dan tabah Biaya yang cukup Bersahabat dengan guru (Imam

Engkau tidak akan memperoleh ilmu kecuali dengan enam hal : Kecerdasan Semangat keras Rajin dan tabah Biaya yang cukup Bersahabat dengan guru (Imam Engkau tidak akan memperoleh ilmu kecuali dengan enam hal : Kecerdasan Semangat keras Rajin dan tabah Biaya yang cukup Bersahabat dengan guru (Imam Syafi i) Hipotesis Hipotesis berasal dari kata hupo dan

Lebih terperinci

Merumuskan Hipotesis Jurusan Pendidikan Bahasa Jerman Fakultas Bahasa dan Seni Universitas Negeri Yogyakarta 2013

Merumuskan Hipotesis Jurusan Pendidikan Bahasa Jerman Fakultas Bahasa dan Seni Universitas Negeri Yogyakarta 2013 Merumuskan Hipotesis Jurusan Pendidikan Bahasa Jerman Fakultas Bahasa dan Seni Universitas Negeri Yogyakarta 2013 BAB I PENDAHULUAN A. Latar Belakang Penelitian merupakan salah satu unsur penting dalam

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial DATA BERPERINGKAT Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id Uji Jumlah Peringkat Wilcoxon PENGERTIAN STATISTIKA NONPARAMETRIK Statistika nonparametrik untuk data berperingkat: Statistika

Lebih terperinci

UJI NORMALITAS DATA. Sebelum kita bicarakan ujin normalitas berikut kita perhatikan gambar distribusi normal berikut ini :

UJI NORMALITAS DATA. Sebelum kita bicarakan ujin normalitas berikut kita perhatikan gambar distribusi normal berikut ini : UJI NORMALITAS DATA Sebelum kita bicarakan ujin normalitas berikut kita perhatikan gambar distribusi normal berikut ini : Garis mendatar pada grafik kurva normal umum adalah sumbu-x Garis mendatar pada

Lebih terperinci

PRAKTIKUM STATISTIKA INDUSTRI 2013 MODUL IV PENGUJIAN HIPOTESIS

PRAKTIKUM STATISTIKA INDUSTRI 2013 MODUL IV PENGUJIAN HIPOTESIS PRAKTIKUM STATISTIKA INUSTRI 3 PENGUJIAN HIPOTESIS A. TUJUAN PRAKTIKUM Melalui praktikum Modul IV ini diharapakan praktikan dapat:. Melakukan pengujian hipotesis secara statistik dengan prosedur yang benar..

Lebih terperinci

BAB 4 PEMBAHASAN HASIL PENELITIAN

BAB 4 PEMBAHASAN HASIL PENELITIAN BAB 4 PEMBAHASAN HASIL PENELITIAN 41 Hasil Uji Statistik 411 Statistik Deskriptif Pada bagian ini akan dibahas mengenai hasil pengolahan data statistik deskriptif dari variabel-variabel yang diteliti Langkah

Lebih terperinci

PROBLEM SOLVING STATISTIKA LANJUT

PROBLEM SOLVING STATISTIKA LANJUT PROBLEM SOLVING STATISTIKA LANJUT 1. Ujilah validitas dan reliabilitas hasil koesioner gaya kepemimpinan yang terdiri dari 12 item dan diisi oleh 44 responden dalam data pada file Excel. 2. Berikan gambaran

Lebih terperinci

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd

PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd Definisi Pengujian hipotesis deskriptif pada dasarnya merupakan proses pengujian generalisasi hasil penelitian yang didasarkan pada satu

Lebih terperinci

PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F

PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F DEFINISI HIPOTESIS Hipotesis berasal dari bahasa Yunani ; Hipo berarti Lemah atau kurang atau di bawah dan Thesis berarti teori, proposisi atau pernyataan

Lebih terperinci

STATISTIK PERTEMUAN XI

STATISTIK PERTEMUAN XI STATISTIK PERTEMUAN XI Topik Bahasan: Analisis Ragam (ANOVA) Universitas Gunadarma 1. Pendahuluan Metode hipotesis dengan menggunakan distribusi z dan distribusi t efektif untuk uji hipotesis tentang perbedaan

Lebih terperinci

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI

Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI Materi II STATISTIK DESKRIPTIF STMIK KAPUTAMA BINJAI DISTRIBUSI FREKUENSI Frekuensi adalah kekerapan atau keseringan suatu data berulang atau berada dalam deretan angka tersebut. Distribusi adalah penyaluran,

Lebih terperinci

Teorema Newman Pearson

Teorema Newman Pearson pengujian terbaik Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika October 6, 2014 Outline 1 Review 2 Uji dua sisi untuk mean 3 Teorema Neyman-Pearson Back Outline 1 Review 2 Uji dua sisi untuk

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

STATISTIK NON PARAMETRIK (1)

STATISTIK NON PARAMETRIK (1) 11 STATISTIK NON PARAMETRIK (1) Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : debrina@ub.ac.id Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Metode Statistik : Parametrik

Lebih terperinci

Penolakan suatu hipotesis bukan berarti menyimpulkan bahwa hipotesis salah dimana bukti yg tidak konsisten dgn hipotesis Penerimaan hipotesis sebagai

Penolakan suatu hipotesis bukan berarti menyimpulkan bahwa hipotesis salah dimana bukti yg tidak konsisten dgn hipotesis Penerimaan hipotesis sebagai Hipotesis Suatu pernyataan yang masih lemah kebenarannya dan perlu dibuktikan/ dugaan yg sifatnya masih sementara Hipotesis ini perlu untuk diuji utk kmd diterima/ ditolak Pengujian hipotesis : suatu prosedur

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Langkah-langkah pengujian hipotesis Hipotesis adalah asumsi atau dugaan mengenai sesuatu. Jika hipotesis tersebut tentang nilai-nilai parameter maka hipotesis itu disebut hipotesis

Lebih terperinci

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

SESI 13 STATISTIK BISNIS

SESI 13 STATISTIK BISNIS Modul ke: SESI 13 STATISTIK BISNIS Sesi 13 ini bertujuan agar Mahasiswa dapat mengetahui teori Analisis Regresi dan Korelasi Linier yang berguna sebagai alat analisis data Ekonomi dan Bisnis. Fakultas

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial DATA BERPERINGKAT Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id PENGERTIAN STATISTIKA NONPARAMETRIK Statistika nonparametrik untuk data berperingkat: Statistika yang menggunakan data

Lebih terperinci

PENGUJIAN POLA DISTRIBUSI

PENGUJIAN POLA DISTRIBUSI PENGUJIAN POLA DISTRIBUSI 1. Pengujian Kolmogorov-Smirnov Normal Langkah-langkah : a. Menetapkan hipotesis H0 : data berdistribusi normal H1 : data tidak berdistribusi normal b. Menghitung statistik uji

Lebih terperinci

Ayundyah Kesumawati. April 20, 2015

Ayundyah Kesumawati. April 20, 2015 Pengujian Kesumawati Nol dan Prodi Statistika FMIPA-UII April 20, 2015 Pengujian Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi Pengujian hipotesis berhubungan dengan penerimaan atau

Lebih terperinci

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif PENGUJIAN HIPOTESIS RATA- RATA Oleh : Riandy Syarif Definisi Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yg didasarkan atas informasi sampelnya. Pengujian

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Pengumpulan Data 3.2.1 Obyek Penelitian Penelitian dilakukan terhadap karyawan PT PGN (Persero) Tbk penjualan dan Layanan Area Banten. 3.2.2 Sumber Data 1) Data Primer

Lebih terperinci

PENGUJIAN HIPOTESIS. TM-4

PENGUJIAN HIPOTESIS. TM-4 PENGUJIAN HIPOTESIS TM-4 Yusthin.manglapy@gmail.com Pengertian Hipotesis Yunani hupo & thesis Hupo sementara/kurang kebenarannya, Thesis pernyataan/dugaan/teori Jadi hipotesis : Pernyataan sementara yang

Lebih terperinci

STATISTIK Hypothesis Testing 2 Contoh kasus

STATISTIK Hypothesis Testing 2 Contoh kasus STATISTIK Hypothesis Testing 2 Contoh kasus Chapter 6 Sulidar Fitri, M.Sc Analisis Data Deskriptif Menghitung ukuran tendensi central (mean, median dan modus) dan ukuran dispersi (range, mean deviasi,

Lebih terperinci

PENGUJIAN HIPOTESIS. 2,5% (Ho ditolak) 2,5% ( Ho ditolak )

PENGUJIAN HIPOTESIS. 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) PENGUJIAN HIPOTESIS 1. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh : 1.

Lebih terperinci

Dinotasikan dengan Ho Penulisan, Ho : µ = suatu angka numerik Ditulis dengan tanda =, walaupun maksudnya adalah, ataupun

Dinotasikan dengan Ho Penulisan, Ho : µ = suatu angka numerik Ditulis dengan tanda =, walaupun maksudnya adalah, ataupun Hipotesis Ali Muhson, M.Pd. By Ali Muhson (c) 2013 1 Kompetensi Dasar Mahasiswa mampu menyusun dan menguji hipotesis penelitian yang berkaitan dengan gejala pendidikan dan ekonomi By Ali Muhson (c) 2013

Lebih terperinci

Hipotesis Statistik. 3. Terima H 1 (tolak H 0 ) dan populasi sebenarnya. memang H 0 benar = P(terima H 0 / pop H 0 )= 1-α

Hipotesis Statistik. 3. Terima H 1 (tolak H 0 ) dan populasi sebenarnya. memang H 0 benar = P(terima H 0 / pop H 0 )= 1-α Pengujian Hipotesis Hipotesis: kesimpulan sementara dari penelitian, yang akan dibuktikan dengan data empiris Utk diuji secara statistik hipotesis statistik (Ho vs H1) : pernyataan (dugaan) mengenai satu

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

Uji Hipotesa Satu Sampel

Uji Hipotesa Satu Sampel Uji Hipotesa Satu Sampel Tjipto Juwono, Ph.D. April 12, 2016 TJ (SU) Uji Hipotesa Satu Sampel April 2016 1 / 35 Uji Hipotesa Contoh Sebuah perusahaan mebel menghasilkan meja tulis, dengan rata-rata produksi

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Kontrak Perkuliahan Pertemuan & Materi RPKPS Penilaian Tugas, short quiz (30%) Quiz 1 & 2 (40%) UAS (30%) Referensi Montgomery, D.C, George C. Runger. Applied Statistic and

Lebih terperinci

TABEL DISTRIBUSI Dilengkapi Metode Untuk Membaca Tabel Distribusi

TABEL DISTRIBUSI Dilengkapi Metode Untuk Membaca Tabel Distribusi TABEL DISTRIBUSI Dilengkapi Metode Untuk Membaca Tabel Distribusi Deny Kurniawan 0 Penulis memberikan ijin kepada siapapun untuk memperbanyak dan menyebarluaskan tulisan ini dalam bentuk (format) apapun

Lebih terperinci

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung

Lebih terperinci

Interval Estimation. Tjipto Juwono, Ph.D. May 20, TJ (SU) Interval Estimation May / 24

Interval Estimation. Tjipto Juwono, Ph.D. May 20, TJ (SU) Interval Estimation May / 24 Interval Estimation Tjipto Juwono, Ph.D. May 20, 2015 TJ (SU) Interval Estimation May 2015 1 / 24 Outline 1 Pendahuluan 2 Pengertian Confidence Interval 3 Menghitung t 4 Menyusun Confidence Interval 5

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 6 Statistika Inferensia (2)

STK511 Analisis Statistika. Pertemuan 6 Statistika Inferensia (2) STK511 Analisis Statistika Pertemuan 6 Statistika Inferensia () 6. Statistika Inferensia () Pengujian Hipotesis x? s p 6. Statistika Inferensia () Pengujian Hipotesis Rataan populasi: nilainya tidak diketahui

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan pada RSUD Kertosono Jalan

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan pada RSUD Kertosono Jalan BAB III METODE PENELITIAN 3.1 Lokasi Penelitian Lokasi penelitian ini dilakukan pada RSUD Kertosono Jalan Supriadi no: 29, Kertosono-Nganjuk dan RSUD Nganjuk Jalan Dr Sutomo No: 62 Kauman, Nganjuk. 3.2

Lebih terperinci

Interval Estimation. Tjipto Juwono, Ph.D. May 13, TJ (SU) Interval Estimation May / 17

Interval Estimation. Tjipto Juwono, Ph.D. May 13, TJ (SU) Interval Estimation May / 17 Interval Estimation Tjipto Juwono, Ph.D. May 13, 2016 TJ (SU) Interval Estimation May 2015 1 / 17 Pendahuluan Point Estimator Perhatikan MPC pada persamaan regresi Ŷ i = ˆβ 1 + ˆβ 2 X i = 2.3121+0.5231X

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean

Lebih terperinci

BAB III METODOLOGI PENELITIAN. mengambil sampel atau satu populasi dengan mengunakan kuesioner

BAB III METODOLOGI PENELITIAN. mengambil sampel atau satu populasi dengan mengunakan kuesioner BAB III METODOLOGI PENELITIAN A. METODE PENELITIAN 1. Jenis Penelitian Jenis penelitian ini bersifat kuantitatif yaitu penelitian yang mengambil sampel atau satu populasi dengan mengunakan kuesioner sebagai

Lebih terperinci

BAB III METODE PENELITIAN. explanatory research, yaitu tipe penelitian yang bertujuan untuk

BAB III METODE PENELITIAN. explanatory research, yaitu tipe penelitian yang bertujuan untuk BAB III METODE PENELITIAN 3.1 Jenis dan Rancangan Penelitian Berdasarkan tujuan yang hendak dicapai maka penelitian ini termasuk penelitian explanatory research, yaitu tipe penelitian yang bertujuan untuk

Lebih terperinci

ISSN : Uji Chi-Square pada Statistika dan SPSS Ari Wibowo 5)

ISSN : Uji Chi-Square pada Statistika dan SPSS Ari Wibowo 5) ISSN : 1693 1173 Uji Chi-Square pada Statistika dan SPSS Ari Wibowo 5) Abstrak Uji Chi-Square digunakan untuk pengujian hipotesa terhadap beda dua proporsi atau lebih. Hasil pengujian akan menyimpulkan

Lebih terperinci

PENGUJIAN HIPOTESIS. 1. Pengertian Hipotesis

PENGUJIAN HIPOTESIS. 1. Pengertian Hipotesis PENGUJIAN HIPOTESIS. Pengertian Hipotesis Dari arti katanya, menurut Arikunto (: ) hipotesis berasal dari penggalan kata, hypo yang artinya di bawah dan thesa yang artinya kebenaran. Jadi hipotesis yang

Lebih terperinci

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 )

MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Chi Square Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

PENGUJIAN HIPOTESIS. Daerah penolakan. luas KED

PENGUJIAN HIPOTESIS. Daerah penolakan. luas KED PENGUJIAN HIPOTESIS A. Langkah langkah pengujian hipotesis Hipotesis adalah asumsi atau dugaan mengenai sesuatu. Jika hipotesis tersebut tentang nilai nilai parameter maka hipotesis itu disebut hipotesis

Lebih terperinci

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.

6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1. Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Persamaan Regresi Menurut Sir Francis Galton (1822-1911) persamaan regresi adalah persamaan matematik yang memungkinkan kita meramalkan nilai-nilai atau variabel-variabel

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. semu, karena itu diadakan Pre-test atau tes awal sebelum kegiatan eksperimen. Tabel 1

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. semu, karena itu diadakan Pre-test atau tes awal sebelum kegiatan eksperimen. Tabel 1 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskripsi Hasil Penelitian 4.. Deskripsi Hasil Penelitian Variabel 0 (skor tes awal) Kegiatan penelitan ini dilakukan dengan menggunakan metode eksperiman semu,

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. April 5, 2016 TJ (SU) Estimasi dan Confidence Interval April 2016 1 / 30 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

Bab IX. Hipotesis. Menguji Hipotesis

Bab IX. Hipotesis. Menguji Hipotesis Bab IX Hipotesis dalam statistika, adalah pernyataan atau klaim tentang sifat atau ciri dari sebuah populasi Menguji Hipotesis adalah menguji pernyataan atau klaim tersebut Hipotesis untuk Satu Populasi

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

BAB 2 LANDASAN TEORI. berkenaan dengan studi ketergantungan dari suatu varibel yaitu variabel tak bebas (dependent

BAB 2 LANDASAN TEORI. berkenaan dengan studi ketergantungan dari suatu varibel yaitu variabel tak bebas (dependent BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, analisis regresi berkenaan dengan studi ketergantungan dari suatu varibel yaitu

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci