Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS"

Transkripsi

1 Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

2 Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III Bangun Ruang I (konsep dasar Lukisan, dan bidang iris) KKD IV Bangun Ruang II (Luas dan Volume)

3 Pelaksanaan Ujian KKD Jika Ujian I Nilai Kurang dari 60 maka Mhs dapat mengikuti remidi maks 1 kali Mhs yang remidi tetap mengikuti Perkuliahan pada KKD berikutnya Nilai Remidi Maksimal 60 Syarat mengikuti ujian, mhs wajib hadir minimal 75%, tiap tatap muka KKD

4 SISTEM PERKULIAHAN PENILAIAN KKD I =25% KKD II =25% KKD III =25% KKD IV =25% Total = 100% NA = (N KKD I + N KKD II + N KKD III + N KKD IV)/4 Nilai : A : NA 80 B : 70 NA 79 C : 60 NA 69 D : 40 NA 59 E : NA < 40

5 REFERENSI Haryono DW Geometri. Surakarta : UNS PRESS H.S.M. Coxeter, F.R.S Introduction to Geometri New York : John Wiley & Sons. H.S.M. Coxeter, F.R.S Geometry Revisited. The Mathematical Association of America

6 BAB I DASAR-DASAR GEOMETRI A. Pengertian Geometri Geometri berasal dari bahasa latin Geometria, Geo : Tanah dan Metria : Ukuran. Geometri di Indonesia diterjemahkan Ilmu Ukur. Geometri : Cabang Matematika yang mempelajari titik, garis, bidang dan benda-benda ruang beserta sifat, ukuran dan hubungannya dengan yang lain. Objek Geometri : Benda pikir yang berasal dari benda nyata yang diabstraksikan dan di Idialisasikan. Diabstraksikan : tidak diperhatikan warna, bau, suhu dan sifat-sifat yang lain. Diidialisasikan : Dianggap sempurna.

7 B. Sistem Deduktif Aksiomatik Pengertian Pangkal Definisi Aksioma/Postulat Dalil/Teorema Definisi dst Aksioma/Postulat Dalil/Teorema Lemma

8 Pengertian Pangkal (Unsur primitif) : Unsurunsur yang tidak perlu didefinisikan. Hal ini diperlukan agar tidak terjadi perputaran dalam definisi. Contoh : titik, garis, bidang dst. Definisi : Ungkapan yang digunakan untuk membatasi konsep. Ciri dalam definisi adalah berlaku biimplikasi. Contoh : Segiempat disebut jajar genjang jika dan hanya jika sisi-sisi yang berhadapan sejajar. Konsep : Ide abstrak yang digunakan untuk mengklasifikasikan sesuatu. Contoh : Jajar genjang, persegipanjang dll.

9 Aksioma : pernyataan yang secara langsung dapat diterima kebenarannya. Dalil/Teorema : Pernyataan yang harus dibuktikan kebenarannya.

10 Beberapa Pengertian Pangkal a. Titik Titik disajikan dengan huruf kapital A, B, C,... Contoh : A : Titik A b. Garis Antara titik yang satu dgn yg lain memenuhi relasi kongruensi Garis disajikan dengan huruf kecil, misal a, b, g dst.

11 Perhatikan : Garis AB atau garis g AB atau g B A Beberapa Aksioma : Aksioma 1.1 : Setiap garis adalah himpunan titik-titik. Aksioma 1.2 : Untuk sebarang dua titik yang berbeda, terdapat tepat satu garis yang memuat dua titik tersebut. Aksioma 1.3 : Setiap garis memuat paling sedikit dua titik yang berbeda. Aksioma 1.4 : Untuk suatu garis tertentu, minimal ada satu titik yang tidak terletak pada garis tersebut.

12 Definisi : Sebarang himpunan yang memuat paling sedikit dua titik yang merupakan himpunan bagian dari suatu garis disebut himpunan kolinier. Kolinier : Segaris. 3. Relasi Urutan Antara (between) : Relasi teknik yg tidak didefinisikn Suatu titik B yang terletak diantara A dan C disajikan dengan (A, B, C). Aksioma 1.5 : (A, B, C) Jhj (C, B, A) Aksioma 1.6 : Jika (A, B, C) maka A, B, dan C berbeda dan kolinier. Aksioma 1.7 : Jika A, B, C berbeda dan kolinier maka dipenuhi tepat satu dari sifat berikut : (A, B, C) atau (B, C, A) atau (C, A, B)

13 Teorema 1.1 : Jika (A, B, C) dan (A, C, D) maka A, B, C, dan D berbeda dan kolinier Bukti : Menurut Aks 1.6 bahwa (A, B, C) berarti A, B, C berbeda dan kolinier, demikian juga (A, C, D). Jika D=B maka (A, C, D) menjadi (A, C, B) hal ini kontrakdisi dengan aks 1.7. Akibatnya A, B, C dan D berbeda. Perhatikan Aks 1.2. Terdapat satu grs yang melalui A dan C. Karena B dan D terletak pada garis tersebut maka A, B, C dan D kolinier. Teorema berikut dapat digunakan sebagai latihan : o Teorema 1.2 : Jika (A, B, C) dan (A, C, D) maka (A, B, C, D) o Teorema 1.3 : Jika (A, B, C) dan (B, C, D) maka (A, B, C, D) o Teorema 1.4 : a. Jika (A, B, D) dan (A,C,D) dan B C maka (A, B,C) atau (A, C, D). b. Jika (A,B,C) dan (A, B,D) dan C D maka (B, C, D) atau (B, D, C). c. Jika (A, B,C) dan (A,B, D) dan C D maka (A, D, C) atau (A, C, D).

14 Definisi: Misalkan O dan A dengan (O A) terletak pada garis g. S 1 : Himp semua titik g yg memuat A dan X sedemikian sehingga (O, X, A) atau (O, A, X) dan S 2 : Himp semua titik X sedemikian sehingga (X, O, A). S 1 dan S 2 disebut setengah garis (half line) dari garis g terhadap O. Definisi : Jika S 1 dan S 2 saling asing, berlaku : Untuk sebarang titik A pd S 1 dan B pada S 2 terdapat suatu titik dalam S (S = S 1 S 2 ). Untuk Sebarang dua elemen A dan B dalam himpunan yang sama tidak terdapat dari S yang terletak diantaranya, maka dikatakan S memisahkan S 1 sdan S 2.

15 4. Segmen garis. Definisi : Ditentukan dua titik A dan B yang berbeda. Himp semua titik X sedemikian sehingga (A, X, B) disebut segmen. Segmen garis AB disajikan A x B Segmen AB dengan A dan B sebagai Ujung Perhatikan: Segmen AB bersifat terbuka dan kontinu

16 Teorema 1.5 : A dan B bukan elemen AB 1.6 : AB = BA 1.7 : AB adalah subset dari AB 1.8 : Jika AB = CD maka A=C dan B=D atau C = B dan A = D 1.9 : Ditentukan AB dan (A, P, B). AP dan PB adalah subset dari AB Buktikan teorema 1.11.

17 Bukti: Diketahui A dan B. AB dan (A, P, B), berarti P terletak diantara Adib segmen AP subset dari segmen AB. Misalkan X adalah titik sebarang pada AP. Karena A, P, B kolinier maka x terletak pada segmen AB. Jadi karena setiap titik pada AP juga terletak pada segmen AB maka segmen AP subset segmen AB. Dengan Cara yang sama dpt ditunjukkan untuk segmen PB.

18 5. Aksioma Pasch Jika A, B, C adalah tiga titik yang berbeda dan tidak kolinier, g adalah sebarang garis yang tidak melalui A, B dan C, dan g memuat satu titik pada segmen AC maka g juga memuat satu titik pada segmen BC atau AB. Perhatikan : A B g C Teorema 1.10 : Jika A, B, C titik yang berbeda dan tidak kolinier, sebarang garis g yang memuat titik pada segmen AB dan AC pastilah tidak memuat titik pada segemen BC.

19 6. Himpunan Konveks Definisi : Himpunan S disebut himpunan konveks jika sebarang dua titik P dan Q anggota S maka segmen PQ terletak dalam S. Contoh : Setiap segmen garis adalah himpunan konveks A P Q B 7. Sinar Definisi : Sinar adalah himpunan semua titik pada suatu garis yang terletak sepihak dengan O. Atau garis yang ditarik dari sebuah titik kearah titik lain. Contoh : O A B Sinar AB atau AB Titik A disebut pangkal dan arah AB disebut arah sinar.

20 8. Sudut. Definisi : Ditentukan 2 sinar berbeda yang tidak kolinier, misalkan dengan titik pangkal Y. Union dari dua sinar tersebut bersama titik pangkalnya disebut sudut. Titik Y disebut titik Sudut dan sinar-sinar tersebut disebut kaki sudut. Penyajian sudut diatas dengan sudut [XYZ] atau sudut [ZYX] Sedang besar sudut dinyatakan dengan XYZ atau Y.

21 Dlm pemb sudut [XYZ] disajikan dgn XYZ Sudut dalam (interior) PQR adlh daerah seperti pd gamb berikut. Himpunan S (himpunan titik-2) adalah sudut dalam PQR. Sudut Luar adalah daerah seperti yang ditunjukkan gb berikut.

22 a. Putaran (rotasi) C A B Jika sebuah sinar diputar pada titik pangkalnya (dari posisi AB ke AC) maka terbentuk sudut BAC. Besarnya sudut yang terbentuk tergantung seberapa besar memutar sinar Awalnya. b. Ukuran Sudut. Besar suatu sudut adalah besar jarak putar kedua sisinya. Untuk menyatakan besar sudut digunakan derajat. Satu putaran ada 360 *) Sudut siku-siku adalah sudut yang besarnya 90, *) Sudut lurus adalah sudut yang besarnya 180. *) Sudut lancip adalah sudut yang besarnya antara 0 dan 90 *) Sudut tumpul adalah sudut yang besarnya antara 90 dan 180. Latihan :1. Lukislah sudut 90, sudut 30 dan 60 hanya dengan jangka dan penggaris.

23 c. Sudut berkomplemen yaitu dua sudut yang jumlahnya 90 Dari contoh tersebut, Jika sudut a dan b saling komplemen maka jika besar sudut a= 30 maka sudut b adalah 60.

24 d. sudut bersuplemen (berpelurus) C O B A AOB dan BOC diktkn saling bersuplemen (berpelurus) e. Sudut bersisian Sudut-sudut yang bersisian adalah dua sudut yang mempunyai titik sudut yang sama dan sebuah sisi yang berimpit yang terletak diantara dua sisi yang lain. O AOB dan BOC adalah saling bersisian. A C B

25 9. Bidang Bidang tidak didefinisikan. Bidang dibedakan menjadi dua, yaitu bidang datar dan bidang lengkung. Suatu bidang disajikan dengan huruf kecil u, v, w dan seterusnya atau dengan huruf,,,... Contoh: v w Bidang Datar bidang Lengkung

26 Beberapa Aksioma Aksioma 1.8 : Melalui tiga titik yang berbeda sekurang-kurangnya dapat dibuat satu bidang datar. Aksioma 1.9 : Jika ada 2 titik yang berbeda dan terletak pada bidang datar maka garis yang melalui dua titik tersebut terletak pada bidang 10. Kedudukan dua garis a. Dua garis berpotongan Definisi : Dua garis dikatakan berpotongan jika dan hanya jika mempunyai tidak lebih dari satu titik persekutuan.

27 Perhatikan gb berikut. 3 2 P 1 4 l g Perhatikan Kedudukan sudut P1 dan sudut P3 serta sudut P2 dan sudut P4 saling bertolak belakang. Teorema: Dua sudut yang bertolak belakang besarnya sama Bukti: Akan dibuktikan bahwa P1 = P3. Sudut P1 dan P2 saling berpelurus sehingga P1+ P2 = 180 Demikian jg sdt P2 dan P3 saling berpelurus shg P2 + P3 = 180 Akibatnya P1 + P2 = P2 + P3 shg P1 = P3. Jadi terbukti Dengan cara yang sama dapat dibuktikan P2 = P4 Sudut potong adalah sudut terkecil yang dibentuk oleh kedua garis yang berpotongan.

28 SEGITIGA Definisi: Misalkan diberikan 3 titik A, B, C yang tidak kolinier. Himpunan yang merupakan Union dari himpunan yang memuat A, B dan C saja dan bersama dengan segmen AB, AC, dan BC disebut segitiga.

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan Modul 1 SUDUT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian sudut, ukuran sudut, satuan ukuran sudut, ragam sudut berdasarkan ukuran sudut, cara pengukuran

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur

Lebih terperinci

BAB 7 GEOMETRI NETRAL

BAB 7 GEOMETRI NETRAL BAB 7 GEOMETRI NETRAL Ilmuwan besar matematika ini lahir pada bulan April 1777, di Brunswick, Daerah duke Brunswick (sekarang Negara Jerman). Gauss tumbuh didalam keluarga yang agak sederhana, bukan kaya

Lebih terperinci

KONGRUENSI PADA SEGITIGA

KONGRUENSI PADA SEGITIGA KONGRUENSI PADA SEGITIGA (Jurnal 6) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Perkuliah geometri kembali pada materi dasar yang kita anggap remeh selama ini.

Lebih terperinci

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XI ALAT PERAGA DALAM GEOMETRI RUANG Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si

Lebih terperinci

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras BY : Feni Malinda Safitri Sudah diperiksa Pengertian Teorema Phytagoras Phytagoras adalah seorang ahli matematika dan filsafat berkebangsaan Yunani pada tahun 569-475 sebelum masehi, ia mengungkapkan bahwa

Lebih terperinci

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA)

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) ANWARIL HAMIDY NIM. 15709251018 PROGRAM STUDI PENDIDIKAN MATEMATIKA PROGRAM PASCASARJANA

Lebih terperinci

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang BAB III PEMBAHASAN Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang didasarkan kepada enam postulat pada Geometri Netral dan Postulat Kesejajaran Hiperbolik. Akan dibahas sifat-sifat

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMER ELJR PENUNJNG PLPG 2016 MT PELJRN/PKET KEHLIN GURU KELS S III GEOMETRI ra.hj.rosdiah Salam, M.Pd. ra. Nurfaizah, M.Hum. rs. Latri S, S.Pd., M.Pd. Prof.r.H. Pattabundu, M.Ed. Widya Karmila Sari chmad,

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 5 LINGKARAN A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

Bangun Datar. Modul 1 PENDAHULUAN

Bangun Datar. Modul 1 PENDAHULUAN Modul 1 Bangun Datar Muchtar Abdul Karim Erry Hidayanto B PENDAHULUAN angun datar merupakan salah satu pokok bahasan yang sangat penting baik dalam mempelajari geometri, maupun penggunaannya dalam kehidupan

Lebih terperinci

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT GEOMETRI BIDANG Pada bab ini akan dibahas bentuk-bentuk bidang dalam ruang dimensi dua, keliling serta luasan dari bidang tersebut, bentuk ini banyak kaitannya dengan kegiatan ekonomi (bisnis dan manajemen)

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS KISI-KISI PENULISAN SAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS Mata Pelajaran : Matematika Materi Pokok : Segiempat dan Segitiga Kelas / semester : VII / 2 Standar Komptensi : Memahami konsep segi empat

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya.

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. ab 7 angun Ruang Sisi Datar Standar Kompetensi Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. Kompetensi Dasar 4.1 Menentukan hubungan antara dua garis, serta besar

Lebih terperinci

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik. Dalam geometri bidang atau geometri dimensi-2 perhatian kita pada dua dimensi, yaitu dimensi-1 dan dimensi-2. Ketika kita mempelajarinya, imajinasi kita pada selembar kertas tipis yang terhampar tak terbatas.

Lebih terperinci

BAB 5 POSTULAT KESEJAJARAN EUCLIDES

BAB 5 POSTULAT KESEJAJARAN EUCLIDES BAB 5 POSTULAT KESEJAJARAN EUCLIDES Leonhard Euler dilahirkan di Basel (Switzerland), pada tanggal 15 April 1707 di St Petersburg (Rusia).Keluarga Leonhard Euler pindah ke Riehen, daerah yang tidak jauh

Lebih terperinci

DASAR-DASAR MATEMATIKA

DASAR-DASAR MATEMATIKA DASAR-DASAR MATEMATIKA Manfaat Matematika Pengertian Karakteristik Matematika Perbedaan matematika dan Pendidikan Matematika Refleksi Pengantar Dasar Matematika 1 MANFAAT MEMPELAJARI MATEMATIKA PERDAGANGAN

Lebih terperinci

Fuat. Buku Ajar GMKM (Seri Kongruensi Segitiga)

Fuat. Buku Ajar GMKM (Seri Kongruensi Segitiga) Fuat Buku Ajar GMKM (Seri Kongruensi Segitiga) 2014 P R O G R A M S T U D I P E N D I D I K A N M A T E M A T I K A S T K I P P G R I P A S U R U A N Geometri dibangun menurut penalaran deduktif tersusun

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara Sistem Koordinat Cartesius.. Geometri Analitik Geometri analitik adalah suatu cabang ilmu matematika yang merupakan kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara persamaan

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri

TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri 1 TINJAUAN MATA KULIAH Mata Kuliah Geometri dan Pengukuran merupakan mata kuliah yang memberi pemahaman kepada mahasiswa tentang konsep-konsep geometri dan pengukuran. Dijabarkan ke dalam materi: dasar-dasar

Lebih terperinci

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar.

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar. BAB I PENDAHULUAN A. Latar Belakang Bagi setiap tingkatan kelas di sekolah dasar, pembelajaran geometri dapat dikategorikan kepada materi yang cukup sukar serta memerlukan pemahaman yang cukup tinggi.

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) SILABUS PEMELAJARAN ALJABAR Standar : 4. Menggunakan konsep dan diagram Venn dalam pemecahan masalah Kegiatan 4.1 Mema-hami

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( ) MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)

Lebih terperinci

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT Besar sudut dapat ditentukan atau diukur dengan berbagai cara, di antaranya dengan menggunakan sudut satuan dan yang paling tepat menggunakan sebuah alat yang

Lebih terperinci

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis

Lebih terperinci

BAB I TITIK DAN GARIS

BAB I TITIK DAN GARIS 1. Titik, garis, sinar dan ruas garis BB I TITIK DN GRIS Geometri dibangun atas dasar unsur-unsur yang tidak didefinisikan yaitu: titik, garis, dan bidang. Titik dipahami secara intuisi sebagai sebuah

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti

BAB I PENDAHULUAN. Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti BAB I PENDAHULUAN A. Latar Belakang Masalah Geometri berasal dari kata Latin Geometria. Kata geo memiliki arti tanah dan metria memiliki arti pengukuran. Berdasarkan sejarah, Geometri tumbuh jauh sebelum

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA

BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA V HN LTIHN N SRN PMHNNY. ahan Latihan Kerjakanlah soal-soal berikut. Jangan mencoba melihat petunjuk atau kunci, sebelum benar-benar nda mengalami jalan buntu. 1. alam sebuah persegipanjang ditarik 40

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

LAMPIRAN 1 SOAL EVALUASI SEBELUM VALIDITAS SOAL EVALUASI POKOK BAHASAN SIFAT BANGUN DATAR. 1. Yang merupakan bangun persegi adalah. a. b. c.

LAMPIRAN 1 SOAL EVALUASI SEBELUM VALIDITAS SOAL EVALUASI POKOK BAHASAN SIFAT BANGUN DATAR. 1. Yang merupakan bangun persegi adalah. a. b. c. LAMPIRAN 48 49 LAMPIRAN 1 SOAL EVALUASI SEBELUM VALIDITAS SOAL EVALUASI POKOK BAHASAN SIFAT BANGUN DATAR 1. Yang merupakan bangun persegi adalah. a. b. c. 2. Berikut ini yang bukan bangun datar adalah.

Lebih terperinci

SEGI BANYAK BAHAN BELAJAR MANDIRI 2

SEGI BANYAK BAHAN BELAJAR MANDIRI 2 BAHAN BELAJAR MANDIRI 2 SEGI BANYAK PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang segitiga, segiempat, segilima, kongruensi dan kesebangunan. Setelah mempelajari BBM 2 ini anda

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si.

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. GEOMETRI EUCLID Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. UNIVERSITAS NEGERI SURABAYA FAKULTAS PASCA SARJANA PROGRAM STUDI PENDIDIKAN

Lebih terperinci

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: BANGUN DATAR Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan BAB I PENDAHULUAN A. Latar Belakang Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan metria artinya pengukuran. Menurut sejarahnya, Geometri tumbuh pada zaman jauh sebelum masehi karena

Lebih terperinci

REFLEKSI TERHADAP LINGKARAN SKRIPSI

REFLEKSI TERHADAP LINGKARAN SKRIPSI REFLEKSI TERHADAP LINGKARAN SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Sarjana Sains Disusun

Lebih terperinci

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi Bab 4 Unsur-Unsur Bangun Datar Sederhana Tema 9 Negara Kelas Dewi Tujuan Pembelajaran Pembelajaran ini bertujuan agar kamu mampu: mengelompokkan bangun datar mengenal sisi-sisi bangun datar mengenal sudut-sudut

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

BUKU AJAR. Matakuliah : Pembelajaran Geometri di SD : 3 (tiga) Semester : Ganjil 2016/2017 Program Studi : Pendidikan Guru Sekolah Dasar. Akina.

BUKU AJAR. Matakuliah : Pembelajaran Geometri di SD : 3 (tiga) Semester : Ganjil 2016/2017 Program Studi : Pendidikan Guru Sekolah Dasar. Akina. BUKU AJAR Matakuliah : Pembelajaran Geometri di SD SKS : 3 (tiga) Semester : Ganjil 2016/2017 Program Studi : Pendidikan Guru Sekolah Dasar Oleh: Akina PROGRAM STUDI PENDIDIKAN GURU SEKOLAH DASAR FAKULTAS

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49 B. 41 C. 7 D. -41 BAB II Bentuk Aljabar - perkalian/pembagian mempunyai tingkat

Lebih terperinci

PERSIAPAN UN MATEMATIKA SMP 2014

PERSIAPAN UN MATEMATIKA SMP 2014 PERSIAPAN UN MATEMATIKA SMP 014 Berilah tanda silang (x) pada huruf a, b, c, atau d di depan jawaban yang benar! 1. Di suatu daerah yang berada pada ketinggian.500 meter di atas permukaan laut suhunya

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : D45 NO SOAL PEMBAHASAN 1 Hasil dari 8 5 3 adalah... 1. a A. 10 5 = a a a a a B. 5. a 1 n n = a C. 3 3. a m n n = a m D. 64 Hasil dari 8 3 adalah... A. 6 B. 8 C.

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 4 Aljabar Vektor-1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Kuantitas Skalar dan Vektor Kuantitas Fisis dibagi menjadi dua, yaitu: 1. Kuantitas skalar:

Lebih terperinci

LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS

LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS Rika Delpita Sari 1*, Mashadi 2 1 Mahasiswa Program Studi Magister Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

LOGO JARAK DUA TITIK

LOGO JARAK DUA TITIK LOGO JARAK DUA TITIK JARAK TITIK A KE TITIK B Jakarta Bandung Lintasan yang ditempuh kereta-api Lintasan yang ditempuh sebuah mobil Ruas garis yang menghubungkan kedua kota LOGO www.themegallery.com POSTULAT

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang Diuji Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat

Lebih terperinci

LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN

LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN LAMPIRAN 1 RANCANGAN MEDIA PEMBELAJARAN Lampiran 1.a Lampiran 1.b. Lampiran 1.c. Lampiran 1.d. Lampiran 1.e. Lampiran 1.f. Garis-Garis Besar Isi Media Materi Garis dan Sudut Soal dan Kunci Jawaban Jabaran

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika Oleh : Chintia Rudiyanto NIM :

Lebih terperinci

MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030)

MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030) MAKALAH TELAAH KURIKULUM MATEMATIKA SMP DISUSUN OLEH: KELOMPOK 1 OKTI ANGGUN PASESI (A1C013010) NISA SETIAWATI (A1C013012) MAISYAH RAHMA (A1C013030) MELI DWI JAYANTI (A1C013040) DESSY AGUSTINA (A1C013054)

Lebih terperinci

DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri

DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri DASAR-DASAR GEOMETRI Suatu Pengantar Mempelajari Sistem-sistem Geometri Budiyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Abstrak Dengan memandang geometri sebagai sistem deduktif,

Lebih terperinci

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar Bab 9 Segitiga Standar Kompetensi Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat segitiga berdasarkan sisi susdutnya. 6.3 Menghitung

Lebih terperinci

Untuk lebih jelasnya, perhatikan uraian berikut.

Untuk lebih jelasnya, perhatikan uraian berikut. KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN TENGAH SEMESTER GENAP Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor :

Lebih terperinci

BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES

BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES BAB 8 PENGANTAR GEOMETRI NON-EUCLIDES Riemann dilahirkan pada tanggal 17 September 1826 di Breselenz, sebuah desa di dekat Dannenberg di kerajaan Han-nover Jerman. Ayahnya bernama Friedrich Bernard Riemann

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Pendahuluan Geometri. Modul 1

Pendahuluan Geometri. Modul 1 Modul 1 Pendahuluan Geometri Drs. Mohamad Rahmat, M.Pd. M PENDAHULUAN odul ini berjudul Pendahuluan Geometri, terdiri atas tiga kegiatan belajar, yang pertama berjudul Pengenalan Bentuk Geometri, berisi

Lebih terperinci

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang,

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang, LAMPIRAN 1. Silabus SILABUS MATEMATIKA KELAS VII Standar Kompetensi : GEOMETRI 4.Memahami konsep segi empat dan serta menentukan ukurannya Kompetensi 6.1 Segiempat dan Mengident i fikasi sifat-sifat berdasarka

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si SIFAT-SIFAT PERSEGIPANJANG Oleh Nialismadya & Nurbaiti, S. Si Standar Kompetensi 6. Memahami konsep segi empat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat

Lebih terperinci

BAB I DEFINISI DEFINISI DAN PENGGUNAANNYA DIDALAM PEMBUKTIAN

BAB I DEFINISI DEFINISI DAN PENGGUNAANNYA DIDALAM PEMBUKTIAN I FINISI FINISI N PNGGUNNNY ILM PMUKTIN Mendifinisikan suatu kata adalah penting, sebab (1) definisi-definisi tersebut dibentuk untuk keperluan manusia dalam kaitannya dengan diskusi, dan (2) setiap definisi

Lebih terperinci

JARING-JARING BANGUN RUANG

JARING-JARING BANGUN RUANG BAHAN BELAJAR MANDIRI 6 JARING-JARING BANGUN RUANG PENDAHULUAN Bahan Belajar mandiri 6 mempelajari tentang Jaring-jaring Bangun ruang : maksudnya jika bangun ruang seperti kubus, balok, kerucut dan yang

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap suatu titik. Gambar

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN LAMPIRAN Standar Kompetensi RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Nama Sekolah : SMP Negeri Tempel Mata Pelajaran : Matematika Kelas/ Semester : VII (Tujuh)/ Materi Pokok : Segitiga Alokasi

Lebih terperinci