BAB II MATERI. sejajar dengan garis CD. B

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II MATERI. sejajar dengan garis CD. B"

Transkripsi

1 BAB I PENDAHULUAN A. LATAR BELAKANG Penulisan makalah ini merupakan pemaparan mengenai definisi garis sejajar, jarak dan jumlah sudut. Dengan materi yang diambil dari sumber tertentu. Pembahasan ini terkhusus pada masalah garis sejajar, jarak dan jumlah sudut dalam segitiga dan poligon. Lebih khusus lagi membahas tentang pasangan sudut yang terbentuk dari dua garis sejajar yang dipotong oleh suatu transversal, dan mengenai jarak antara dua bentuk geometrik, serta jumlah ukuran sudut-sudut suatu segitiga dan poligon. Makalah ini ditulis mempunyai tujuan yaitu untuk mempermudah seseorang dalam mempelajari dan memahami materi garis sejajar, jarak dan jumlah sudut. Harapan penulis, pembaca dapat memahami materi yang telah dipaparkan oleh penulis. B. RUMUSAN MASALAH 1. Apa yang dimaksud dengan garis sejajar? 2. Apa yang dimaksud dengan jarak? 3. Bagaimana jumlah ukuran sudut-sudut suatu segitiga? 4. Bagaimana jumlah ukuran sudut-sudut suatu segitiga? 5. Apa teorema kekongruenan yang baru? C. TUJUAN 1. Untuk mengetahui pengertian garis sejajar. 2. Untuk mengetahui pengertian jarak. 3. Untuk mengetahui ukuran sudut-sudut suatu segitiga. 4. Untuk mengetahui ukuran sudut-sudut suatu polygon. 5. Untuk mengetahui teorema baru kekongruenan. 1

2 BAB II MATERI A. GARIS SEJAJAR Garis-garis sejajar adalah garis-garis lurus yang terletak pada bidang yang sama dan tidak berpotongan sejauh apapun garis-garis tersebut diperpanjang. Simbol untuk garis-garis sejajar adalah ; jadi AB CD dibaca garis AB A C sejajar dengan garis CD. B D Transversal (garis melintang) dari dua atau lebih garis adalah suatu garis yang memotong garis-garis tersebut. Jadi EF AB dan CD. adalah transversal dari Sudut-dalam (sudut interior) yang terbentuk oleh dua garis yang dipotong oleh suatu transversal adalah sudut di antara kedua garis tersebut, sedangkan sudut-luar (sudut eksterior) adalah sudut yang berada di luar garis-garis tersebut. Jadi, dari kedelapan sudut yang terbentuk oleh AB dan CD yang dipotong oleh EF dalam gambar diatas, sudut-dalamnya adalah 1, 2, 3, dan 4; dan sudut-luarnya adalah 5, 6, 7, 8. 2

3 Pasangan Sudut yang Terbentuk oleh Dua Garis yang Dipotong oleh Suatu Transversal Sudut-sudut yang bersesuaian dari dua garis yang dipotong oleh suatu transversal adalah sudut-sudut pada sisi yang sama dari transversal tersebut dan pada sisi yang sama dari garis-garis tersebut. Jadi 1, dan 2 dalam gambar dibawah ini adalah sudut-sudut yang bersesuaian dari AB dan CD yang dipotong oleh transversal EF. Ketika dua garis sejajar dipotong oleh suatu transversal, sisi-sisi dari dua sudut yang bersesuaian membentuk huruf kapital F dengan posisi yang berbeda-beda, seperti berikut : Sudut-dalam berseberangan (alternate interior angles) dari dua garis yang dipotong oleh suatu transversal adalah sudut-sudut tidak berdampingan di antara kedua garis tersebut dan pada sisi-sisi yang berseberangan pada transversal tersebut. Jadi, 1 dan 2 pada gambar di bawah ini adalah sudut-dalam berseberangan dari AB dan CD yang dipotong oleh EF. 3

4 Ketika garis-garis sejajar dipotong oleh suatu transversal, sisi-sisi dari dua sudut-dalam berseberangan membentuk huruf kapital Z atau N dengan posisi yang berbeda-beda, seperti berikut : Ketika garis sejajar dipotong oleh suatu transversal, sudut-dalam pada sisi transversal yang sama dapat dengan mudah ditentukan letaknya dengan menandai huruf kapital U yang terbentuk oleh sisi-sisinya. Prinsip Garis Sejajar Prinsip 1 : Melalui satu titik tertentu yang tidak berada pada satu garis tertentu, dapat dibuat satu dan hanya satu garis yang sejajar dengan garis tertentu tersebut. (Postulat Garis Sejajar) Prinsip 2 : Dua garis disebut sejajar jika sepasang sudut yang bersesuaian kongruen. Prinsip 3 : Dua garis disebut sejajar jika sepasang sudut-dalam berseberangan kongruen. Prinsip 4 : Dua garis disebut sejajar jika sepasang sudut-dalam pada sisi transversal yang sama adalah sudut-sudut suplementer. 4

5 Prinsip 5 : Sejumlah garis disebut sejajar jika garis-garis tersebut tegak lurus terhadap satu garis yang sama. (Garis-garis yang tegak lurus terhadap satu garis yang sama disebut sejajar). Prinsip 6 : Sejumlah garis disebut sejajar jika garis-garis tersebut sejajar terhadap satu garis yang sama. (Garis-garis yang sejajar terhadap satu garis yang sama disebut sejajar). Prinsip 7 : Jika dua garis sejajar, setiap pasangan sudut-sudut yang bersesuaian kongruen. (Sudut-sudut yang bersesuaian pada garis-garis sejajar kongruen). Prinsip 8 : Jika dua garis sejajar, setiap pasangan sudut-dalam berseberangan kongruen. (Sudut-dalam berseberangan pada garis-garis sejajar kongruen). Prinsip 9 : Jika dua garis sejajar, setiap pasangan sudut-dalam pada sisi transversal yang sama adalah sudut suplementer. Prinsip 10 : Jika sejumlah garis sejajar, suatu garis yang tegak lurus terhadap salah satu di antara garis-garis sejajar tersebut tegak lurus juga terhadap garis-garis yang lainnya. Prinsip 11 : Jika sejumlah garis sejajar, suatu garis yang sejajar dengan salah satu diantara garis-garis sejajar tersebut sejajar juga dengan garis-garis lainnya. Prinsip 12 : Jika sisi-sisi dari dua sudut masing-masing sejajar satu sama lain, sudut-sudut tersebut bersifat kongruen atau suplementer. B. JARAK Jarak Antara Dua Bentuk Geometrik Jarak antara dua bentuk geometrik adalah ruas garis lurus yang merupakan ruas garis terpendek di antara bentuk-bentuk tersebut. 5

6 1. Jarak di antara dua titik, seperti P dan Q pada gambar (a), adalah ruas garis PQ yang terletak di antaranya. 2. Jarak antara suatu titik dan suatu garis, seperti P dan AB pada gambar (b), adalah ruas garis PQ, garis tegak lurus dari titik menuju garis. 3. Jarak antara dua garis sejajar, seperti AB dan CD pada gambar (c), adalah ruas garis PQ, garis tegak lurus di antara kedua garis sejajar tersebut. 4. Jarak antara suatu titik dan suatu lingkaran, seperti P dan lingkaran pada gambar (d), adalah ruas garis PQ, bagian dari OP di antara titik dan lingkaran. 5. Jarak antara dua lingkaran konsentrik, misalnya dua lingkaran yang berpusat di O, adalah ruas garis PQ, bagian dari lingkaran yang berjari-jari lebih besar yang terletak di antara kedua lingkaran tersebut, seperti yang ditunjuk gambar (e). Prinsip Jarak Prinsip 1 : Jika suatu titik terletak pada garis-berat (atau garis-bagi tegak lurus) suatu ruas garis, maka titik ini berjarak sama dari ujung-ujung ruas garis tersebut. 6

7 Prinsip 2 : Prinsip 3 : Prinsip 4 : Prinsip 5 : Prinsip 6 : Prinsip 7 : Jika suatu titik berjarak sama dari ujung-ujung suatu ruas garis, maka titik ini terletak pada garis-berat ruas garis tersebut. (Prinsip 2 adalah kebalikan dari Prinsip 1) Jika suatu titik terletak pada garis-bagi suatu sudut, maka titik ini berjarak sama dari sisi-sisi sudut tersebut. Jika suatu titik berjarak sama dari sisi-sisi suatu sudut, maka titik ini terletak pada garis-bagi sudut tersebut. (Prinsip 4 adalah kebalikan dari Prinsip 3) Dua titik yang masing-masing berjarak samadari ujungujung suatu ruas garisakan menentukan garis-berat ruas garis tersebut. (Garis yang menyatukan titik sudut-titik sudut dari dua segitiga sama kaki yang mempunyai dasar yang sama merupakan garis-berat dasar segitiga tersebut) Garis-berat pada sisi-sisi suatu segitiga bertemu di satu titik yang berjarak sama dari verteks-verteks segitiga tersebut. Garis-bagi pada sudut-sudut suatu segitiga bertemu di satu titik yang berjarak sama dari sisi-sisi segitiga tersebut. C. JUMLAH SUDUT i. Jumlah Ukuran Sudut-Sudut Suatu Segitiga Semua sudut segitiga bisa dipotong, seperti pada gambar (a), dan kemudian ditempelkan menjadi satu, seperti ditunjukkan pada gambar (b). ketiga sudut tersebut akan membentuk sudut lurus. 7

8 Kita dapat membuktikan bahwa jumlah ukuran sudut-sudut suatu segitigaadalah 180 dengan menggambar suatu garis melalui salah satu titik sudut segitiga tersebut yang sejajar dengan sisi di hadapan titik sudut tersebut. Pada gambar di atas, MN melalui B dan sejajar dengan AC. digambar Perhatikan bahwa ukuran sudut lurus pada B sama dengan jumlah ukuran sudut-sudut ABC ; yaitu, a + b + c = 180. Setiap pasangan sudut kongruen merupakan pasangan sudut-dalam berseberangan pada ragis-garis sejajar. Sudut-Dalam dan Sudut-Luar pada Poligon Sudut-luar pada poligon terbentuk ketika salah satu sisinya diperpanjang melalui suatu titik sudut. Jika setiap sisi poligon diperpanjang, seperti ditunjukan pada gambar (a), sudut-luar akan terbentuk pada setiap verteks. Setiap sudut-luar ini merupakan suplemen dari sudut-dalam berdampingan. Jadi, dalam setiap kasus pentagon ABCDE, akan terdapat lima sudut-luar, masing-masing satu pada setiap titik sudut. Perhatikan bahwa setiap sudut-luar merupakan suplemen dari sudut-dalam berdampingan. Sebagai contoh m a + m a = 180. Prinsip Jumlah Ukuran Sudut Prinsip 1 : Jumlah ukuran sudut-sudut suatu segitiga sama dengan ukuran sudut lurus. 8

9 Prinsip 2 : Jika dua sudut suatu segitiga masing-masing kongruen dengan dua sudut segitiga yang lain, sudutsudut yang tersisa juga kongruen. Prinsip 3 : Jumlah semua sudut-dalam suatu segiempat sama dengan 360. Prinsip 4 : Ukuran setiap sudut-luar suatu segitiga sama dengan jumlah ukuran dua sudut-dalamnya yang tidak berdampingan. Prinsip 5 : Jumlah ukuran sudut-luar suatu segitiga adalah 360. Prinsip 6 : Ukuran setiap sudut suatu segitiga sama sisi adalah 60. Prinsip 7 : Sudut-sudut lancip suatu segitiga siku-siku bersifat komplementer. Prinsip 8 : Ukuran setiap sudut lancip suatu segitiga siku-siku sama kaki adalah 45. Prinsip 9 : Suatu segitiga tidak bisa mempunyai lebih dari satu sudut siku-siku. Prinsip 10 : Suatu segitiga tidak bisa mempunyai lebih dari satu sudut tumpul. Prinsip 11 : Dua sudut bersifat kongruen atau suplementer jika sisi-sisinya masing-masing saling tegak lurus satu sama lain. ii. Jumlah Ukuran Sudut-Sudut Suatu Poligon Poligon adalah bentuk datar tertutup yang dibatasi oleh ruas garis-ruas garis lurus sebagai sisi-sisinya. Suatu n-gon adalah poligon dengan n sisi. Jadi, poligon dengan 20 sisi adalah 20-gon. Nama-nama poligon menurut jumlah sisinya Jumlah sisi Poligon Jumlah sisi Poligon 9

10 3 Segitiga 8 Oktagon 4 Segiempat 9 Nonagon 5 Pentagon 10 Dekagon 6 Heksagon 12 Dodecagon 7 Heptagon N n-gon Poligon beraturan adalah poligon sama sisi dan sama sudut. Jadi, pentagon beraturan adalah pentagon yang memiliki 5 sudut yang kongruen dan 5 sisi kongruen (gambar a). Bujursangkar adalah poligon beraturan bersisi 4 (gambar b). Jumlah Ukuran Sudut-Dalam suatu Poligon Dengan menggambar diagonal-diagonal dari sembarang titik sudut menuju ke setiap titik sudut yang lain, seperti pada gambar di bawah ini, poligon bersisi 7 dapat dibagi menjadi 5 segitiga. Perhatikan bahwa setiap segitiga mempunyai satu sisi poligon tersebut, kecuali segitiga pertama dan segitiga terakhir yang memiliki dua sisi polygon. 10

11 Secara umum proses ini akan membagi poligon bersisi n menjadi n 2 segitiga; yang berarti, banyaknya segitiga yang terbentuk selalu dua kurangnya dari banyaknya sisi poligon. Jumlah ukuran sudut-dalam suatu poligon sama dengan jumlah sudut-dalam segitiga. Dengan demikian : Jumlah ukuran sudut-dalam suatu poligon bersisi n adalah (n 2)180. Jumlah Ukuran Sudut-Luar suatu Poligon Sudut-luar poligon dapat dibuat bersama-sama, sehingga sudut-sudut tersebut mempunyai titik sudut yang sama. Untuk membuatnya, gambarlah garis-garis yang sejajar dengan sisi-sisi poligon dari satu titik, seperti pada gambar di bawah ini. Jika hal ini dilakukan, dapat kita lihat bahwa tidak peduli berapapun sisinya, jumlah ukuran sudut-luar sama dengan 360. Dengan demikian : Jumlah ukuran sudut-luar suatu poligon bersisi n adalah 360. Prinsip Poligon Sudut Untuk sembarang poligon Prinsip 1 : Jika S adalah jumlah ukuran sudut-dalam suatu poligon bersisi n, maka : 11

12 S = (n 2) sudut lurus = (n 2)180 0 Prinsip 2 : Jumlah ukuran sudut-luar semua poligon adalah Untuk poligon beraturan Prinsip 3 : Jika poligon beraturan bersisi n (gambar a) mempunyai sudut-dalam berukuran i dan sudut-luar berukuran e (dalam derajat), maka : i = 180(n 2) n e = 360 n dan i + e = 180 Jadi, untuk poligon beraturan bersisi 20 : i = 180(20 2) 20 e = = 18 = 162 i + e = = 180 DUA TEOREMA KEKONGRUENAN YANG BARU Tiga metode untuk membuktikan segitiga-segitiga kongruen telah dijelaskan sebelumnya. Metode-metode tersebut adalah : 1. ss.sd.ss ss.sd.ss 2. sd.ss.sd sd.ss.sd 3. ss.ss.ss ss.ss.ss (ket : ss = sisi, sd = sudut) Dua metode tambahan untuk membuktikan bahwa segitiga-segitiga adalah kongruen yaitu : 4. ss.sd.sd ss.sd.sd 5. hip. kaki hip. kaki (ket : hip = hipotenusa atau sisi miring) 12

13 Dua Prinsip Kekongruenan yang Baru Prinsip 1 : (ss.sd.sd ss.sd.sd) Jika dau sudut dan satu sisi yang berhadapan dengan salah satu sudut tersebut pada suatu segitiga adalah kongruen dengan bagian-bagian yang bersesuaian pada segitiga yang lain, segitiga-segitiga tersebut adalah kongruen. Prinsip 2 : (hip. kaki hip. kaki) Jika hipotenusa atau sisi miring dan satu kaki pada suatu segitiga adalah kongruen dengan bagian-bagian yang bersesuaian pada segitiga yang lain, segitiga-segitiga tersebut adalah kongruen. Contoh soal : (a) Buktikan bahwa jika ukuran satu sudut suatu segitiga sama dengan jumlah ukuran dua sudut yang lainnya, maka segitiga tersebut adalah segitiga siku-siku. (b) Buktikan bahwa jika sudut-sudut yang berhadapan dari suatu segiempat adalah kongruen, maka sisi-sisinya yang berhadapan adalah sejajar. Penyelesaian : (a) Diketahui : ABC, m C = m A + m B Untuk pembuktian : ABC adalah segitiga siku-siku Rencana : Buktikan m C = 90 Bukti Aljabar : Misalkan : a = besarnya derajat pada A b = besarnya derajat pada B 13

14 Maka, a + b = besar derajat pada C a + b + (a + b) = 180 (Prinsip 1) 2a + 2b = 180 a + b = 90 Karena m C adalah 90 0, ABC adalah siku-siku. (b) Diketahui : Segiempat ABCD, A C, B D Untuk pembuktian : AB CD, BC AD Rencana : Buktikan pada sisi yang sama dengan transversal adalah suplementer Bukti Aljabar : Misalkan : a = besarnya derajat pada A dan C b = besarnya derajat pada B dan D Karena A dan B adalah suplementer, maka BC AD Karena A dan D adalah suplementer, maka AB CD 14

15 BAB III PENUTUP A. KESIMPULAN Berdasarkan uraian materi di atas penulis menyimpulkan : 1. Garis sejajar adalah garis-garis lurus yang terletak pada bidang yang sama dan tidak berpotongan sejauh apapun garis-garis tersebut diperpanjang. 2. Jarak adalah ruas garis lurus yang merupakan ruas garis terpendek di antara bentuk-bentuk tersebut. 3. Jumlah sudut dalam suatu segitiga besarnya adalah Jumlah sudut dalam suatu segiempat adalah B. SARAN Berdasarkan uraian di atas, penulis memberikan saran atau rekomendasi untuk menyempurnakan penulisan makalah ini yaitu : 1. Perlu adanya penelitian lebih lanjut untuk menyempurnakan hasil penulisan makalah ini guna menjawab beberapa pertanyaan atau permasalahan yang muncul ketika penulisan makalah ini berlangsung. 2. Untuk lebih memahami materi garis sejajar, jarak dan jumlah sudut harus lebih banyak berlatih mengerjakan soal sejenis. C. DAFTAR PUSTAKA Barnett Rich Geometri. Jakarta : Erlangga. 15

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

BAB 7 GEOMETRI NETRAL

BAB 7 GEOMETRI NETRAL BAB 7 GEOMETRI NETRAL Ilmuwan besar matematika ini lahir pada bulan April 1777, di Brunswick, Daerah duke Brunswick (sekarang Negara Jerman). Gauss tumbuh didalam keluarga yang agak sederhana, bukan kaya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

GEOMETRI EUCLID D I S U S U N OLEH :

GEOMETRI EUCLID D I S U S U N OLEH : GEOMETRI EUCLID D I S U S U N OLEH : SARI MEILANI (11321435) TITIS SETYO BAKTI (11321436) DEWI AYU FATMAWATI (11321439) INKA SEPIANA ROHMAH (11321460) KELAS II B MATEMATIKA UNIVERSITAS MUHAMMADIYAH PONOROGO

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Konsep Dasar Geometri

Konsep Dasar Geometri Konsep Dasar Geometri. Segitiga 1. Definisi Segitiga Segitiga merupakan model bangun ruang datar yang dibatasi oleh tiga ruas garis. 2. Klasifikasi Segitiga a) Segitiga menurut panjang sisinya 1) Segitiga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

BAB 5 POSTULAT KESEJAJARAN EUCLIDES

BAB 5 POSTULAT KESEJAJARAN EUCLIDES BAB 5 POSTULAT KESEJAJARAN EUCLIDES Leonhard Euler dilahirkan di Basel (Switzerland), pada tanggal 15 April 1707 di St Petersburg (Rusia).Keluarga Leonhard Euler pindah ke Riehen, daerah yang tidak jauh

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah BAB I PENDAHULUAN A. Latar Belakang Membandingkan dua benda secara geometris dapat dilihat dari dua aspek, yaitu bentuk dan ukurannya. Satu benda yang memiliki bentuk yang sama tapi dengan ukuran berbeda

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: BANGUN DATAR Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA

Lebih terperinci

LAMPIRAN Data Penelitian Nilai Siswa

LAMPIRAN Data Penelitian Nilai Siswa LAMPIRAN Data Penelitian Nilai Siswa No Parameter Satuan Baku mutu Metode analisis G43 67 44 53 51 G44 67 43 39 39 G45 68 37 45 52 G46 71 41 41 53 G47 61 33 45 52 G48 66 39 41 53 G49 67 44 40 42 G50 75

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : Bangun Datar dan Segitiga. serta menentukan ukurannya. : 1 x 40 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : Bangun Datar dan Segitiga. serta menentukan ukurannya. : 1 x 40 menit RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Materi Pokok Standar Kompetensi Waktu : SMPN 3 Sidoarjo : Matematika : VII/2 : Bangun Datar dan Segitiga : Memahami

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri GAMBAR TEKNIK PROYEKSI ISOMETRI Gambar Teknik i halaman ini sengaja dibiarkan kosong Gambar Teknik ii Daftar Isi Daftar Isi... iii... 1 1 Pendahuluan... 1 2 Sumbu, Garis, dan Bidang Isometri... 2 3 Skala

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT GEOMETRI BIDANG Pada bab ini akan dibahas bentuk-bentuk bidang dalam ruang dimensi dua, keliling serta luasan dari bidang tersebut, bentuk ini banyak kaitannya dengan kegiatan ekonomi (bisnis dan manajemen)

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki SEGITIG DN SEGIEMPT. SEGITIG 1. Mengenal Segitiga Jika persegi panjang PQRS dipotong melalui diagonal PR, maka akan didapat dua bangun yang berbentuk segitiga yang sama dan sebangun atau kongruen. Semua

Lebih terperinci

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Jajaran genjang dapat dibentuk dari gabungan suatu segitiga dan bayangannya setelah diputar setengah putaran dengan pusat titik tengah salah

Lebih terperinci

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang BAB III PEMBAHASAN Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang didasarkan kepada enam postulat pada Geometri Netral dan Postulat Kesejajaran Hiperbolik. Akan dibahas sifat-sifat

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar.

Dengan makalah ini diharapkan para siswa dapat mengetahui tentang sudut, macam-macam sudut, bangun datar dan sifat-sifat bangun datar. BAB I PENDAHULUAN A. Latar Belakang Bagi setiap tingkatan kelas di sekolah dasar, pembelajaran geometri dapat dikategorikan kepada materi yang cukup sukar serta memerlukan pemahaman yang cukup tinggi.

Lebih terperinci

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E.

PAKET 4. Paket : 4. No Soal Jawaban 1 Luas Segiempat PQRS pada gambar di bawah ini adalah. A. 120 cm 2 B. 216 cm 2 C. 324 cm 2 D. 336 cm 2 E. PAKET 4 Jumlah Soal : 0 soal Kompetensi :. Bangun Datar. Trigonometri. Bangun Ruang 4. Barisan dan Deret Compile By : Syaiful Hamzah Nasution No Soal Jawaban Luas Segiempat PQRS pada gambar di bawah ini

Lebih terperinci

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA

Lebih terperinci

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen

LAMPIRAN 1. Surat Ijin Uji Coba Instrumen LAMPIRAN 1 Surat Ijin Uji Coba Instrumen LAMPIRAN 2 Surat Ijin Penelitian LAMPIRAN 3 Surat Keterangan Melakukan Uji Coba Instrumen LAMPIRAN 4 Surat Keterangan Melakukan Penelitian LAMPIRAN 5 Instrumen

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

INSTRUMEN VALIDITAS DAN RELIABILITAS

INSTRUMEN VALIDITAS DAN RELIABILITAS INSTRUMEN VALIDITAS DAN RELIABILITAS 79 80 UJI VALIDITAS ANGKET Data diri Nama Lengkap : Sekolah : Kelas : Petunjuk pengisian! Di bawah ini terdapat sejumlah pernyataan tentang cara-cara yang kamu gunakan

Lebih terperinci

Segiempat. [Type the document subtitle]

Segiempat. [Type the document subtitle] Segiempat [Type the document subtitle] [Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

47

47 46 47 48 49 50 RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah Mata Pelajaran : SD Laboratorium Kristen Satya Wacana : Matematika Kelas / Semester : V/ 2 Materi Pokok : Sifat sifat bangun datar Waktu

Lebih terperinci

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V

SD V BANGUN DATAR. Pengertian bangun datar. Luas bangun datar. Keliling bangun datar SD V SD V BANGUN DATAR Pengertian bangun datar Luas bangun datar Keliling bangun datar SD V Kata Pengantar Puji syukur kehadirat Allah Subahanahu wa Ta ala, yang Maha Kuasa atas rahmat dan karunianya, sehingga

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

PENGERTIAN PHYTAGORAS

PENGERTIAN PHYTAGORAS Pythagoras adalah seorang ahli filsafat. Ia tidak hanya mempelajari matematika, tetapi juga music dan ilmu-ilmu lain. Ia lahir di Yunani, tetapi pergi belajar ke Mesir dan Babilonia. Ia terkenal karena

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

BAB 2 : POLIGON II. Nama : Kelas : Tarikh : Menentukan sama ada suatu poligon yang diberi adalah poligon sekata

BAB 2 : POLIGON II. Nama : Kelas : Tarikh : Menentukan sama ada suatu poligon yang diberi adalah poligon sekata B MAEMAIK INGKAAN 3 5 BAB 2 : OLIGON II Nama : Kelas : arikh : Menentukan sama ada suatu poligon yang diberi adalah poligon sekata (1) ajah di bawah menunjukkan beberapa poligon. andakan jika rajah itu

Lebih terperinci

SEGIEMPAT SACCHERI. (Jurnal 7) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia. 4 2 l2

SEGIEMPAT SACCHERI. (Jurnal 7) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia. 4 2 l2 SEGIEMPT SCCHERI (Jurnal 7) Memen Permata zmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Segiempat saccheri merupakan materi perkuliahan geometri pada pertemuan ke-7. Perkuliah

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN LAMPIRAN Standar Kompetensi RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Nama Sekolah : SMP Negeri Tempel Mata Pelajaran : Matematika Kelas/ Semester : VII (Tujuh)/ Materi Pokok : Segitiga Alokasi

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

JENIS-JENIS SEGILIMA-BOLA DAN SIFAT-SIFATNYA

JENIS-JENIS SEGILIMA-BOLA DAN SIFAT-SIFATNYA JENIS-JENIS SEGILIMA-BOLA DAN SIFAT-SIFATNYA TYPES OF PENTAGON-SPHERE AND ITS CHARACTERISTICS Jenis-jenis segilima... (Eduard Situmorang dan Himmawati P.L, M.Si ) 1 Oleh: Eduard Situmorang 1) dan Himmawati

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan

BAB I PENDAHULUAN. Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan BAB I PENDAHULUAN A. Latar Belakang Geometri berasal dari kata latin Geometria. Geo artinya tanah, dan metria artinya pengukuran. Menurut sejarahnya, Geometri tumbuh pada zaman jauh sebelum masehi karena

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( ) MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Identitas Sekolah Mata Pelajaran Kelas/ Semester : SMP N 6 Yogyakarta : Matematika : VII/ II Materi Pembelajaran : Segitiga Alokasi Waktu B. Standar Kompetensi

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

PENGERJAAN HITUNG BILANGAN BULAT

PENGERJAAN HITUNG BILANGAN BULAT M O D U L 1 PENGERJAAN HITUNG BILANGAN BULAT Standar Kompetensi : Melakukan operasi hitung bilangan bulat dalam pemecahan masalah Kompetensi Dasar : 1. Menggunakan sifat-sifat operasi hitung termasuk operasi

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan Modul 1 SUDUT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian sudut, ukuran sudut, satuan ukuran sudut, ragam sudut berdasarkan ukuran sudut, cara pengukuran

Lebih terperinci

Sisi-Sisi pada Bidang Trapesium

Sisi-Sisi pada Bidang Trapesium Sisi-Sisi pada Bidang Trapesium Sebuah bidang yang berbentuk trapesium terdiri dari empat sisi (rusuk) dimana terdapat sepasang sisi yang sejajar. Kedua sisi yang sejajar tidak sama panjangnya. Dua sisi

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si.

GEOMETRI EUCLID. Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. GEOMETRI EUCLID Makalah ini disusun untuk memenuhi tugas mata kuliah Geometri Dosen Pembimbing: Prof. Dr. Dwi Juniati, M.Si. UNIVERSITAS NEGERI SURABAYA FAKULTAS PASCA SARJANA PROGRAM STUDI PENDIDIKAN

Lebih terperinci

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen.

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. Gambar 1.1 Kubus Sifat-sifat Kubus 1. Semua sisi kubus berbentuk persegi. Kubus mempunyai 6 sisi persegi

Lebih terperinci

SEGI BANYAK BAHAN BELAJAR MANDIRI 2

SEGI BANYAK BAHAN BELAJAR MANDIRI 2 BAHAN BELAJAR MANDIRI 2 SEGI BANYAK PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang segitiga, segiempat, segilima, kongruensi dan kesebangunan. Setelah mempelajari BBM 2 ini anda

Lebih terperinci

LAMPIRAN 1 Surat Ijin Uji Validitas

LAMPIRAN 1 Surat Ijin Uji Validitas LAMPIRAN 1 Surat Ijin Uji Validitas LAMPIRAN 2 Surat Ijin Penelitian LAMPIRAN 3 RPP Siklus I RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Sekolah Mata Pelajaran Kelas/Semester Alokasi Waktu : SDN Sidorejo

Lebih terperinci

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN Edy Ambar Roostanto Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam Geometri dan Pengukuran yang terdiri dari bangun datar geometri

Lebih terperinci

BAB 2 MENGGAMBAR BENTUK BIDANG

BAB 2 MENGGAMBAR BENTUK BIDANG BAB 2 MENGGAMBAR BENTUK BIDANG 2.1 Menggambar Sudut Memindahkan sudut a. Buat busur lingkaran dengan A sebagian pusat dengan jari-jari sembarang R yang memotong kaki-kaki sudut AB dan AC di n dan m b.

Lebih terperinci

TRY OUT MATEMATIKA SMP - 01

TRY OUT MATEMATIKA SMP - 01 1. Suhu udara di puncak gunung 1 C, karena hari hujan suhunya turun lagi 4 C, maka suhu udara di puncak gunung tersebut sekarang adalah a. 5 C b. 3 C c. 3 C d. 5 C 2. Dari 42 siswa kelas IA, 24 siswa mengikuti

Lebih terperinci

PAKET 2 1. Hasil dari. adalah...

PAKET 2 1. Hasil dari. adalah... 1. Hasil dari A. B. C. D. 1 7 17 7 1 12 17 12 1 5, 75 4 2 adalah... 2 5 2. Operasi @ artinya kalikan bilangan pertama dengan tiga, kemudian kurangilah hasilnya dengan dua kali bilangan kedua. Nilai dari

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN Banyak benda-benda di sekitarmu yang tanpa kamu sadari sebenarnya menggunakan konsep lingkaran. Misalnya, rantai sepeda, katrol timba, hingga alat-alat musik seperti drum, banjo,

Lebih terperinci

PAKET Hasil dari. adalah...

PAKET Hasil dari. adalah... 1. Hasil dari A. B. C. D. 1 7 60 19 7 20 19 12 60 1 12 60 2 2 5,25 4 2 adalah... 5 2. Operasi @ artinya kalikan bilangan pertama dengan dua, kemudian kurangilah hasilnya dengan tiga kali bilangan kedua.

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut Teorema pythagoras berasal dari seorang matematikawan dari Yunani yang bernama Pythagoras, tetapi ada juga yang menyebutkan bahwa teorema pythagoras berasal dari Cina karena ada sebuah buku yang merupakan

Lebih terperinci

PROYEKSI ISOMETRI PENDAHULUAN

PROYEKSI ISOMETRI PENDAHULUAN PROYEKSI ISOMETRI PENDAHULUAN Proyeksi isometri(k) dapat digolongkan sebagai gambar piktorial. Ketiga bidang pada sebuah objek 3D digambar dan tampak jelas. Dimensi objek gambar pun dapat diukur langsung

Lebih terperinci

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar.

BAB I PENDAHULUAN. 2. Membagi keliling lingkaran sama besar. BAB I PENDAHULUAN A. Deskripsi Judul modul ini adalah lingkaran, sedangkan yang akan dibahas ada tiga unit yaitu : 1. Menggambar lingkaran 2. Membagi keliling lingkaran sama besar. 3. Menggambar garis

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama MATEMATIKA (Paket ) Waktu : 20 Menit (025) 477 20 Website : Pilihlah jawaban yang paling tepat!. Ibu Aminah mempunyai untuk membuat gorengan diperlukan 7 2 kg tepung terigu. Untuk membuat roti diperlukan

Lebih terperinci

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi

Datar Sederhana. Bab 4 Unsur-Unsur Bangun. Tema 9 Negara Kelas Dewi Bab 4 Unsur-Unsur Bangun Datar Sederhana Tema 9 Negara Kelas Dewi Tujuan Pembelajaran Pembelajaran ini bertujuan agar kamu mampu: mengelompokkan bangun datar mengenal sisi-sisi bangun datar mengenal sudut-sudut

Lebih terperinci

KAJIAN BOLA-LUAR DAN BOLA-DALAM PADA BIDANG-EMPAT SKRIPSI

KAJIAN BOLA-LUAR DAN BOLA-DALAM PADA BIDANG-EMPAT SKRIPSI KAJIAN BOLA-LUAR DAN BOLA-DALAM PADA BIDANG-EMPAT SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh

Lebih terperinci

MAKALAH. Pembuktian Teorema Pythagoras

MAKALAH. Pembuktian Teorema Pythagoras MAKALAH Pembuktian Teorema Pythagoras Disusun Oleh: Kelompok 12 1. Muhammad Naufal Faris 12030174229 2. Weni Handayani 14030174003 3. Wahyu Okta Handayani 14030174024 4. Faza Rahmalita Maharani 14030174026

Lebih terperinci

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D.

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D. 1 3 1. Hasil dari 4 5 2, 6 adalah... 2 4 A. 13 7 B. 17 7 C. 13 12 D. 17 12 2. Operasi @ artinya kalikan bilangan pertama dengan dua, kemudian kurangilah hasilnya dengan tiga kali bilangan kedua. Nilai

Lebih terperinci

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1

Kisi kisi Soal Tes. Bentuk Nomor. Uraian 1 44 Lampiran 1 : Kisi-kisi So_al Tes Kisi kisi Soal Tes No Materi Uraian Materi 1 Bangun Segi datar empat adalah bangu n datar yang dibatas i oleh empat sisi Indikator Soal Siswa dapat mengenal jenis jenis

Lebih terperinci