LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS

Ukuran: px
Mulai penontonan dengan halaman:

Download "LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS"

Transkripsi

1 LINGKARAN SINGGUNG LUAR SEGIEMPAT TIDAK KONVEKS Rika Delpita Sari 1*, Mashadi 2 1 Mahasiswa Program Studi Magister Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau rika_azakinara@yahoo.com 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya, Pekanbaru ABSTRAK Dalam artikel ini dibahas mengenai kekonkurenan bisector sudut dalam dan bisector sudut luar segiempat tidak konveks dengan menggunakan Teorema Ceva dan konkurensi bisector sudut. Juga dibahas cara mengkonstruksikan lingkaran singgung luar segiempat tidak konveks serta menentukan panjang jari-jari lingkaran singgungluar segiempat tidak konveks Kata kunci: lingkaran singgung luar segiempat konveks, teorema Ceva, teorema Urquhart. 1. PENDAHULUAN Dalam geometri dipelajari mengenai lingkaran singgung luar segitiga. Lingkaran singgung luar adalah suatu lingkaran yang menyinggung salah satu sisi dari segitiga sebelah luar dan perpanjangan dua sisi lainnya. Lingkaran singgung luara dalah suatu lingkaran yang menyinggung salah satu sisi dari segitiga sebelah luar dan perpanjangan dua sisi lainnya. Lingkaran singgung luar terkadang disebut juga dengan lingkaran luar (excircles). Definisi lingkaran singgung luar segitiga menurut Coxeter dan Greitzer[1] merupakan lingkaran yang menyinggung sisi dan perpanjangan dari dua sisi lainnya. Bukan hanya segitiga yang memiliki lingkaran singgung luar, segiempat juga memiliki lingkaran singgung luar segiempat. Lingkaran singgung luar segiempat merupakan lingkaran yang menyinggung sisi maupun perpanjangan sisi lainnya seperti yang ditulis oleh Martin 2, Berdasarkan jurnal yang ditulis oleh Martin 3 dibahas tentang lingkaran singgung luar segiempat yang lain. Namun belum ada yang membahas mengenai lingkaran singgung luar segiempat tidak konveks. Oleh karena itu pada artikel ini dibahas mengenai kekonkurenan bisector sudut dalam dan bisector sudut luar segiempat tidak konveks 37

2 dengan menggunakan Teorema Ceva dan konkurensi bisector sudut. Juga dibahas cara mengkonstruksikan lingkaran singgung luar segiempat tidak konveks serta menentukan panjang jari-jari lingkaran singgung luar segiempat tidak konveks 2. TINJAUAN PUSTAKA Lingkaran Singgung Luar Segitiga Lingkaran singgung luar segitiga atau yang lebih dikenal dengan istilah excircle merupakan lingkaran yang menyinggung sisi luar segitiga. Mashadi dalam [4] memberikan definisi dari lingkaran singgung luar segitiga yaitu Definisi2.1 Lingkaran singgung luar pada suatu ABC adalah lingkaran yang menyinggung sebuah sisi segitiga dan perpanjangan dua sisi lainnya Ilustrasidari Definisi 2.1 dapat dilihat pada Gambar 2.1. Suatu ABC memiliki lingkaran singgung luar yang berpusat di titik O. Lingkaran tersebut menyinggung sisi BC di titik E, dan perpanjangan sisi AB dan AC berturut-turut di titik F dan D. Gambar 2.1: Lingkaran singgung luar pada ABC Kongkurensi Bisektor pada Lingkaran Singgung Luar Segitiga Kongkurensi menunjukkan tiga buah garis yang berpotongan disatu titik dalam suatu segitiga. Sebelum membuktikan kongkurensi bisektor sudut pada lingkaran singgung luar segitiga, terlebih dahulu dibahas tentang Teorema Ceva. Teorema ceva merupakan salah satu cara untuk menunjukkan kongkurensi dari tiga buah garis. Teorema Ceva yang digunakan yaitu kongkurensi di luar segitiga [4]. Gambar2.2: GarisAG, BHdanCI kongkuren di titikodiluar ABC 38

3 Teorema 2.1 (Teorema Ceva) Jika titik G, H, dan I masing-masing adalah titik pada sisi BC, CA, danab maka garis AG, BH dan CI berpotongan di satu titik jika dan hanya jika: TeoremaUrquhart CG GB BI IH AH HC = 1 Jika OA dan OB dua buah garis yang berpotongan di O. Titik A suatu titik pada OA, serta B suatu titik pada OB dan O merupakan perpotongan antara AB dengan A B. Maka akan berlaku hubungan [7] yang ditulis dalam Teorema 2.2. Teorema 2.2 Diberikan OA dan OB dua buah garis yang berpotongan di O. Titik A suatu titik pada OA, serta B suatu titik pada OB dan O merupakan pepotongan antara AB dengan A B maka berlaku OA + AO = OB + BO OA + A O = OB + O B Bukti : Bukti lihat [7] Seperti pada gambar 2.3 Gambar 2.3: Ilustrasi Teorema urquhart dengan penambahan sudut Lingkaran Singgung Luar Segiempat konveks didepan sudut C Tidak semua segiempat konveks dapat dibentuk lingkaran singgung yang berada di depan titik C. Oleh sebab itu sebelum mengkonstruksi lingkaran singgung, maka haruslah diketahui syarat dari suatu segiempat yang memiliki lingkaran singgung di depan titik C. Syarat yang pertama agar suatu segiempat konveks memiliki lingkaran singgung luar di depan titik C yaitu tidak ada sisi yang sejajar. Segiempat ABCD( ABCD) yang memiliki sepasang sisi yang sejajar yaitu AD BC. Jika dibuat perpanjangan dari masingmasing sisi ABCD maka sisi yang sejajar tersebut tidak akan pernah berpotongan. Sehingga tidak mungkin dapat dibentuk lingkaran yang menyinggung dari semua perpanjangan sisi ABCD.Seperti pada Gambar

4 Gambar 2.4: Segiempat ABCD dengan AD BC. Selaintidak ada sisi yang sejajar jugaada syarat yang kedua yaitu penjumlahan dua sisi yang berdekatan adalah sama [3]. Teorema 2. 3 Suatu ABCD dengan panjang sisi AB = a, BC = d, CD = c dan AD = d akan mempunyai lingkaran singgung luar di depan titik C jika dan hanya jika a + b = c + d Bukti: perhatikan Gambar 2.5, bukti lihat [3]. Gambar 2.5: Lingkaran singgung luar ABCD di depan titik C Jari-jari Lingkaran Singgung Luar Segiempat Seperti halnya lingkaran singgung luar segitiga, maka jari-jari lingkaran singgung luar segiempat juga dapat dihubungkan dari luas segiempat [4]. Teorema 2.4 Sebuah lingkaran singgung luar segiempat dengan panjang sisi, b, cdand mempunyai panjang jari-jari ρ = L ABCD a c Bukti: Bukti lihat[3], perhatikan Gambar 2.6 = L ABCD d b 40

5 Gambar 2.6 : Lingkaran singgung dengan jari-jari ρ 3. PEMBAHASAN Konstruksi Lingkaran Singgung Luar Segiempat Tidak konveks Tidak semua segiempat tidak konveks dapat dibentuk lingkaran singgung luar yang berada di depan titik C. Adapun Langkah-langkah dalam mengkonstruksi lingkaran singgung luar segiempat tidak konveks adalah sebagai berikut: a. Buatlah ABCD yang mempunyai panjang sisi AB = a, BC = b, CD = c dan AD = d dengan syarat semua sisinya tidak ada yang sejajar serta memenuhi persamaan a + b = c + d. b. Perpanjang sisi BC sehingga berpotongan dengaan ADdi titik D, Dimana panjang AD tidak boleh lebih dari setengah AD. Kemudian perpanjang juga sisi DC sehingga memotong ABdi titik B, Dimana panjang AB tidak boleh lebih dari setengah AB dan jaraktitik A ketitik C tidak boleh lebih panjang dari jari jari lingkaran singgung luar segiempat tidak konveks. c. Buatlah masing-masing garis bisektor sudut pada sudut-sudut internal, yaitu A dan C, sudut-sudut eksternal, yaitu sudut EDB dan CBF, serta 2 buah sudut yang terbentuk dari perpanjangan keempat sisi segiempat. Keenam bisektor sudut tersebut akan berpotongan di titik P. d. Dari titik P tersebut tarik garis yang tegak lurus ke perpanjangan sisi AD, beri nama titik V. Lalu lukis lingkaran yang berpusat di P dan berjari-jari PV. Sehingga lingkaran tersebut menyinggung perpanjangan sisi AB di titik V, perpanjangan AB di titik U, dan menyinggung BC di titik T dan DC di titik W. E D z z V T D o C x y y * # T F A B B U Gambar 3.1: Titik pusat lingkaran yang terbentuk dari perpotongan enam bisektor sudut \ P Lingkaran Singgung Luar Segiempat Tidak konveks W 41

6 Sebelum membahas mengenai lingkaran singgung luar segiempat tidak konveks, akan dibahas lebih dulu kekonkurenan bisector sudut luar dan bisector sudut dalam segiempat tidak konveks. Diberikan ABCD dengan panjang AB = a, BC = b, CD = c dan DA = d. Buatlah masing-masing garis bisektor sudut pada sudut-sudut internal, yaitu A dan C, sudutsudut eksternal, yaitu sudut EDB dan CBF. Akan ditunjukan internal bisector dan eksternal bisector tersebut konkuren di titk P.perhatikan Gambar 3.1 E x C x b y y * T F A a B U Gambar 3.2: Garis AP, BE, DF dan CP kongkuren di titik P Bukti :Perpanjang sisi BC sehingga berpotongan dengaan AD di titik D, Kemudian perpanjang juga sisi DC sehingga memotong AB di titik B. Tarik bisector BD E sehingga memotong AB di titik I, keudian tarik bisector DB B sehingga memotong AD di titik H Seperti pada Gambar 3.3 d c W D z z V T \ P H D A h G B h P I Gambar 3.3: kekonkurenan AP, B P dan BE 1. Akan ditunjukkan AP, B P dan BE konkuren di titik P Perhatikan AD Idan BD I pada Gambar 3.3, memiliki tinggi yang sama yaitu h 1, dan API dan BPI memiliki tinggi yang sama yaitu h 2, Berdasarkan konsep luas AD P sama dengan luas AD I dikurang luas AD P sehingga diperoleh 42

7 Dengan cara yang sama pada BD P diperoleh Dengan membandingkan persamaan (3.1) dan (3.2) diperoleh L AD I = 1 2 AI h 1 h 2 (3.1) L BD P = 1 2 BI h 1 h 2 (3.2) L BD P L AD P = BI AI. (3.3) Dengan menggunakan cara yang sama, pada APB dan BD P, diperoleh perbandingan sedangkan pada APB dan AD P, diperoleh L AD B L BD P = GD GB L AD P L AD B = AH D H Jika persamaan (3.3), (3.4) dan (3.5) dikalikan maka diperoleh D G GB BI IH AH HD = 1. Misalkan pada garis BC terdapat titik G, sehingga G G diperoleh dan D G GB BI IH AH HD = 1. D G G B BI IH AH HD = 1. D G GB = D G G B. GB = G B. Hal ini mengakibatkan G = G, sehingga G dan G berhimpit. (3.4) (3.5) 2. Akan ditunjukkan AG, B H dan DI konkuren di titik P. Perhatikan Gambar 3.4 H D P G h h A B I Gambar 3.4: kekonkurenan AG, B H dan DI Untuk membuktikan AG, B H dan DI konkuren di titik P dapat menggunakan langkah yang sama pada pembuktian AP, B P dan BE konkuren di titik P 43

8 3. Akan ditunjukkanp = P, Perhatikan AD B dan AB D pada Gambar 3.5.dengan menggunakan teorema Urquhart diperolah K AD B = K AB D. Dan dengan memisalkan s merupakan setengah dari keliling suatu segitiga maka s AD B = s AB D D D V W V A C P P B T B U U Gambar 3.5: Segiempat ABCD yang mempunyai dua buah lingkaran singung Perhatikan AD B. Buat lingkaran singgung luar dari AD B beri nama titik P sebagai titik pusatnya. Misalkan lingkaran singgung tersebut menyinggung perpanjangan D B di titik T, perpanjangan AD di titik V dan perpanjangan AB di titik U. Sehingga panjang jarijari lingkaran yang berpusat di P yang dilambangkan dengan r P adalah PT = PU = PV = r P (3.6) Karena setengah keliling suatu segitiga yang memiliki lingkaran singgung luar sama dengan panjang garis singgungnya [6], maka s AD B = AU atau s AD B = AV Perhatikan AB D. Buat lingkaran singgung luar dari AB D beri nama P sebagai titik pusatnya. Misalkan lingkaran singgung tersebut menyinggung perpanjangan AD di titik V, sisi B D di titik W dan perpanjangan AB di titik U. Sehingga panjang jari-jari lingkaran yang berpusat di P yang dilambangkan dengan r P adalah P U = P V = P W = r P (3.7) Karena setengah keliling suatu segitiga yang memiliki lingkaran singgung luar sama dengan panjang garis singgungnya [6], maka s AB D = AU, 44

9 atau s AB D = AV Karena s AD B = s AB D maka haruslah U = U, (3.8) dan V = V, (3.9) Karena lingkaran yang berpusat di P dan P memiliki dua buah titik singgung yang sama yaitu di titik U dan V maka haruslah P = P 3. Tarik garis dari C yang melalui titik P akan ditunjukkan CP bisektor DCB Dengan menghubungkan titik C dan P maka terbentuk 2 buah segitiga yaitu CIE dan CEG yang memiliki CI = CG (sisi), (3.10) CIE = CGE (sudut), (3.11) EI = EG (sisi). (3.12) Berdasarkan persamaan (3.10), (3.11) dan (3.12) diperoleh ICE = GCE, Sehingga CE garis bisektor KCJ. Dengan demikian terbukti bahwa AE, BE, CE, DE, EJ dan EK kongkurensi. Jari-jari Lingkaran Singgung Luar Segiempat Untuk menentukan panjang jari jari lingkaran luar segiempat tidak konveks dapat dihubungkan dengan luas segiempat. Diberikan sebuah segiempat tidak konveks ABCD dengan sepanjang dengan panjang AB = a, BC = b, CD = c dan DA = d. Bukti: Perhatikan Gambar 3.6. A d c C a V D W b T \ P B U Gambar 3.6 : Lingkaran singgung dengan jari-jari R a L ABPD = L ABP + L ADP L BCP L CDP (3.13) 45

10 L ABCD = 1 2 R a a + d b c, R a = dan karena a + b = c + d diperoleh R a = L ABCD a c 2L ABCD a c + d b = L ABCD. d b 4. KESIMPULAN Dari hasil pembahasan tesis ini dapat disimpulkan bahwa tidak semua segiempat tidak konveks yang mempunyai lingkaran yang menyinggung perpanjangan sisi dari tiap segiempat. Selain itu pada pengkonstruksian lingkaran singgung luar segiempat tidak konveks ini terdapat kongkurensi dari 6 bisektor sudut. Pembuktian kongkurensi ini menggunakan pendekatan teorema Ceva pada segitiga. 5. DAFTAR PUSTAKA [1]. H.S.M. Coxeterdan S. L. Greitzer. Geometry Revisited, Washington D C: MAA; [2]. J. Martin.More Characterizations of Tangential Quadrilaterals, Forum geometricorum. Boca Raton: Departement of mathematical science Florida Atlantik University; [3]. J.Martin. Similiar Metric Characterization of Tangential and Extangential Quadrilateral, Forum geometricorum. Boca Raton: Departement of mathematical science Florida Atlantik University; [4]. Mashadi. Geometri. Pekanbaru: Pusbangdik Universitas Riau; [5].M. Nicusor. Characterizations of a Tangential Quadrilateral, Forum geometricorum. Boca Raton: Departement of mathematical science Florida Atlantik University; [6]. Singgih S Wibowo. Matematika Menongsong OSN SMP. Yogyakarta: Intersolusi Pressindo; [7]. Weisstein, Eric W [internet]. Urquhart s Theorem. From mathworld-a Wolfram web resourcehttp://mathworld.wolfram.com//urquhartstheorem.html [8]. Y, Paul. Introduction to the geometry of the triangle.florida Atlantic University;

Lingkaran Singgung Luar Segiempat Tidak Konveks

Lingkaran Singgung Luar Segiempat Tidak Konveks Lingkaran Singgung Luar Segiempat idak Konveks Rika elpita Sari 1, Mashadi 2 Jurusan Matematika, Fakultas MIPA, Universitas Riau Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, 28293 Email :

Lebih terperinci

Jurnal Sains Matematika dan Statistika, Vol. 1, No. 2, Juli 2015 ISSN Daftar Pustaka

Jurnal Sains Matematika dan Statistika, Vol. 1, No. 2, Juli 2015 ISSN Daftar Pustaka Daftar Pustaka [1] Anton, Howard. Aljabar Linear Elementer. Edisi Kelima. Jakarta: Erlangga. 1987. [2] Cohen, Fred. Computer Viruses Theory and Experiments. 1984. [3] Hale, J. K. dan H. Kocak. Dynamic

Lebih terperinci

MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER

MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER MULTIPLE KOSNITA MENGGUNAKAN CIRCUMCENTER MELALUI EXCENTER Sylvi Karlia 1, Mashadi 2, M. D. H. Gamal 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: syl.karlia@ymail.com

Lebih terperinci

HUBUNGAN SEGITIGA GERGONNE DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

HUBUNGAN SEGITIGA GERGONNE DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia HUBUNGAN SEGITIGA GERGONNE DENGAN SEGITIGA ASALNYA Sandra Oriza 1*, Mashadi 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas

Lebih terperinci

HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia HUBUNGAN SEGITIGA NAGEL DENGAN SEGITIGA ASALNYA Reni Widya 1*, Hasriati 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen.

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. Gambar 1.1 Kubus Sifat-sifat Kubus 1. Semua sisi kubus berbentuk persegi. Kubus mempunyai 6 sisi persegi

Lebih terperinci

MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA. ABSTRACT

MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA. ABSTRACT MEMBUKTIKAN KETAKSAMAAN ERDŐS-MORDELL DENGAN MENGGUNAKAN JARAK BERTANDA Riva Atul Wahidah 1), Mashadi 2), Hasriati 2) riva_cew91@yahoo.co.id 1) Mahasiswa Program S1 Matematika FMIPA-UR 2) Dosen Matematika

Lebih terperinci

MODUL MATEMATIKA KELAS 8 APRIL 2018

MODUL MATEMATIKA KELAS 8 APRIL 2018 MODUL MATEMATIKA KELAS 8 APRIL 2018 1. KUBUS BANGUN RUANG SISI DATAR Kubus merupakan bangun ruang beraturan yang dibentuk oleh enam buah persegi yang bentuk dan ukurannya sama. Unsur-unsur Kubus 1. Sisi

Lebih terperinci

BAB 2 MENGGAMBAR BENTUK BIDANG

BAB 2 MENGGAMBAR BENTUK BIDANG BAB 2 MENGGAMBAR BENTUK BIDANG 2.1 Menggambar Sudut Memindahkan sudut a. Buat busur lingkaran dengan A sebagian pusat dengan jari-jari sembarang R yang memotong kaki-kaki sudut AB dan AC di n dan m b.

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

PENGAJARAN MULTIPLE KOSNITA MENGGUNAKAN ICENTER MELALUI EXCENTER BAGI SISWA SEKOLAH MENENGAH

PENGAJARAN MULTIPLE KOSNITA MENGGUNAKAN ICENTER MELALUI EXCENTER BAGI SISWA SEKOLAH MENENGAH PENGAJARAN MULTIPLE KOSNITA MENGGUNAKAN ICENTER MELALUI EXCENTER BAGI SISWA SEKOLAH MENENGAH Pujiati 1, Mashadi 2, M.D.H. Gamal 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kata geometri berasal dari bahasa Yunani yaitu geos yang berarti bumi dan metron yang berarti pengukuran. Orang-orang dahulu baik yang berbangsa Mesir, Cina,

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur

Lebih terperinci

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang.

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang. Materi W9a GEOMETRI RUANG Kelas X, Semester 2 A. Kedudukan Titik, Garis dan Bidang dalam Ruang www.yudarwi.com A. Kedudukan Titik, Garis dan bidang dalam Ruang (1) Kedudukan Titik dan titik Titik berimpit

Lebih terperinci

Shortlist Soal OSN Matematika 2014

Shortlist Soal OSN Matematika 2014 Shortlist Soal OSN Matematika 2014 Olimpiade Sains Nasional ke-13 Mataram, Nusa Tenggara Barat, 2014 ii p Kontributor Komite Pemilihan Soal OSN Matematika 2014 menyampaikan rasa terima kasihnya kepada

Lebih terperinci

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar.

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar. BAB I PENDAHULUAN A. Deskripsi Judul modul ini adalah lingkaran, sedangkan yang akan dibahas ada tiga unit yaitu : 1. Menggambar lingkaran 2. Membagi keliling lingkaran sama besar. 3. Menggambar garis

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN INCENTER Misra Herlina 1, Mashadi 2, Sri Gemawati 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: misraherlina78@gmail.com

Lebih terperinci

PENGEMBANGAN TITIK MIQUEL DALAM PADA SEBARANG SEGIEMPAT

PENGEMBANGAN TITIK MIQUEL DALAM PADA SEBARANG SEGIEMPAT Jurnal Euclid, Vol.5, No.1, pp. 1 PENGEMBANGAN TITIK MIQUEL DALAM PADA SEBARANG SEGIEMPAT Delisa Pratiwi 1), Mashadi 2), Sri Gemawati 3) 1) Magister Matematika, FMIPA, Universitas Riau; delisapratiwii@gmail.com

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2012

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika Oleh Tutur Widodo Soal 1. Jika diketahui himpunan H = {(x, y) (x y) 2 + x 2 15x + 50 = 0, dengan x dan y bilangan asli}, tentukan banyak

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika Tutur Widodo Pembahasan OSN SMP Tahun 01 Pembahasan OSN SMP Tingkat Nasional Tahun 01 Bidang Matematika Hari Kedua Pontianak, 1 Juli 01 1. Pada suatu hari, seorang peneliti menempatkan dua kelompok spesies

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART 2. Departemen Matematika - Wardaya College MMXVIII-XII

SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART 2. Departemen Matematika - Wardaya College MMXVIII-XII SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART - Wardaya College MMXVIII-XII TIPE A. Andi dan Bobby berlari berlawanan arah dalam suatu lintasan melingkar. Keduanya berawal dari titik-titik yang saling berseberangan

Lebih terperinci

LAMPIRAN Data Penelitian Nilai Siswa

LAMPIRAN Data Penelitian Nilai Siswa LAMPIRAN Data Penelitian Nilai Siswa No Parameter Satuan Baku mutu Metode analisis G43 67 44 53 51 G44 67 43 39 39 G45 68 37 45 52 G46 71 41 41 53 G47 61 33 45 52 G48 66 39 41 53 G49 67 44 40 42 G50 75

Lebih terperinci

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN 1 Kajian Segiempat Tali (Izza Nur Sabila) KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN STUDY OF INSCRIBED QUADRILATERAL AND CIRCUMSCRIBED QUADRILATERAL IN ONE CIRCLE Oleh:

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN ORTHOCENTER

PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN ORTHOCENTER PENGEMBANGAN TEOREMA KOSNITA DENGAN MENGGUNAKAN ORTHOCENTER Ali Subroto 1, Mashadi 2, Sri Gemawati 3, Hasriati 4 1 Pendidikan Matematika PPs Universitas Riau 2,3,4 Universitas Riau e-mail: alisubroto4693@gmail.com

Lebih terperinci

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 4 Aljabar Vektor-1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 4 Aljabar Vektor-1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Kuantitas Skalar dan Vektor Kuantitas Fisis dibagi menjadi dua, yaitu: 1. Kuantitas skalar:

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

ALTERNATIF KONTRUKSI TITIK NAGEL. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia

ALTERNATIF KONTRUKSI TITIK NAGEL. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia ALTERNATIF KONTRUKSI TITIK NAGEL Indah Suryani 1*, Mashadi 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus

Lebih terperinci

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR. Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak. Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak www.yudarwi.com B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik

Lebih terperinci

3.1. Sub Kompetensi Uraian Materi MODUL 3 MENGGAMBAR BENTUK BIDANG

3.1. Sub Kompetensi Uraian Materi MODUL 3 MENGGAMBAR BENTUK BIDANG 3.1. Sub Kompetensi Kemampuan yang akan dimiliki oleh mahasiswa setelah memahami isi modul ini adalah sebagai berikut : - Mahasiswa mampu memahami dan menggambar bentuk bidang dalam gambar kerja. 3.2.

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

A. Menemukan Dalil Pythagoras

A. Menemukan Dalil Pythagoras A. Menemukan Dalil Pythagoras 1. Menemukan Dalil Pythagoras. Pada setiap segitiga siku-siku, luas daerah persegi pada sisi miring (hipotenusa) sama dengan jumlah luas daerah persegi pada sisi-sisi siku-sikunya

Lebih terperinci

Sifat-Sifat Bangun Datar

Sifat-Sifat Bangun Datar Sifat-Sifat Bangun Datar Bangun datar merupakan sebuah bangun berupa bidang datar yang dibatasi oleh beberapa ruas garis. Jumlah dan model ruas garis yang membatasi bangun tersebut menentukan nama dan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut.

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut. Materi W9c GEOMETRI RUANG Kelas X, Semester C. Menggambar dan Menghitung Sudut www.yudarwi.com C. Menggambar dan Menghitung Sudut Sudut dalam dimensi tiga adalah sudut antara garis dan garis, garis dan

Lebih terperinci

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5.

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. MAKALAH BANGUN RUANG Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. Ayu YAYASAN PENDIDIKAN TERPADU PONDOK PESANTREN MADRASAH THASANAWIYAH

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap suatu titik. Gambar

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

PERBANDINGAN LUAS ANTARA SEGITIGA EXCENTRAL DENGAN SEGITIGA ASAL

PERBANDINGAN LUAS ANTARA SEGITIGA EXCENTRAL DENGAN SEGITIGA ASAL PERBANDINGAN LUAS ANTARA SEGITIGA EXCENTRAL DENGAN SEGITIGA ASAL Yulia Rahmi 1*, Hasriati 2, M. Natsir 2 1 Mahasiswa Program S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika Ilmu Pengetahuan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Shortlist Soal OSN Matematika 2015

Shortlist Soal OSN Matematika 2015 Shortlist Soal OSN Matematika 2015 Olimpiade Sains Nasional ke-14 Yogyakarta, 18-24 Mei 2015 ii Shortlist OSN 2015 1 Aljabar A1 Fungsi f : R R dikatakan periodik, jika f bukan fungsi konstan dan terdapat

Lebih terperinci

MODUL MATEMATIKA KELAS 8 MARET 2018 TAHUN PELAJARAN 2017/2018

MODUL MATEMATIKA KELAS 8 MARET 2018 TAHUN PELAJARAN 2017/2018 MODUL MATEMATIKA KELAS 8 MARET 2018 TAHUN PELAJARAN 2017/2018 PERSAMAAN GARIS SINGGUNG LINGKARAN SIFAT-SIFAT GARIS SINGGUNG LINGKARAN Garis singgung lingkaran memiliki beberapa sifat yang merupakan akibat

Lebih terperinci

Modul Matematika X IPA Semester 2 Dimensi Tiga

Modul Matematika X IPA Semester 2 Dimensi Tiga Modul Matematika X IPA Semester Dimensi Tiga Tahun Pelajaran 0 05 SMA Santa Angela Jl. Merdeka No. Bandung Dimensi Tiga X IPA Sem /0-05 Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis

Lebih terperinci

Modul Matematika Semester 2 Dimensi Tiga

Modul Matematika Semester 2 Dimensi Tiga Modul Matematika Semester Dimensi Tiga Tahun Pelajaran 07 08 SMA Santa Angela Jl. Merdeka No. Bandung Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis Dimensi Tiga Kedudukan titik,

Lebih terperinci

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA email: koniciwa7@yahoo.co.id PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 0 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA. Sepuluh orang guru akan ditugaskan mengajar di tiga sekolah,yakni sekolah A, B, dan C, berturut

Lebih terperinci

PEDOMAN JAWABAN SOAL UJI COBA TES DIAGNOSTIK. b) Tidak ada

PEDOMAN JAWABAN SOAL UJI COBA TES DIAGNOSTIK. b) Tidak ada 18 LAMPIRAN IV PEDOMAN JAWABAN SOAL UJI COBA TES DIAGNOSTIK No Soal 1 Perhatikan gambar berikut! Pedoman Jawaban Jawaban : a) 1. Lingkaran yang saling berpotongan: (iii). Lingkaran yang saling bersinggungan:

Lebih terperinci

JAWABAN SOAL POST-TEST. No Keterangan Skor 1. Ada diketahui :

JAWABAN SOAL POST-TEST. No Keterangan Skor 1. Ada diketahui : Lampiran B10 226 JAWABAN SOAL POST-TEST 1. Ada diketahui : Panjang sisi taman Jarak antarpohon pelindung = 16 m = 2 m Banyaknya pohon pelindung yang akan ditanam =....? Keliling taman = keliling persegi

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI I JAKARTA 2009 Dimensi 3 Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 0 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 0 BIDANG STUDI

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN RENCANA PELAKSANAAN PEMBELAJARAN POKOK BAHASAN GARIS SINGGUNG LINGKARAN Oleh: ZAINUL GUFRON SYAHRONI NIM. 07010191048 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

Vektor dan Operasi Dasarnya

Vektor dan Operasi Dasarnya Modul 1 Vektor dan Operasi Dasarnya Drs. Sukirman, M.Pd. D PENDAHULUAN alam modul ini disajikan pengertian vektor, aljabar vektor dan aplikasinya dalam geometri. Aljabar vektor membicarakan penjumlahan

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat 1. AB = 1, CE = 8, BD =, CD =. Tentukan panjang EF! 0 BCD : ABE : BC BC BC CD BC 4 BD 9 1 AB 1 BE 144 AE 4 8 AE 0 AE AE EF EF 0 AFE : AE AF 0 0 EF EF 400 400 800 . Keliling ABC = 4, Luas ABC = 4. Tentukan

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN Banyak benda-benda di sekitarmu yang tanpa kamu sadari sebenarnya menggunakan konsep lingkaran. Misalnya, rantai sepeda, katrol timba, hingga alat-alat musik seperti drum, banjo,

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

LAMPIRAN LAMPIRAN 140

LAMPIRAN LAMPIRAN 140 LAMPIRAN LAMPIRAN 140 LAMPIRAN A Perangkat Pembelajaran Lampiran A.1 : RPP Kelas Eksperimen 1 (dengan model pembelajaran CORE) Lampiran A.2 : RPP Kelas Eksperimen 2 (dengan model pembelajaran STAD) Lampiran

Lebih terperinci

Mengklasifikasikan obyek-obyek matematika Menyatakan kembali konsep matematika dengan bahasa sendiri. Menemukan contoh dari sebuah konsep

Mengklasifikasikan obyek-obyek matematika Menyatakan kembali konsep matematika dengan bahasa sendiri. Menemukan contoh dari sebuah konsep A. PEMAHAMAN MATEMATIS 1. Kisi-kisi soal Pemahaman Matematis Jenjang : SMP Mata Pelajaran : Matematika Kelas / Semester : IX / 1 Aspek Pemahaman Materi yang diukur Memberikan contoh dan bukan contoh dari

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

TUGAS KELOMPOK 5 GEOMETRI TALI BUSUR, GARIS SINGGUNG, DAN RUAS SECANT. Oleh: AL HUSAINI

TUGAS KELOMPOK 5 GEOMETRI TALI BUSUR, GARIS SINGGUNG, DAN RUAS SECANT. Oleh: AL HUSAINI TUGAS KELOMPOK 5 GEOMETRI TALI BUSUR, GARIS SINGGUNG, DAN RUAS SECANT Oleh: AL HUSAINI 17205004 HANIF JAFRI 17205014 RAMZIL HUDA ZARISTA 17205034 SARI RAHMA CHANDRA 17205038 Dosen Pembimbing: Dr.YERIZON,

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

Untuk lebih jelasnya, perhatikan uraian berikut.

Untuk lebih jelasnya, perhatikan uraian berikut. KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN TENGAH SEMESTER GENAP Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor :

Lebih terperinci

BAB II MATERI. sejajar dengan garis CD. B

BAB II MATERI. sejajar dengan garis CD. B BAB I PENDAHULUAN A. LATAR BELAKANG Penulisan makalah ini merupakan pemaparan mengenai definisi garis sejajar, jarak dan jumlah sudut. Dengan materi yang diambil dari sumber tertentu. Pembahasan ini terkhusus

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA. Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP!

SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA. Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP! SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA Soal Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP! Lihat gambar! Panjang EP didapat dengan rumus Pythagoras

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN A. Latar Belakang Ada beberapa pendapat yang disampaikan para ahli mengenai definisi dari istilah matematika. Matematika didefinisikan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci