Ummu Kalsum UNIVERSITAS GUNADARMA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ummu Kalsum UNIVERSITAS GUNADARMA"

Transkripsi

1 Ummu Kalsum UNIVERSITAS GUNADARMA 2016

2

3 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling) Pendugaan Parameter Yaitu penentuan nilai suatu parameter populasi berdasarkan nilai dari statistik sampel Sedangkan statistik sampel yang digunakan untuk menduga nilai suatu parameter populasi disebut estimator

4 Tidak bias (unbiased) Nilai suatu penduga sama dengan nilai yang diduganya (parameternya) Efisien Apabila penduga tersebut memiliki varians yang kecil Konsisten, apabila: Jika ukuran sampel semakin bertambah penduga akan mendekati parameternya Jika ukuran sampel bertambah tak berhingga distribusi sampling penduga akan mengecil

5 1. Menentukan sebuah sampel 2. Mengumpulkan informasi yg diperlukan dari tiap anggota sampel 3. Menghitung nilai statistik sampel 4. Menghubungkan nilai statistik sampel dengan parameter populasi Suatu nilai x, hasil hitung dari contoh yang berukuran n, merupakan nilai dugaan (estimator) bagi parameter populasi μ

6 Suatu selang pendugaan bagi parameter populasi x, tergantung nilai statistiknya dan juga pada sebaran penarikan sampel Jika simpangan baku σx besar, maka selang pendugaan juga harus besar Selang pendugaan yang didasarkan pada tingkat kepercayaan disebut selang kepercayaan p (x1 < x < x2 )=(1 - α). 100% untuk 0< α< 1 dimana,(1 - α) = koefesien/derajat kepercayaan α= significance level

7 dimana n 30, digunakan distribusi normal baku z untuk menghitung selang kepercayaan μ Teori limit Pusat Dengan sampel besar, x merupakan penduga yang akurat bagi μ

8 1 - α

9 Suatu perusahaan penerbitan melakukan penelitian ttg harga buku Pengantar Statistika terbitannya yang tersebar di pasaran. Didapatkan 36 sampel dengan ratarata harga $ Telah diketahui bahwa simpangan baku untuk seluruh buku $4.50. a. Berapa titik penduga untuk rata-rata harga semua buku yang beredar? Dan berapa margin kesalahan untuk penduga tersebut? b. Buat rata-rata harga buku tersebut dengan selang kepercayaan 90%.

10 n = 36, x = $48.40, dan σ = $4.50 Maka, σx = $ 4.50/ 36 = $ 0.75 A. µ = x = $ P(Z) = 1 α = 0.9 α = 0.1 ; sehingga α/2 = 0.05 Maka Z(α/2) = 1.65

11 = ± (1.65 * 0.75) = ± 1.24 = s/d Atau $ < μ < $ 49.64

12 Bila x digunakan untuk menduga μ, maka dengan tingkat kepercayaan/level confidence: (1- α).100%, galat pendugaan maksimum, (e) adalah Berapa besar sebuah sampel harus diambil, agar galat pendugaan μ tidak melebihi suatu nilai e. Dalam hal ini jumlah sampel n, adalah

13 N = jumlah populasi n = jumlah sampel

14 dimana n < 30; simpangan baku (σ) tidak diketahui; dan distribusi mendekati normal untuk menghitung pendugaan interval μ, digunakan ditribusi sampel t Selang kepercayaan (1 - α).100% bagi μ : P(-T α /2 < T < T α /2) = 1 α

15 Tα/2 adalah nilai T dengan derajat bebas df = n-1 yg di sebelah kanan terdapat daerah seluas α/2

16 Dr John ingin memprediksi rata-rata tingkat kolesterol untuk semua orang dewasa di sebuah kota. Ia mengambil 25 laki-laki dewasa sebagai sampel dan menemukan rata-rata tingkat kolesterol sampel tersebut yaitu 186 dengan simpangan baku 12. Jika diasumsikan tingkat kolesterol untuk semua laki-laki dewasa di kota tersebut terdistribusi normal, tentukan selang kepercayaan 95% untuk rata-rata populasi μ.

17 n = 25, x = 186, dan s = 12 df = n -1 = 25-1= 24 Tabel distribusi T df = 24; α/2 = T = 2.064

18 = x (T α/2 * ) < µ < x + (T α/2 * ) = 186 {2.064*(12/ 25)} < µ < {2.064*(12/ 25)} = 186 (2.064*2.4) < µ < (2.064*2.4) = < µ <

19 1. Sebuah pabrik menduga daya tahan lampu produksinya dalam interval +10 jam dengan tingkat kepercayaan 95%. Berdasarkan pengalaman, simpangan baku nya 30 jam. Berapa sampel yang harus di ambil? 2. Suatu sampel random sebanyak 100 mahasiswa menghasilkan rata-rata berat bdan 60 kg dan std deviasi 10 kg. berapakah titik penduga untuk rata-rata semua berat badan yang beredar, jika selang kepercayaannya 90%?

20 3. Dosen statistika ingin memprediksi ratarata nilai UTS di kelas A. Ia mengambil 27 sampel dan menemukan rata-rata nilai statistika adalah 85 dengan simpangan baku 15. jika diasumsikan nilai tersebut terdistribusi normal, tentukan rata-rata populasi µ jika selang kepercayaannya 90%? 4. Soal no 3, jika selang kepercayaan 95%?

21

22 22

23

24 α α/2

25

26 Terima kasih

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id 1 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran Teori Statistik Pengujian Hipotesa

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id 1 Teori Statistik Titik Parameter Interval Teori Statistik Titik Parameter Interval 3 1 PENDUGA TUNGGAL SEBAGAI FUNGSI

Lebih terperinci

TEORI PENDUGAAN STATISTIK. Oleh : Riandy Syarif

TEORI PENDUGAAN STATISTIK. Oleh : Riandy Syarif TEORI PENDUGAAN STATISTIK Oleh : Riandy Syarif Pendugaan adalah proses menggunakan sampel (penduga) untuk menduga parameter (Populasi) yg tidak diketahui. Ilustrasi : konferensi perubahan iklim di Bali

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean

Lebih terperinci

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1 ESTIMASI Podojoyo, SKM, M.Kes Podojoyo 1 Definisi Estimasi Suatu metode dimana kita dapat memperkirakan nilai populasi (parameter) dengan memakai nilai sampel (statistik) Podojoyo 2 Didalam estimasi nilai

Lebih terperinci

PENAKSIRAN PARAMETER TM_3

PENAKSIRAN PARAMETER TM_3 PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan

Lebih terperinci

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30 Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif PENGUJIAN HIPOTESIS RATA- RATA Oleh : Riandy Syarif Definisi Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yg didasarkan atas informasi sampelnya. Pengujian

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

PENGERTIAN PENGUJIAN HIPOTESIS

PENGERTIAN PENGUJIAN HIPOTESIS PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau

Lebih terperinci

Populasi dan Sampel. Materi 1 Distribusi Sampling

Populasi dan Sampel. Materi 1 Distribusi Sampling Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik

Lebih terperinci

UJI HIPOTESIS SATU-SAMPEL

UJI HIPOTESIS SATU-SAMPEL UJI HIPOTESIS SATU-SAMPEL Pengantar 1. Tulisan ini terkait dengan artikel berjudul KETIKA ILMU HUKUM SEIRING STATISTIKA pada laman www.edscyclopedia.com. Pada website tersebut, mengenai uji hipotesis secara

Lebih terperinci

TEORI PENDUGAAN (TEORI ESTIMASI)

TEORI PENDUGAAN (TEORI ESTIMASI) TEORI PENDUGAAN (TEORI ESTIMASI) Tujuan Pembelajaran Mempelajari bagaimana cara melakukan pendugaan parameter populasi berasarkan statistik yang dihitung dari sampel A. Pendahuluan Pendahuluan : Tujuan

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1.

BAB III UJI STATISTIK DAN SIMULASI. Menggunakan karakteristik dari distribusi tersebut dan transformasi / = ( ) (3.1.1) / = ( ) (3.1. 11 BAB III UJI STATISTIK DAN SIMULASI 3.1 Interval Kepercayaan Sebuah interval kepercayaan terdiri dari berbagai nilai-nilai bersama-sama dengan persentase yang menentukan seberapa yakin bahwa parameter

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK (MAM 4137) SEBARAN PENARIKAN CONTOH Ledhyane Ika Harlyan 2 Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean Parameter

Lebih terperinci

Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan)

Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Metode Statistika Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Pengantar Seringkali kita tertarik dengan karakteristik umum dari suatu populasi parameter Misalnya saja berapa rata-rata

Lebih terperinci

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT)

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT) STATISTIKA II Distribusi Sampling (Nuryanto, ST., MT) 1. Pendahuluan Bidang Inferensia Statistik membahas generlisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/

Muhammad Arif Rahman https://arifelzainblog.lecture.ub.ac.id/ Muhammad Arif Rahman arifelzain@ub.ac.id Populasi Keseluruhan objek penelitian atau keseluruhan elemen yang akan diteliti. Sampel Sebagian dari populasi Representatif dapat memberi gambaran yang tepat

Lebih terperinci

Ayundyah Kesumawati. April 27, 2015

Ayundyah Kesumawati. April 27, 2015 Kesumawati Prodi Statistika FMIPA-UII April 27, 2015 Estimasi interval Jika diperhatikan, terdapat kesamaan rumus-rumus yang dipakai pada saat pengujian hipotesis dan pendugaan selang kepercayaan. Untuk

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

PENS. Probability and Random Process. Topik 8. Estimasi Parameter. Prima Kristalina Juni 2015

PENS. Probability and Random Process. Topik 8. Estimasi Parameter. Prima Kristalina Juni 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 8. Estimasi Parameter Prima Kristalina Juni 2015 1 2 Outline 1. Terminologi Estimasi Parameter

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

SEBARAN PENARIKAN SAMPEL LOGO

SEBARAN PENARIKAN SAMPEL LOGO SEBARAN PENARIKAN SAMPEL LOGO KOMPETENSI menentukan sebaran penarikan sampel bagi suatu statistik A menentukan sebaran penarikan sampel bagi nilai tengah menentukan sebaran penarikan sampel bagi selisih

Lebih terperinci

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:

Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan: Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji

Lebih terperinci

STATISTIK Hypothesis Testing 2 Contoh kasus

STATISTIK Hypothesis Testing 2 Contoh kasus STATISTIK Hypothesis Testing 2 Contoh kasus Chapter 6 Sulidar Fitri, M.Sc Analisis Data Deskriptif Menghitung ukuran tendensi central (mean, median dan modus) dan ukuran dispersi (range, mean deviasi,

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-021259 Ummu Kalsum UNIVERSITAS GUNADARMA 2016 KONTRAK KULIAH Waktu: Rabu, 7.30 10.30 dan 12.30 15.30 Jam mulai : 3 sks, maka: Mulai: 8. 00 Selesai: 3 x 50 menit = 150 menit 10.30 Keterlambatan

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi

Lebih terperinci

Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah

Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah Uji Mengenai Variansi dan Proporsi Oleh Azimmatul Ihwah Uji Hipotesis Mengenai Variansi Beda uji hipotesis mengenai variansi dengan uji hipotesis mengenai rataan adalah pada parameter penduga, yaitu menggunakan

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

DISTRIBUSI SAMPLING besar

DISTRIBUSI SAMPLING besar DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan

Lebih terperinci

LAMPIRAN. Lampiran 1. Data Performa Reproduksi Sapi Perah Impor Pertama

LAMPIRAN. Lampiran 1. Data Performa Reproduksi Sapi Perah Impor Pertama 48 LAMPIRAN Lampiran 1. Data Performa Reproduksi Sapi Perah Impor Pertama No. ID Sapi... Selanjutnya Ke Tanggal Tanggal Kawin Pertama Jumlah Servis (Kali) Service Period Lama Kosong Selang 1 776 1 13/08/2009

Lebih terperinci

STMIK KAPUTAMA - BINJAI

STMIK KAPUTAMA - BINJAI STMIK KAPUTAMA - BINJAI Pengujian hipotesis merupakan suatu prosedur yang didasarkan pada bukti sampel dan teori probabilitas yang digunakan untuk menentukan apakah suatu hipotesis adalah pernyataan yang

Lebih terperinci

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.

STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. STATISTIKA Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. Statistika deskriptif: pencatatan dan peringkasan hasil

Lebih terperinci

PENGUJIAN HIPOTESIS 1

PENGUJIAN HIPOTESIS 1 PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang

Lebih terperinci

16-Aug-15. Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

16-Aug-15. Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Menarik suatu kesimpulan adalah tujuan mengumpulkan data kuantitatif Umumnya parameter populasi [rata-rata populasi & varians

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F

PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F DEFINISI HIPOTESIS Hipotesis berasal dari bahasa Yunani ; Hipo berarti Lemah atau kurang atau di bawah dan Thesis berarti teori, proposisi atau pernyataan

Lebih terperinci

Distribusi Sampling Sebaran Penarikan Contoh. Bidang Inferensia Statistik membahas generalisasi/penarikan kesimpulan dan prediksi/peramalan.

Distribusi Sampling Sebaran Penarikan Contoh. Bidang Inferensia Statistik membahas generalisasi/penarikan kesimpulan dan prediksi/peramalan. Distribusi Sampling Sebaran Penarikan Contoh I PENDAHULUAN Bidang Inferensia Statistik membahas generalisasi/penarikan kesimpulan dan prediksi/peramalan. Generalisasi dan prediksi tersebut melibatkan sampel/contoh,

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

The Central Limit Theorem

The Central Limit Theorem Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

APLIKASI RAPID SURVEY

APLIKASI RAPID SURVEY Materi Rapid Survey FIKes - UMMU Iswandi, SKM - 1 APLIKASI RAPID SURVEY A. Pengertian Rapid Survai Survai merupakan kegiatan atau usaha pengumpulan informasi dari sebagian populasi yang dianggap dapat

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

ESTIMASI. Widya Setiafindari

ESTIMASI. Widya Setiafindari ESTIMASI Widya Setiafindari Tujuan Pembelajaran Menjelaskan konsep-konsep dasar yang mendukung pendugaan rata-rata populasi, persentase dan varians Menghitung dugaan-dugaan (estimates) rata-rata populasi

Lebih terperinci

STATISTIK PERTEMUAN XI

STATISTIK PERTEMUAN XI STATISTIK PERTEMUAN XI Topik Bahasan: Analisis Ragam (ANOVA) Universitas Gunadarma 1. Pendahuluan Metode hipotesis dengan menggunakan distribusi z dan distribusi t efektif untuk uji hipotesis tentang perbedaan

Lebih terperinci

Kontrak Kuliah Metode Statistika 2

Kontrak Kuliah Metode Statistika 2 Kontrak Kuliah Metode Statistika 2 Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Deskripsi Mata Kuliah Nama Mata Kuliah : Metode Statistika 2 Semester/SKS : I / 3 SKS Kompetensi

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

PENGUJIAN HIPOTESIS (2)

PENGUJIAN HIPOTESIS (2) PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : debrina@ub.ac.id Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel

Lebih terperinci

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh STK 511 Analisis statistika Materi 4 Sebaran Penarikan Contoh 1 Pengantar Pada dasarnya data contoh diperoleh dengan dua cara: Data telah ada Teknik Penarikan Contoh Data belum tersedia Perancangan Percobaan

Lebih terperinci

STK 211 Metode Statistika PENGUJIAN HIPOTESIS

STK 211 Metode Statistika PENGUJIAN HIPOTESIS STK Metode Statistika PENGUJIAN HIPOTESIS Pendahuluan Dalam mempelajari karakteristik populasi sering telah memiliki hipotesis tertentu. pemberian DHA pada anak-anak akan menambah kecerdasannya atau pemberian

Lebih terperinci

4.1.1 Distribusi Binomial

4.1.1 Distribusi Binomial 4.1.1 Distribusi Binomial Perhatikan sebuah percobaan dengan ciri-ciri sebagai berikut : Hanya menghasilkan (diperhatikan) dua peristiwa atau kategori, misal S (sukses) dan G (gagal) Dilakukan sebanyak

Lebih terperinci

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN

Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung

Lebih terperinci

Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS

Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS 1 Probabilitas Perlunya pengetahuan tentang probabilitas dalam Biostatistik Pengertian probabilitas, variabel random dan distribusi

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 IV. PENDUGAAN PARAMETER Populasi Sampling Sampel N n Rata-rata : μ Simp.

Lebih terperinci

Pada prakteknya hanya sebuah sampel yang biasa diambil dan digunakan untuk hal tersebut. Sampel yang diambil ialah sampel acak dan dari sampel

Pada prakteknya hanya sebuah sampel yang biasa diambil dan digunakan untuk hal tersebut. Sampel yang diambil ialah sampel acak dan dari sampel DISTRIBUSI SAMPLING Pada prakteknya hanya sebuah sampel yang biasa diambil dan digunakan untuk hal tersebut. Sampel yang diambil ialah sampel acak dan dari sampel tersebut nilai-nilai statistiknya dihitung

Lebih terperinci

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.

Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut :

PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut : PENGUJIAN HIPOTESIS A. Pengertian Pengujian Hipotesis Hipotesis berasal dari bahasa Yunani, yaitu hupo dan thesis. Hupo berarti lemah, kurang, atau di bawah dan thesis berarti teori, proposisi, atau pernyataan

Lebih terperinci

STATISTIKA 2 IT

STATISTIKA 2 IT STATISTIKA 2 IT-021259 UMMU KALSUM UNIVERSITAS GUNADARMA 2016 Regresi & Korelasi Linier Regresi? Korelasi? 1. Regresi Linier Sederhana Model regresi adalah persamaan matematik yang memungkinkan dalam peramalan

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

Interval Estimation. Tjipto Juwono, Ph.D. May 13, TJ (SU) Interval Estimation May / 17

Interval Estimation. Tjipto Juwono, Ph.D. May 13, TJ (SU) Interval Estimation May / 17 Interval Estimation Tjipto Juwono, Ph.D. May 13, 2016 TJ (SU) Interval Estimation May 2015 1 / 17 Pendahuluan Point Estimator Perhatikan MPC pada persamaan regresi Ŷ i = ˆβ 1 + ˆβ 2 X i = 2.3121+0.5231X

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

RENCANA MUTU PEMBELAJARAN

RENCANA MUTU PEMBELAJARAN RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 504203 Nama Mata Kuliah : Statistika Matematika Jumlah sks : 3 sks Semester : V Alokasi

Lebih terperinci

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015 Uji Hipotesis Atina Ahdika, S.Si, M.Si Universitas Islam Indonesia 015 Definisi Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya

Lebih terperinci

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F

BEBERAPA DISTRIBUSI PELUANG KONTINU. Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F BEBERAPA DISTRIBUSI PELUANG KONTINU Normal, Gamma, Eksponensial, Khi-Kuadrat, Student dan F Distribusi Normal Distribusi yang terpenting dalam bidang statistika, penemu : DeMoivre (733) dan Gauss Bergantung

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom.

Haryoso Wicaksono, S.Si., M.M., M.Kom. Contoh [D] : EBright & ELight Importir lampu pijar dg merk EverBright & EverLight, ingin mengetahui ada atau tidak adanya perbedaan secara nyata antara kedua merk tsb dalam hal usia rata-rata. Secara random

Lebih terperinci

III OBJEK DAN METODE PENELITIAN. Objek penelitian ini menggunakan catatan reproduksi sapi FH impor

III OBJEK DAN METODE PENELITIAN. Objek penelitian ini menggunakan catatan reproduksi sapi FH impor III OBJEK DAN METODE PENELITIAN 2.1. Objek dan Peralatan Penelitian 2.1.1. Objek Penelitian Objek penelitian ini menggunakan catatan reproduksi sapi FH impor periode pertama tahun 2009. Sapi yang diamati

Lebih terperinci

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4

Regresi Linier Sederhana dan Korelasi. Pertemuan ke 4 Regresi Linier Sederhana dan Korelasi Pertemuan ke 4 Pengertian Regresi merupakan teknik statistika yang digunakan untuk mempelajari hubungan fungsional dari satu atau beberapa variabel bebas (variabel

Lebih terperinci

Teknik Analisis Data dengan Statistik Parametrik

Teknik Analisis Data dengan Statistik Parametrik Teknik Analisis Data dengan Statistik Parametrik Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Membedakan teknik analisis data Statistik Parametrik dan Statistik Non Parametrik.

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 5 Statistika Inferensia (1)

STK511 Analisis Statistika. Pertemuan 5 Statistika Inferensia (1) STK511 Analisis Statistika Pertemuan 5 Statistika Inferensia (1) Pendugaan Parameter mengacu pada suatu proses yang menggunakan data contoh untuk menduga nilai suatu parameter (populasi). 5. Statistika

Lebih terperinci

PENGUJIAN HIPOTESA #1

PENGUJIAN HIPOTESA #1 PENGUJIAN HIPOTESA #1 Materi #3 TIN309 DESAIN EKSPERIMEN Pengujian Hipotesa Hipotesa: asumsi atau dugaan mengenai sesuatu hal yang dibuat untuk menjelaskan sesuatu masalah. Pengujian Hipotesa: langkah-langkah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan diperlukan pada bab 3. Yang akan dibahas dalam bab ini adalah metode bootstrap

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,

Lebih terperinci

Sampling, Estimasi dan Uji Hipotesis

Sampling, Estimasi dan Uji Hipotesis Sampling, Estimasi dan Uji Hipotesis Tujuan Pembelajaran Memahami perlunya suatu sampling (pengambilan sampel) serta keuntungan- keuntungan melakukannya Menjelaskan pengertian sampel acak untuk sampling

Lebih terperinci

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα

PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα PENGUJIAN HIPOTESIS. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh :. Pernyataan

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 PENDUGAAN PARMETER IV. PENDUGAAN PARAMETER Populasi N Sampling Sampel n Rata-rata : μ Simp. Baku : σ Ragam

Lebih terperinci

Pengujian Hipotesis. Oleh : Dewi Rachmatin

Pengujian Hipotesis. Oleh : Dewi Rachmatin Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan

Lebih terperinci

STATISTIKA II (BAGIAN

STATISTIKA II (BAGIAN STATISTIKA II (BAGIAN - ) Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 008 Wijaya : Statistika II (Bagian-) 0 VI. PENGUJIAN HIPOTESIS Hipotesis

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Untuk menaksir interval taksiran parameter dengan koefisien kepercayaan, maka sebuah sampel acak diambil, lalu hitung nilai nilai statistik yang diperlukan. Perumusan dalam bentuk

Lebih terperinci

Estimasi dan Uji Hipotesis

Estimasi dan Uji Hipotesis Modul 7 Estimasi dan Uji Hipotesis Bambang Prastyo, S.Sos. PENDAHULUAN pa yang akan Anda lakukan setelah Anda selesai melakukan penelitian? A Tentunya Anda akan mengambil suatu kesimpulan. Nah seperti

Lebih terperinci

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION)

SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) Andaikan ada suatu populasi dengan jumlah anggotanya sebanyak N diambil contoh sebanyak n. Apabila dari setiap kemungkinan contoh tersebut dihitung suatu

Lebih terperinci

ANALYSIS OF VARIANCE

ANALYSIS OF VARIANCE ANALYSIS OF VARIANCE Analisis Varians adalah alat statistika yang digunakan untuk menguji perbedaan mean lebih dari dua populasi. Analisis varians mengguakan distribusi F, yang mempunyai ciri-ciri: Merupakan

Lebih terperinci

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis.

PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis. Konsep: PENGUJIAN HIPOTESIS Agus Susworo Dwi Marhaendro Hipotesis: asumsi atau dugaan sementara mengenai sesuatu hal. Dituntut untuk dilakukan pengecekan kebenarannya. Jika asumsi atau dugaan dikhususkan

Lebih terperinci

BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu

BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu BAHAN KULIAH Konsep Probabilitas Probabilitas Diskrit dan Kontinyu Soal UTS periode November 00 Mata Kuliah : Statistika & Probabilitas Waktu : 0 menit. Suatu sistem pipa seperti ditunjukkan pada gambar

Lebih terperinci

Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis

Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis PENGUJIAN HIPOTESIS Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id 1 Hipotesis Hipotesis adalah suatu pernyataan mengenai nilai suatu parameter populasi yang dimaksudkan untuk pengujian

Lebih terperinci

Pendugaan Parameter Populasi Secara Statistik

Pendugaan Parameter Populasi Secara Statistik Pendugaan Parameter Populasi Secara Statistik Julian Adam Ridjal PS Agribisnis Universitas Jember www.adamjulian.net Pendugaan Parameter Populasi Secara Statistik Pendugaan Parameter Populasi secara Statistik

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. April 5, 2016 TJ (SU) Estimasi dan Confidence Interval April 2016 1 / 30 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

ESTIMASI. A. Dasar Teori

ESTIMASI. A. Dasar Teori ESTIMASI A. Dasar Teori 1. Penaksiran atau Estimasi Penaksiran atau estimasi adalah metode untuk memperkirakan nilai populasi dengan menggunakan nilai sampel. Nilai penduga disebut estimator, estimator

Lebih terperinci