Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015"

Transkripsi

1 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 Petunjuk: 1. Tuliskan nama dan NPM mahasiswa pada lembar yang tersedia. 2. Perhatikan secara cermat dan isilah titik-titik yang sesuai menurut Anda. 3. Berdo alah sebelum dan sesudah mengerjakan. Nama NPM : :

2 SEGITIGA A. Pengertian Segitiga Dalam kehidupan sehari-hari, segitiga banyak manfaatnya. Pada gamba disamping jembatan atau tiang listrik untuk transmisi tegangan tinggi dibuat dengan konstruksi bentuk segitiga Dipilih berbentuk segitiga agar konstruksinya kokoh. Sebuah segitiga terbentuk apabila tiga titik yang tidak terletak pada satu garis lurus saling dihubungkan. Hal ini berarti : Segitiga adalah Gambar bangun ABC di samping adalah sebuah segitiga. Ketiga titik segitiga tersebut, yaitu, AB, danc disebut titik sudut.ab, BC, dan AC disebut... Sisi-sisi dan sudut-sudut dalam segitiga ABC disebut... Notasi untuk segitiga ABC sering digunakan... Rincian tentang unsur-unsur pada gambar disamping dapat diterangkan sebagai berikut. Sisi BC yang berhadapan dengan... ditulis Sisi AC yang berhadapan dengan... ditulis Sisi AB yang berhadapan dengan... ditulis B. Jenis-jenis segitiga Penanaman sebuah segitiga bergantung dari cara peninjauan.peninjauan ini meliputi panjang sisi-sisinya, sudut-sudutnya ataupun gabungan keduanya 1. Jenis segitiga ditinjau dari panjang sisi-sisinya Penanaman segitiga yang ditinjau dari panjang sisi-sisinya meliputi :...,..., dan... 2

3 a. Segitiga sama kaki Segitiga sama kaki terbentuk dari gambar disamping memperlihatkan bahwa merupakan... dari segitiga sama kaki merupakan..., serta merupakan... segitiga dan sering pula disebut sebagai... Sudut D. Dari uraian diatas dapat disimpulkan bahwa : Segitiga sama kaki terbentuk dari b. Segitiga sama sisi Segitiga sama sisi adalah c. Segitiga sembarang segitiga sembarang adalah

4 Dari pernyataan diatas dapat pula dinyatakan sebagai berikut : Segitiga sembarang adalah Ketiga jenis segitiga yang telah di kenal itu bila dituliskan dalam teori himpunan akan diperoleh hubungans ebagai berikut. Misal : Maka Jenis segitiga di tinjau dari sudut-sudutnya Pada topik sebelumnya kita telah mempelajari jenis segitiga ditinjau dari panjang sisi-sisinya. Sekarang akan meninjau jenis segitiga berdasarkan ukuran sudut-sudutnya. a. Apabila segiyiga ditinjau dari ukuran-ukuran sudut, maka nama segitiga itu mengikuti nama ukuran sudutnya, yaitu : a b c Jenis segitiga ditinjau dari panjang sisi-sisi dan besar sudutnya Pada pembahasan yang lalu telah mengenal jenis segitiga ditinjau dari panjang sisi-sisinya dan ditinjau dari besar sudut-sudutnya secara terpisah. Jenis segitiga yang ditinjau dari panjang sisi-sisi dan besar sudutnya antara lain : a. Segitiga sama kaki 4

5 Segitiga sama kaki jika dikaitkan dengan besar sudut-sudutnya yang mungkin terbentuk adalah : b. Segitiga sama sisi Segitiga sama sisi jika dikaitkan dengan besar sudut-sudutnya adalah... Untuk segitiga sama sisi tidak ada penamaan khusus seperti segitiga sama kaki. c. Segitiga sembarang Segitiga sembarang yang mungkin terbentuk jika dikaitkan dengan besar sudut-sudutnya adalah : C. Sifat-sifat segitiga 1. Segitiga siku-siku Pada pembahasan terdahulu telah di ketahui bahwa segitiga siku-siku dapat dibentuk dari sebuah persegi panjang dengan menarik diagonalnya. Perhatikan gambar disamping. Bidang ABCD adalah persegi panjang. Dengan menarik diagonal AC, akan terbentuk

6 Segitiga siku-siku mempunyai dua sisi siku-siku yang mengapit sudut siku-siku dan satu sisi miring (hypotenusa). Pada gambar diatas, ABC mempunyai ciri-ciri : AB dan BC sebagai sisi siku-siku, AC sebagai... dan sudut ABC atau sudut B adalah sudut siku-siku (=90 0 ) Dalam sebuah segitiga siku-siku, Segitiga sama kaki Dua buah segitiga siku-siku yang kongruen dapat membentuk Perhatikan gambar disamping. Segitiga ABD dan segitiga DBC adalah segitiga Sisi BD adalah Jadi, segitiga ACD adalah segitiga... dengan sisi AD=DC. Di dalam segitiga sama kaki terdapat : a. Dua sisi yang sama panjang, sisi tersebut sering disebut... b. Dua sudut yang sama besar yaitu c. Satu sumbu simetri. Segitiga sama kaki merupakan bangun simetri lipat dan dapat menempati bingkainya dalam... Dari gambar disamping terlihat bahwa : CD sebagai... A pindah ke B;B pindah ke A, dan C tetap. AC pindah ke BC, maka AC=BC. pindah ke maka. 6

7 3. Segitiga sama sisi Tiga buah garis lurus yang sama panjang dapat membentuk sebuah segitiga sama sisi dengan cara mempertemukan setiap ujung garis satu sama lainnya. Gambar (i) disamping menunjukkan gambar tiga garis lurus yang sama panjang yaitu AB=BA=CA. Apabila ujung-ujung ketiga garis tersebut saling dipertemukan, A dengan A,B dengan B, dan C dengan C, maka akan terbentuk segitiga sama sisi ABC sepertu terlihat pada gambar (ii) di samping. Didalam segitiga sama sama sisi terdapat : a.... b.... c.... Dari gambar (ii) diatas terlihat bahwa AB=AC=BC; garis putus-putus adalah... Segitiga sama sisi merupakan bangun simetri lipat yang dapat menempati bingkainya dengan... Hal itu diilustrasikan pada gambar berikut. 7

8 D. Menggambar segitiga istimewa Ada beberapa cara untuk menggambar segitiga istimewa diantaranya dengan menggunakan busur derajat dan penggaris, koordinat cartesius, dan jangka. 1. Menggunakan busur derajat dan penggaris Segitiga siku-siku Lukislah segitiga siku-siku menurut langkah-langkah berikut : 1. Lukislah garis lurus AB sebagai sisi pertama dari segitiga ABC 2. Buatlah 0 (dititik B) dengaan busur derajat dan ditandai titik C. 3. Hubungkan titik A dan titik C. Segitiga sama kaki Untuk menggambar segitiga sama kaki PQR dengan menggunakan busur derajat dan penggaris pada kertas polos dapat di tempuh dengan cara berikut ini. 1. Lukislah sisi PQ. 2. Pada titik Q buatlah menggunakan busur derajat dengan ukuran sembarang (sudut ini bisa tumpul atau lancip sesuai dengan ketentuan yang diberikan) dan tandai titik R. 3. Ukurlah sisi QR agar sama dengan sisi PQ. 4. Hubungkan titik P dan titik R tersebut. 8

9 Segitiga sama sisi Lukislah segitiga sama sisi sesuai dengan langkah-langkah berikut : 1. Lukislah garis KL, 2. Pada titik L buatlah 0 dengan busur derajat dan tandai titik M. 3. Ukurlah sisi LM agar sama dengan sisi KL. 4. Hubungkan titik K dengan titik M tersebut. 2. Menggunakan Koordinat Cartesius Sebuah segitiga dapat digambarkan pada koordinat cartesius apabila diketahui koordinat titik-titik sudutnya. Contoh 1: Lukislah segitiga ABC apabila A(-2,1), B(3,1), dan C(3,4). Segitiga apakah segitiga ABC? 9

10 Penyelesaian: Segitiga ABC adalah Menggunakan Jangka Segitiga sama kaki dan segitiga sama sisi lebih mudah digambar dengan menggunakan jangka. Berikut ini ada beberapa cara menggambar segitiga dengan menggunakan jangka. Segitiga sama kaki Cara pertama: 1. Lukislah satu sudut dengan membuat dua garis lurus yang saling berpotongan. 2. Dari titik sudut tersebut pergunakan jangka untuk mengukur panjang kaki-kaki sudut tersebut. 3. Hubungkan titik potong kaki sudut dengan hasil putaran jangka. 10

11 Cara kedua: 1. Lukislah sisi segitiga yang ukurannya tidak sama dengan yang lainnya. 2. Dari titik-titik ujung sisi tersebut, putar jangka sesuai dengan dasar ukuran (jarak kaki jangka = kaki segitiga) 3. Hubungkan titik-titik ujung sisi tersebut dengan perpotongan hasil putar jangka. Segitiga sama sisi 1. Lukislah salah satu sisi segitiga berdasarkan dasar ukuran yang tersedia. 2. Dari titik-titik ujung sisi tersebut, putar jangka (jarak kaki sama dengan panjang sisi segitiga (1)). 11

12 3. Hubungkan titik-titik ujung sisi tersebut dengan perpotongan hasil putaran jangka. (perhatikan gambar berikut) E. Menggambar Segitiga Secara Umum Sebuah segitiga dapat digambar atau dilukis jika diketahui: i) Tiga sisinya sekaligus, atau ii) Dua sisi dan satu sudut yang diapit sisi tersebut, atau iii) Dua sudut dan satu sisi yang merupakan kaki sekutu kedua sudut yang diketahui. 1. Menggambar segitiga jika diketahui ketiga sisinya Misalkan kita akan melukis ABC dengan panjang ketiga sisinya adalah AB = 3 cm, BC = 2 cm, dan AC = 4 cm. Langkah-langkah: 1. Buatlah tiga ruas garis berukuran 3 cm, 2 cm, dan 4 cm sebagai dasar ukuran. 2. Lukislah garis AB = 3 cm. 3. Ambillah jangka, buat kakinya berjarak 4 cm, putar jangka dari titik A. 4. Kemudian buat kaki jangka berjarak 2 cm, putar dari titik B. 5. Perpotongan kedua putaran jangka tadi tandai dengan titik C. 6. Hubungkan titik C dengan titik A dan titik B maka akan terjadi segitiga ABC yang kita inginkan. 12

13 2. Menggambar segitiga jika diketahui dua sisi dan satu sudut yang diapitnya Misalnya kita akan melukis PQR dengan P = 30, PQ = 4 cm, dan PR = 5 cm. Langkah-langkahnya: 1. Lukislah dan ukur P menggunakan penggaris, jangka, dan busur. 2. Ukur PQ = 4cm dan PR = 5 cm menggunakan penggaris. 3. Hubungkan titik R dan titik Q, maka akan terbentuk segitiga PQR yang kita inginkan. 13

14 3. Menggambar segitiga jika diketahui dua sudut dan satu sisi persekutuan kedua sudut Misalnya kita ingin melukis ABC dengan panjang AB = 5 cm, CAB = 55, dan sudut CBA = 65. Langkah-langkahnya: 1. Lukis garis AB yang panjangnya 5 cm. 2. Dengan menggunakan busur derajat buatlah pada titik A sudut yang besarnya 55 dan pada titik B sudut besarnya 65. Kedua kaki sudutsudut tersebut berpotongan dititik C. F. Melukis Garis Tinggi, Garis Bagi, Garis Berat, dan Garis Sumbu Pada Segitiga. 1. Melukis garis tinggi pada segitiga sembarang Garis tinggi adalah garis yang ditarik dari sebuah titik sudut dalam segitiga yang tegak lurus pada sisi dihadapan sudut itu. Cara melukis: 1. Lukis sebuah ABC sembarang. 2. Lukis busur dengan pusat A yang memotong garis BC dititik K dan L. 3. Lukislah dua busur masing-masing berpusat di K dan L dengan lebar jangka yang sama dan saling berpotongan. 4. Tarik garis dari titik A ke perpotongan dua busur tersebut hingga memotong tegak lurus garis BC di D. 14

15 5. Dengan cara yang sama, kita dapat melukis garis tinggi dari B yang tegak lurus AC dan garis tinggi dari C yang tegak lurus AB. 6. Garis-garis AD, BE, dan CF merupakan garis tinggi segitiga ABC. Perlu diingat bahwa melukis garis tinggi pada segitiga merupakan pengembangan melukis garis dari suatu titik di luar garis yang tegak lurus garis tersebut. 2. Melukis garis bagi pada segitiga sembarang Garis bagi adalah garis yang ditarik dari titik sudut dalam segitiga dan membagi sudut itu menjadi dua bagian yang sama besar. Cara melukis: 1. Lukis sebuah ABC sembarang. 2. Lukis busur dengan pusat A yang memotong garis AB dan AC di titik K dan L. 3. Lukis dua busur dengan lebar jangka yang sama di pusat K dan L sehingga saling berpotongan. 4. Tarik garis dari titik A ke perpotongan dua busur tersebut hingga memotong garis BC di D. 5. Dengan cara yang sama kita dapat melukis garis bagi BE, dan CF. 15

16 3. Melukis garis berat pada segitiga sembarang Garis berat adalah garis yang ditarik dari sebuah sudut dalam segitiga dan membagi sisi yang di hadapan sudut itu menjadi dua bagian sama panjang. Cara melukis: 1. Lukis sebuah ABC sembarang. 2. Dengan pusat B dan C dan lebar jangka yang sama, lukis busur lingkaran yang berpotongan dua kali. Hubungkan keduanya hingga berpotongan dengan garis BC di titik D. D merupakan titik tengah BC dan garis AD merupakan garis berat ABC. 3. Dengan cara yang sama kita bisa dapatkan garis BE dan garis CF yang merupakan garis berat ABC. 16

17 Garis-garis AD, BE, dan CF masing-masing adalah garis berat pada ABC dengan pusat berat di titik R. Titik R sering disebut sebagai titik berat ABC. 4. Melukis garis sumbu pada segitiga sembarang Garis sumbu adalah garis yang tegak lurus dengan suatu sisi segitiga dan membagi sisi tersebut menjadi dua bagian sama panjang. Cara melukis: 1. Lukis sebuah ABC sembarang. 2. Dengan pusat B dan C dan lebar jangka yang sama, lukis busur lingkaran yang berpotongan dua kali. Hubungkan keduanya hingga memotong sisi BC dan salah satu sisi yang lain (dinamakan garis p) garis p adalah garis sumbu pada sisi BC. 3. Dengan cara yang sama kita bisa dapatkan garis q dan garis r yang merupakan garis sumbu ABC. 4. Garis-garis p,q dan r merupakan garis sumbu pada ABC. G. Menghitung Besaran-Besaran Pada Segitiga 1. Jumlah sudut-sudut segitiga yang membentuk sudut lurus Untuk menentukan jumlah sudut-sudut segitiga dapat dilakukan dengan berbagai cara, yaitu mengukur masing-masing sudut dengan busur derajat dan membentuk sudut lurus dari ketiga sudut segitiga tersebut. 17

18 Penekanan dalam topik ini adalah menentukan jumlah sudut-sudut segitiga yang membentuk sudut lurus. Perhatikan gambar berikut ini! Pada ABC dalam gambar di atas, garis AB diperpanjang hingga E. Dari titik B ditarik garis yang sejajar dengan AC, yaitu BD. Apabila ukuran BAC = a, ACB = c,dan ABC = b, maka dapat dilihat bahwa DBE =... (sudut sehadap), dan DBC =... (sudut dalam berseberangan). Pada gambar di atas terlihat bahwa ketiga sudut a, b dan c membentuk... Karena jumlah sudut pelurus adalah... maka a + b + c =..., atau dapat disimpulkan bahwa jumlah sudut-sudut dalam suatu segitiga adalah Menghitung besar salah salah satu sudut pada segitiga jika dua sudut lainnya diketahui Untuk menghitung besar salah satu sudut pada segitiga jika dua sudut lainnya diketahui yang perlu diingat adalah jumlah sudut-sudut dalam suatu segitiga adalah 180. Contoh: Tentukan nilai x dari segitiga segitiga pada gambar berikut ini! 18

19 Penyelesaian: 3. Hubungan sudut dalam dan sudut luar pada segitiga Perhatikan gambar di samping. Pada ABC, sudut A 1, B 1, dan C 1 disebut sudut dalam dari ABC, sedangkan sudut A 2, B 2, dan C 2 merupakan sudut luar ABC. + = 180. Sekarang kita akan memperluas pembahasan tentang hubungan sudut dalam dan sudut luar pada segitiga. Hal yang perlu diingat dalam menentukan hubungan ini adalah tentang sudut berpelurus, yaitu berpelurus dengan bila i) berpelurus dengan maka atau ii) berpelurus dengan maka atau iii) berpelurus dengan maka atau Dari keterangan tersebut dapat kita simpulkan 19

20 Besar sebuah sudut luar suatu segitiga sama dengan jumlah besar dua sudut dalam yang tidak bersisian dengan sudut tersebut. Contoh: Perhatikan gambar di bawah. Hitinglah besar sudut luar dan! Penyelesaian : H. Keliling dan Luas Segitiga 1. Keliling segitiga Sebuah segitiga mempunyai tiga sisi dan tiga sudut. Sisi yang terletak di bawah disebut alas. Sudut yang berhadapan dengan alas disebut sudut puncak, dan titik sudut puncak disebut titik puncak. Jarak terdekat antara titik puncak dengan alas disebut tinggi segitiga. Perhatikan gambar di samping. Pada segitiga ABC, AB sebagai alas segitiga, C sebagai titik puncak, dan CD sebagai 20

21 tinggi segitiga. Sisi di depan sudut A atau α adalah BC ditulis a. Sisi di depan sudut B atau β adalah AC ditulis b. Sisi di depan sudut C atau adalah AB ditulis c. Keliling segitiga sembarang adalah jumlah panjang ketiga sisinya. Atau secara umum ditulis: Keliling (K) = a + b + c Contoh: Apabila sisi-sisi segitiga ABC adalah a = x cm, b = 2x cm, dan c = 4x cm serta keliling segitiga ABC = 28 cm, tentukan sisi-sisi segitiga ABC tersebut! Penyelesaian: 2. Luas Segitiga Perhatikan gambar segitiga di samping. AB adalah alas segitiga, C adalah titik puncak, dan CD adalah tinggi segitiga ABC. Persegi panjang ABEF mempunyai panjang AB atau EF sama dengan p, dan lebar AF atau BE sama 21

22 dengan ABEF =., maka luas persegi panjang Luas ABEF = luas + luas + luas + luas. Karena kongruen dengan dan kongruen dengan Luas ABEF = 2 luas + 2 luas = 2 (luas + luas ) = 2 luas, Maka luas = luas persegi panjang ABEF = Karena alas segitiga ABC dan tinggi segitiga ABC, maka luas = alas tinggi atau ditulis: Luas segitiga = alas tinggi Secara umum ditulis: Catatan: Alas dalam segitiga sering disimbolkan dengan huruf a dan tinggi disimbolkan dengan huruf t serta luas dengan huruf L. Contoh: Segitiga KLM mempunyai titik-titik sudut K(-1,1), L(3,2), dan M(-1,4). Tentukan luas! Penyelesaian: Untuk menjawab soal ini, mula-mula kita gambarkan berpetak. pada kertas 22

23 Dari gambar tersebut diperoleh: 23

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

KARTU INDEX YANG AKAN DIGUNAKAN. Pertemuan I

KARTU INDEX YANG AKAN DIGUNAKAN. Pertemuan I 240 LAMPIRAN IX KARTU INDEX YANG AKAN DIGUNAKAN Pertemuan I Kartu pertanyaan nomor 1 Sebutkan titik sudut yang ada pada gambar di samping? Kartu jawaban nomor 1 Sisi a = BC adalah sisi di depan A Sisi

Lebih terperinci

1 Lembar Kerja Siswa LKS 1

1 Lembar Kerja Siswa LKS 1 1 LKS 1 Satuan Pendidikan : SMPN 2 Kubung Mata Pelajaran : Matematika Kelas/ Semester : VII/ 2 Materi Pokok : Segitiga Standar Kompetensi 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya.

Lebih terperinci

Sifat-Sifat Bangun Datar

Sifat-Sifat Bangun Datar Sifat-Sifat Bangun Datar Bangun datar merupakan sebuah bangun berupa bidang datar yang dibatasi oleh beberapa ruas garis. Jumlah dan model ruas garis yang membatasi bangun tersebut menentukan nama dan

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( )

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( ) BB 7 GRIS DN SUDUT. SUDUT 1. Pengertian Sudut Sudut dibentuk dari dua sinar yang titik pangkalnya berimpit. Sinar digambarkan berupa garis lurus yang di ujungnya tanda panah dan di pangkalnya tanda titik.

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N)

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x2 + 3xy y2

Lebih terperinci

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar.

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar. BAB I PENDAHULUAN A. Latar Belakang Bagi setiap tingkatan kelas di sekolah dasar, pembelajaran geometri dapat dikategorikan kepada materi yang cukup sukar serta memerlukan pemahaman yang cukup tinggi.

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 2002

MATEMATIKA EBTANAS TAHUN 2002 MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

BAB II MATERI. sejajar dengan garis CD. B

BAB II MATERI. sejajar dengan garis CD. B BAB I PENDAHULUAN A. LATAR BELAKANG Penulisan makalah ini merupakan pemaparan mengenai definisi garis sejajar, jarak dan jumlah sudut. Dengan materi yang diambil dari sumber tertentu. Pembahasan ini terkhusus

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Jajaran genjang dapat dibentuk dari gabungan suatu segitiga dan bayangannya setelah diputar setengah putaran dengan pusat titik tengah salah

Lebih terperinci

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN LAMPIRAN Standar Kompetensi RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Nama Sekolah : SMP Negeri Tempel Mata Pelajaran : Matematika Kelas/ Semester : VII (Tujuh)/ Materi Pokok : Segitiga Alokasi

Lebih terperinci

KONGRUENSI PADA SEGITIGA

KONGRUENSI PADA SEGITIGA KONGRUENSI PADA SEGITIGA (Jurnal 6) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Perkuliah geometri kembali pada materi dasar yang kita anggap remeh selama ini.

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

TRIGONOMETRI 3. A. Aturan Sinus dan Cosinus 11/20/2015. Peta Konsep. A. Aturan Sinus dan Kosinus. Nomor W4801 Aturan Sinus

TRIGONOMETRI 3. A. Aturan Sinus dan Cosinus 11/20/2015. Peta Konsep. A. Aturan Sinus dan Kosinus. Nomor W4801 Aturan Sinus Jurnal Materi Umum Perbandingan dan Trigonometri Peta Konsep Peta Konsep Daftar Hadir Materi SoalLatihan TRIGONOMETRI 3 Kelas XI, Semester 4 A. Aturan Sinus dan Kosinus Ukuran Sudut Perbandingan trigonometri

Lebih terperinci

A. Menemukan Dalil Pythagoras

A. Menemukan Dalil Pythagoras A. Menemukan Dalil Pythagoras 1. Menemukan Dalil Pythagoras. Pada setiap segitiga siku-siku, luas daerah persegi pada sisi miring (hipotenusa) sama dengan jumlah luas daerah persegi pada sisi-sisi siku-sikunya

Lebih terperinci

SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII

SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII SOAL UUKK SMP KOTA SURAKARTA MATA PELAJARAN : MATEMATIKA KELAS : VIII 1. Bidang arsiran yang menunjukkan tembereng lingkaran pada gambar berikut adalah.... a. c. b. d. 2. Keliling lingkaran yang panjang

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N)

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x 2 + 3xy y 2 terdapat... variabel. a. 1 c. 3 b. 2 d. 4 2. Suku dua terdapat pada bentuk aljabar... a. 2x 2 +

Lebih terperinci

Pembahasan Video :http://stream.primemobile.co.id:1935/testvod/_definst_/smil:semester 2/SMP/Kelas 7/MATEMATIKA/BAB 8/MTK smil/manifest.

Pembahasan Video :http://stream.primemobile.co.id:1935/testvod/_definst_/smil:semester 2/SMP/Kelas 7/MATEMATIKA/BAB 8/MTK smil/manifest. SMP kelas 7 - MATEMATIKA BAB 8. SEGITIGA DAN SEGI EMPATLATIHAN SOAL BAB 8 1. Perhatikan gambar! Luas bangun ABCDEF adalah... 318 cm 2 278 cm 2 258 cm 2 243 cm 2 Kunci Jawaban : C Luas bangun ABCDEF =Luas

Lebih terperinci

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si

SIFAT-SIFAT PERSEGIPANJANG. Oleh Nialismadya & Nurbaiti, S. Si SIFAT-SIFAT PERSEGIPANJANG Oleh Nialismadya & Nurbaiti, S. Si Standar Kompetensi 6. Memahami konsep segi empat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat

Lebih terperinci

KESEBANGUNAN DAN KEKONGRUENAN

KESEBANGUNAN DAN KEKONGRUENAN KESEBANGUNAN DAN KEKONGRUENAN Tugas ini Disusun guna Memenuhi Tugas Mata Kuliah Kajian Matematika SMP 2 Dosen Pengampu :Koryna Aviory, S.Si, M.Pd Oleh : 1. Siti Khotimah ( 14144100087 ) 2. Reza Nike Oktariani

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

SMP KRISTEN BETHEL SURABAYA Jl. Tambak Anakan 9-11 Simokerto Surabaya

SMP KRISTEN BETHEL SURABAYA Jl. Tambak Anakan 9-11 Simokerto Surabaya SMP KRISTEN BETHEL SURABAYA Jl. Tambak Anakan 9-11 Simokerto Surabaya ULANGAN AKHIR SEMESTER (UAS) TAHUN PELAJARAN 2016 2017 Mata Pelajaran : MATEMATIKA Hari /Tanggal : Selasa, 13 DESEMBER 2016 Semester

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap

Lebih terperinci

LINGKARAN SMP KELAS VIII

LINGKARAN SMP KELAS VIII LINGKARAN SMP KELAS VIII Oleh, Deddy Suharja Januari 2013 A. Pengertian Dan Unsur Unsur Lingkaran Lingkaran adalah tempat kedudukan ( locus ) titik titik yang berjarak sama terhadap suatu titik. Gambar

Lebih terperinci

TRY OUT MATEMATIKA SMP - 01

TRY OUT MATEMATIKA SMP - 01 1. Suhu udara di puncak gunung 1 C, karena hari hujan suhunya turun lagi 4 C, maka suhu udara di puncak gunung tersebut sekarang adalah a. 5 C b. 3 C c. 3 C d. 5 C 2. Dari 42 siswa kelas IA, 24 siswa mengikuti

Lebih terperinci

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR. Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

LAMPIRAN 1 Instrumen Pretest

LAMPIRAN 1 Instrumen Pretest LAMPIRAN 1 Instrumen Pretest Jawablah dengan benar setiap pertanyaan berikut dilembar jawab yang telah disediakan! 1. Pada segitiga ABC diketahui = =. Segitiga ABC termasuk segitiga a. Siku-siku b. Tumpul

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

03. Selisih dari 7,2 dari 3,582 adalah... (A) 3,618 (B) 3,628 (C) 3,682 (D) 3,728

03. Selisih dari 7,2 dari 3,582 adalah... (A) 3,618 (B) 3,628 (C) 3,682 (D) 3,728 01. Notasi pembentukan himpunan dari B {1,4,9} (A) B = { kuadrat tiga bilangan asli yang pertama } (B) B = { bilangan tersusun yang kurang dari 10 } (C) B = { kelipatan bilangan dan yang pertama } (D)

Lebih terperinci

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki SEGITIG DN SEGIEMPT. SEGITIG 1. Mengenal Segitiga Jika persegi panjang PQRS dipotong melalui diagonal PR, maka akan didapat dua bangun yang berbentuk segitiga yang sama dan sebangun atau kongruen. Semua

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Identitas Sekolah Mata Pelajaran Kelas/ Semester : SMP N 6 Yogyakarta : Matematika : VII/ II Materi Pembelajaran : Segitiga Alokasi Waktu B. Standar Kompetensi

Lebih terperinci

Segiempat. [Type the document subtitle]

Segiempat. [Type the document subtitle] Segiempat [Type the document subtitle] [Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan Modul 1 SUDUT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian sudut, ukuran sudut, satuan ukuran sudut, ragam sudut berdasarkan ukuran sudut, cara pengukuran

Lebih terperinci

Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs

Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs Contoh Soal Ujian Nasional UN Matematika Kelas 9 SMP/MTs Pilihlah salah satu jawaban yang paling tepat! 1. Ibu membeli 40 kg gula pasir. Gula itu akan dijual eceran dengan dibungkus plastik masing-masing

Lebih terperinci

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP Jenis Sekolah : SMP/MTs Penulis : Gresiana P Mata Pelajaran : Matematika Jumlah Soal : 40 nomor Kelas : VII (TUJUH) Bentuk Soal : Pilihan

Lebih terperinci

PENGERTIAN PHYTAGORAS

PENGERTIAN PHYTAGORAS Pythagoras adalah seorang ahli filsafat. Ia tidak hanya mempelajari matematika, tetapi juga music dan ilmu-ilmu lain. Ia lahir di Yunani, tetapi pergi belajar ke Mesir dan Babilonia. Ia terkenal karena

Lebih terperinci

SIMETRI BAHAN BELAJAR MANDIRI 3

SIMETRI BAHAN BELAJAR MANDIRI 3 BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

SILABUS (HASIL REVISI)

SILABUS (HASIL REVISI) Sekolah : SMP... Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS (HASIL REVISI) Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus Kompetensi

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

a. jenis-jenis segitiga di tinjau dari panjang sisinya. (i) segitiga sebarang. Adalah segitiga yang disisi-sisinya tindak samapanjang AB BC AC

a. jenis-jenis segitiga di tinjau dari panjang sisinya. (i) segitiga sebarang. Adalah segitiga yang disisi-sisinya tindak samapanjang AB BC AC A. SEGI TIGA 1. Pengertian Segitiga Sisi-sisi yg membentuk segitiga ABC berturut-turut adalah AB, BC, dan AC. Sudut-sudut yg terdapat pada segitiga ABC sebagai berikut. a. < A atau < BAC atau < CAB. b.

Lebih terperinci

Oleh Nialismadya dan Nurbaiti, S. Si

Oleh Nialismadya dan Nurbaiti, S. Si Oleh Nialismadya dan Nurbaiti, S. Si Standar Kompetensi 6. Memahami konsep segi empat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.3 Menghitung keliling dan luas bangun segitiga dan segi

Lebih terperinci

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut Teorema pythagoras berasal dari seorang matematikawan dari Yunani yang bernama Pythagoras, tetapi ada juga yang menyebutkan bahwa teorema pythagoras berasal dari Cina karena ada sebuah buku yang merupakan

Lebih terperinci

SOAL SUKSES ULANGAN SEMESTER KELAS 9

SOAL SUKSES ULANGAN SEMESTER KELAS 9 Materi : Kesebangunan dan Kongruensi Pilihlah jawaban yang paling tepat! SOAL SUKSES ULANGAN SEMESTER KELAS 9 1. Pernyataan berikut ini yang benar adalah. a. Dua buah segitiga dikatakan kongruen jika sisi-sisi

Lebih terperinci

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V SD V BANGUN DATAR Pengertian bangun datar Luas bangun datar Keliling bangun datar SD V Kata Pengantar Puji syukur kehadirat Allah Subahanahu wa Ta ala, yang Maha Kuasa atas rahmat dan karunianya, sehingga

Lebih terperinci

INSTRUMEN VALIDITAS DAN RELIABILITAS

INSTRUMEN VALIDITAS DAN RELIABILITAS INSTRUMEN VALIDITAS DAN RELIABILITAS 79 80 UJI VALIDITAS ANGKET Data diri Nama Lengkap : Sekolah : Kelas : Petunjuk pengisian! Di bawah ini terdapat sejumlah pernyataan tentang cara-cara yang kamu gunakan

Lebih terperinci

LAMPIRAN VIII. :Persegi Panjang. Nama :

LAMPIRAN VIII. :Persegi Panjang. Nama : 194 LAMPIRAN VIII Materi :Persegi Panjang Nama : Kelas : Hari /Tgl : Standar Kompetensi: Memahami konsep segiempat dan segitiga serta menentukan ukurannya Kompetensi Dasar : 1. Mengidentifikasi pengertian

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 986 Matematika EBTANAS-SMP-86-0 Himpunan faktor persekutuan dari dan 0 {,,, 6} {,, 6} {, } {6} EBTANAS-SMP-86-0 Bilangan 0,0000 jika ditulis dalam bentuk baku.0

Lebih terperinci

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI

SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Lampiran 1.1 45 Lampiran 1.2 46 47 Lampiran 2.1 SILABUS PEMELAJARAN Sekolah : SMP Negeri 1 Poncol Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami

Lebih terperinci

LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI 196 JAKARTA TAHUN PELAJARAN 2010/2011 LEMBAR SOAL

LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI 196 JAKARTA TAHUN PELAJARAN 2010/2011 LEMBAR SOAL LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI JAKARTA TAHUN PELAJARAN 00/0 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Hari / Tanggal : 0 November 00 W a k t u : 07.00 0.00 WIB (0 menit) K e l a s : IX

Lebih terperinci

GEOMETRI EUCLID D I S U S U N OLEH :

GEOMETRI EUCLID D I S U S U N OLEH : GEOMETRI EUCLID D I S U S U N OLEH : SARI MEILANI (11321435) TITIS SETYO BAKTI (11321436) DEWI AYU FATMAWATI (11321439) INKA SEPIANA ROHMAH (11321460) KELAS II B MATEMATIKA UNIVERSITAS MUHAMMADIYAH PONOROGO

Lebih terperinci

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!!

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! LINGKARAN Lingkaran adalah kurva tertutup sederhana yang merupakan tempat

Lebih terperinci

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 1 Ngemplak Mata Pelajaran : Matematika Kelas/ Semester : VII/ 2 Materi Ajar : Garis

Lebih terperinci

BAB 2 MENGGAMBAR BENTUK BIDANG

BAB 2 MENGGAMBAR BENTUK BIDANG BAB 2 MENGGAMBAR BENTUK BIDANG 2.1 Menggambar Sudut Memindahkan sudut a. Buat busur lingkaran dengan A sebagian pusat dengan jari-jari sembarang R yang memotong kaki-kaki sudut AB dan AC di n dan m b.

Lebih terperinci

Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN. Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif

Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN. Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif Think Pair Share (TPS) Nama Sekolah : SMP NEGERI 2 KRETEK

Lebih terperinci

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar Bab 9 Segitiga Standar Kompetensi Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat segitiga berdasarkan sisi susdutnya. 6.3 Menghitung

Lebih terperinci

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT GEOMETRI BIDANG Pada bab ini akan dibahas bentuk-bentuk bidang dalam ruang dimensi dua, keliling serta luasan dari bidang tersebut, bentuk ini banyak kaitannya dengan kegiatan ekonomi (bisnis dan manajemen)

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN DOKUMEN NEGARA RAHASIA A TAHUN PELAJARAN 06/07 MATEMATIKA PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN 07 tpm_un_smp_yk_mtk-i-a_06/07 MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal

Lebih terperinci

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS

KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS 74 KISI-KISI SOAL PENALARAN & KOMUNIKASI MATEMATIS Jenis Sekolah : SMP Alokasi Waktu : 90 Menit Mata Pelajaran : Matematika Jumlah Soal : 8 butir Kelas/Semester : VIII/ Bentuk Soal : Uraian Standar Kompetensi

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 2008/2009 MATEMATIKA

PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 2008/2009 MATEMATIKA Prediksi Soal Bahasa Indonesia UN SMP 009 PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 008/009 MATEMATIKA. Dik : Pada ketinggian 3500 m dpl suhu -8C. Setiap turun 00 m, suhu bertambah C.

Lebih terperinci

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen LAMPIRAN 1 Surat Ijin Uji Coba Instrumen LAMPIRAN 2 Surat Ijin Penelitian LAMPIRAN 3 Surat Keterangan Melakukan Uji Coba Instrumen LAMPIRAN 4 Surat Keterangan Melakukan Penelitian LAMPIRAN 5 Instrumen

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1992

MATEMATIKA EBTANAS TAHUN 1992 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Diketahui: A = {m, a, d, i, u, n} dan B = {m, a, n, a, d, o} Diagram Venn dari kedua himpunan di atas A. m a d o a m o i e e I d u a a u n e m i d o m i d a u n

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

KISI KISI SOAL TES DIAGNOSTIK MATERI PELAJARAN TEOREMA PYTHAGORAS

KISI KISI SOAL TES DIAGNOSTIK MATERI PELAJARAN TEOREMA PYTHAGORAS LAMPIRAN 141 Lampiran 1. Kisi-kisi Tes Diagnostik KISI KISI SOAL TES DIAGNOSTIK MATERI PELAJARAN TEOREMA PYTHAGORAS Sekolah : SMP Negeri 1 Sleman Kelas : VIII A Tahun ajaran : 2015/2016 Kompetensi Dasar

Lebih terperinci

Sistem Bilangan. 08.EBTANAS-SMP Bila % dijadikan pecahan desimal, maka bentuknya menjadi... A. 0,23 B. 0,33 C. 0,43 D.

Sistem Bilangan. 08.EBTANAS-SMP Bila % dijadikan pecahan desimal, maka bentuknya menjadi... A. 0,23 B. 0,33 C. 0,43 D. Sistem Bilangan 0. UAN-SMP-0-0 Selisih dari 7, dan,58,68,68,68,78 0. EBTANAS-SMP-95-09 Bentuk baku dari 0,000567 jika dibulatkan sampai tiga dimensi 5,6 0 5,6 0 5,65 0 5,65 0 0. EBTANAS-SMP-9- Bentuk baku

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

Standar Kompetensi. Kompetensi Dasar. Tujuan Pembelajaran. Memahami konsep segi empat dan menentukan ukurannya.

Standar Kompetensi. Kompetensi Dasar. Tujuan Pembelajaran. Memahami konsep segi empat dan menentukan ukurannya. Standar Kompetensi 1 Memahami konsep segi empat dan menentukan ukurannya. Kompetensi Dasar 1. Mengidentifikasi sifat-sifat jajargenjang 2. Menghitung keliling dan luas jajargenjang serta menggunakan dalam

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : Bangun Datar dan Segitiga. serta menentukan ukurannya. : 1 x 40 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : Bangun Datar dan Segitiga. serta menentukan ukurannya. : 1 x 40 menit RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Materi Pokok Standar Kompetensi Waktu : SMPN 3 Sidoarjo : Matematika : VII/2 : Bangun Datar dan Segitiga : Memahami

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci