BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB V BAHAN LATIHAN DAN SARAN PEMECAHANNYA"

Transkripsi

1 V HN LTIHN N SRN PMHNNY. ahan Latihan Kerjakanlah soal-soal berikut. Jangan mencoba melihat petunjuk atau kunci, sebelum benar-benar nda mengalami jalan buntu. 1. alam sebuah persegipanjang ditarik 40 ruas garis yang sejajar salah satu sisi persegipanjang tersebut. erapa banyak persegipanjang yang terjadi?. alam sebuah persegipanjang dibuat 50 buah garis yang menghubungkan dua titik, yaitu sebuah titik pada sebuah sisi dan sebuah titik pada sisi lainnya. Jika p menyatakan maksimum banyak daerah poligon yang terbentuk oleh segmen-segmen garis yang terjadi dan q menyatakan banyak daerah minimumnya, berapakah p q? 3. alam sebuah persegipanjang dibuat 50 buah ruas garis yang menghubungkan dua titik, yaitu sebuah titik pada sebuah sisi dan sebuah titik pada sisi lainnya. Ruas-ruas garis itu saling berpotongan. Jika p menyatakan maksimum banyak daerah poligon yang terbentuk oleh ruas-ruas garis yang terjadi dan q menyatakan minimum banyak daerah poligon yang terjadi, berapakah p q? 4. iketahui segitiga, =. Sebuah ruas garis, pada panjangnya sama dengan =. Hitunglah besar sudut. 5. ua garis bagi sebuah segitiga membentuk sudut 140 o. Hitunglah besar sudut ketiga. 6. Sebuah titik P berada di dalam sebuah persegi. = 1 cm. Jarak P ke titik sudut dan sama dan sama pula dengan jaraknya ke sisi. erapakah jarak tersebut? 7. adalah sebuah persegipanjang, M titik tengah sisi. Sebuah garis ditarik dari M tegaklurus M, memotong di P. uktikanlah bahwa besar sudut M = besar sudut PM. 8. adalah sebuah persegi. Titik T berjarak sama terhadap titik sudut dan, dan besar T = 15 o. uktikanlah bahwa T samasisi. 9. adalah sebuah trapesium sama kaki, dan >. Titik adalah titik tengah. Jika luas : Luas segiempat = : 3, tentukan perbandingan panjang dan. 10. Pada gambar 5.1,. uktikanlah bahwa: = Gambar 5.1 LKRIS: PPM

2 11. Panjang sebuah diagonal sebuah trapesium samakaki 5 cm. Panjang salah satu sisi sejajarnya 8 cm dan panjang kaki trapesium 17 cm. Hitung luas trapesium tersebut. 1. iketahui sebuah persegi yang panjang sisinya a satuan. Sebuah segitiga samasisi salah satu titik sudutnya pada titik sudut persegi dan titik-titik sudut lainnya terletak pada sisi persegi yang tidak melalui titik sudut persekutuan tersebut. Hitunglah panjang sisi segitiga sama sisi tersebut. 13. iketahui persegipanjang. Titik P pada dan Q pada. Tentukan letak titik P dan Q agar ketiga segitiga siku-siku yang terbentuk luasnya sama. 14. Titik P berada di dalam sebuah persegi. Jika P = 3 cm, P = 4 cm, dan P = 5 cm, berapakah panjang P? 15. ua buah segitiga mempunyai sepasang sudut yang sama. uktikanlah bahwa perbandingan luas kedua segitiga sebanding dengan luas persegipanjang yang panjang sisi-sisinya adalah kedua sisi pengapit sudut yang sama tersebut. 16. iketahui sebarang. Sisi,, dan diperpanjang berturut-turut dengan X, Y, dan Z, masing-masing sama dengan panjang sisi semula. Hitunglah perbandingan luas dengan XYZ. 17. Pada persegi Gambar 5., angka-angka menunjukkan perbandingan panjang bagian-bagian sisi oleh perpotongannya dengan garis-garis yang ditarik dari titik-titik sudut persegi tersebut. erapakah perbandingan luas bagian yang diarsir dengan luas persegi seluruhnya? 18. (Gambar 5.3) adalah sebuah jajargenjang. sebuah titik pada. Ruas garis G melalui sama panjang dan sejajar. uktikanlah bahwa luas jajargenjang G = luas jajargenjang. 19. iketahui segitiga lancip. Ke arah keluar segitiga dilukis dan samasisi. uktikanlah bahwa = 0. Segitiga samakaki, =. Titik pada dan pada. esar sudut = 60 o dan = 50 o. Hitung besar sudut. 1. Pada Gambar 5.4, = 14 cm, = 16 cm, dan = 1 cm. Talibusur memotong di, dan (1) () (1) () () (1) () (1) Gambar 5. G Gambar 5.3 Gambar 5.4 LKRIS: PPM 004 4

3 memotong busur sehingga panjang busur = panjang busur. Hitunglah.. adalah segiempat garissinggung. Titik-titik singgung sisi-sisi,,, dan berturut-turut P, Q, R, dan S. Jika P = 8 cm, Q = 1 cm, R = 4 cm, berapakah panjang? 3. erapakah panjang jari-jari lingkaran kecil jika lingkaranlingkaran pada Gambar 5.5 saling bersinggungan? 4. Ketiga lingkaran pada Gambar 5.6 masing-masing berjarijari 1 cm. Setiap pasang lingkaran saling bersinggungan, dan dua di antaranya menyinggung sisi-sisi persegi. erapakah luas persegi tersebut? 5. Pada Gambar 5.7, ketiga lingkaran saling bersinggungan dan ketiganya menyinggung garis g. Jika panjang jari-jari lingkaran terbesar 36 mm, yang terbesar kedua berjari-jari 9 mm, berapakah panjang jari-jari lingkaran terkecil? 6. Titik P berada pada busur kecil pada lingkaran luar samasisi, dan tidak berimpit dengan titik sudut segitiga tersebut. Jika P = 5 cm dan P = 7 cm, berapakah panjang talibusur P? 7. Segiempat mempunyai lingkaran luar yang berpusat 1 cm Gambar 5.5 Gambar 5.6 g Gambar 5.7 di sebuah titik berjarak 1 satuan dari, = 30 satuan. Perpanjangan sisi memotong perpanjangan di, sedemikian sehingga = dan = 0 cm. erapa panjang jari-jari lingkaran luar tersebut? 8. Segitiga (Gambar 5.8) siku-siku di. adalah garis berat, garis bagi dan garis tinggi. uktikanlah bahwa besar =. 9. Suatu segitiga siku-siku di titik sudut. Jika bilangan Gambar 5.8 yang menyatakan ukuran keliling dan luasnya sama, buktikan bahwa hal itu terjadi jika dan hanya jika s = a alam (Gambar 5.9), = 30 cm. dan adalah garis-garis tinggi sehingga = 4 cm dan = 11 cm. erapakah? T Gambar 5.9 LKRIS: PPM

4 31.,, dan adalah garis-garis tinggi dalam segitiga lancip. uktikanlah bahwa ketiga segitiga di luar semuanya sebangun dengan segitiga. 3. iketahui. Titik P pada dan titik Q pada sedemikian sehingga P = 3 dan Q = 3. Tentukanlah letak titik R pada sedemikian sehingga luas 4 4 PQR = 1 luas. 33. adalah sebuah talibusur sebuah lingkaran. M titik tengah talibusur tersebut (Gambar 5.10). ibuat dua talibusur lain yang juga melalui M yaitu dan. Jika ditarik talibusur memotong di P dan talibusur memotong di Q, buktikanlah bahwa P = Q. 34. iketahui sebuah segiempat sebarang, panjang diagonalnya p dan q satuan dan keduanya membentuk sudut 30 o. Sebuah jajargenjang salah satu titik sudutnya pada pertengahan sebuah sisi segi-4 tersebut, dan titik-titik sudut lainnya pada ketiga sisi lainnya segiempat yang diketahui tersebut. erapakah luas jajargenjang tersebut? 35. adalah sebuah segiempat siklik. = 45 cm, dan = 60 cm, dan berpotongan di titik T, T = 8 cm, dan T = 35 cm. Hitunglah panjang talibusur. 36. Pada Gambar 5.11, adalah sebuah segiempat talibusur. Perpanjangan dan berpotongan di titik P. itarik sebuah garis g melalui P sejajar memotong perpanjangan di titik Q. Jika dari titik Q ditarik garissinggung QS terhadap lingkaran, buktikanlah bahwa QS = QP. 37. Pada Gambar 5.1, gambar pertama adalah sebuah persegi. Setiap persegi berikutnya yang diarsir diperoleh dengan membuat persegi baru melalui titik-titik tengah sisi persegi berukuran persegi di sebelah kirinya. P P M Gambar 5.10 g Q Gambar 5.11 S Q Gambar 5.1 Jika luas persegi pertama 1 satuan, hitunglah jumlah luas semua persegi terarsir sampai dengan urutan ke-10. LKRIS: PPM

5 38. Pada Gambar 5.13 gambar pertama adalah segitiga sama sisi. Gambar kedua diperoleh dari gambar pertama dengan menambahkan masing-masing sebuah segitiga sama sisi pada setiap sisi semula sehingga terbentuk segibanyak bersisi sama. emikian seterusnya Hitunglah keliling bangun pada urutan ke-10. Gambar KUNI/SRN STRTGI PNYLSIN SOL/MSLH 1. Jawab: 861. Gunakan pola bilangan, mencoba dari masalah analog yang lebih sederhana.. Jawab: 15. Seperti No. 1, minimum terjadi jika ruas-ruas garisnya sejajar. 3. Jawab: 1176: Seperti No., minimum terjadi jika ruas-ruas garisnya melalui satu titik. 4. engan pengertian sudut luar segitiga, nyatakan besar dan dalam sehingga diperoleh 5 = M 180 o Jadi besar = 36 o 5. ari: M = (sudut luar) dan = 90 o didapat = 100 o 6. Gunakan teorema Pythagoras pada MP P = P = PK = 7,5 cm. 7. Tarik PM memotong. Perhatikan kongruensi yang terjadi. 8. esar T = T = 90 o 15 o = 75 o Melalui T tarik sebuah garis sejajar dan sebuah garis lain sejajar. 9. Misal = x, = px Tinggi trapesium t; Gambar M P x G T H 1 K Gambar 5.15 Gambar 5.16 titik tengah. Maka t = 1 t ari Luas ari Luas trapesium ari Luas andingkan L :L t t = 1 t Gambar 5.17 LKRIS: PPM

6 10. Gunakan teorema Pythagoras dan ganti dengan Tarik tarik garis tinggi melalui titik pada sisi sejajar yang terpendek. Luas =300 cm 1. (Gambar 5.18) Misal panjang sisi segitiga samasisi = x satuan. Nyatakan,, dan dalam x Gunakan teorema Pythagoras pada : Jadi panjang sisi segitiga samasisi = a( 6 ) satuan x Gambar Misal Q = x, Q = y, P = z, dan P = w Luas ketiga segitiga sama. ari hubungannya: x Q y w y x antara lain y 1 = 0 diperoleh y : x dan x perbandingan lainnya sama. Gambar 5.19 P z 14. P = 3 cm 15. Gambarlah kedua segitiga dengan kedua sudut sama saling berimpit. Tarik salah satu garis tinggi pada masing-masing segitiga dari titik sudut bukan yang bersudut sama. andingkan luasnya dengan rumus luas Gambar 5.0 segitiga. Z 16. Perhatikan XZ = Z L X = L XZ L X = L XZ = 1 L XZ Y Perhatikan X X Gambar 5.1 = X L = L X L = L X = 1 L X engan penalaran sama diperoleh bagian lainnya dan akan didapat L : L X = 1 : 7 (1) (1) (1) (1 17. Hasil: : 5. Salah satu cara gunakan garis-garis sejajar sehingga terbentuk persegi-persegi atau segitiga sikusiku yang dengan segera dapat dihitung luasnya. (1 (1 (1 (1 Gambar 5. LKRIS: PPM

7 18. Tarik dan jajargenjang mempunyai panjang alas () dan tinggi yang sama, sehingga Luas = 1 Luas jajargenjang. andingkan pula luas dan jajargenjang G akan diperoleh luas seluruh bangun. 19. uktikanlah melalui kongruensi dan 0. Tunjukkan samakaki Tarik =. Tunjukkan samakaki. idapat besar Gambar 5.4 Melalui pembuktian samakaki, = didapatkan = = 70 o. iperoleh besar = 30 o 1. (Gambar 5.5) ari panjang busur = panjang busur, garis bagi.. : = :. Jadi dan dapat diketahui panjangnya. dapat dihitung menggunakan Gambar 5.5 rumus panjang garis bagi. Melalui sifat kuasa titik diperoleh = 4 cm. 8 P. (Gambar 5.6) Untuk menghitung panjang beberapa segmen 1 garis digunakan sifat kesamaan jarak titik sainggung dari sebuah titik di luar lingkaran. Sebagian lainnya gunakan S Q kesamaan hasil kali panjang sisi berhadapan. = 1 cm. R 3. Gunakan teorema Pythagoras dalam beberapa segitiga. 4 iperoleh r = 1,5 cm Gambar Tariklah garis-garis sejajar sisi-sisi persegi melalui pusat lingkaran. Panjang diagonal persegi dapat dihitung, kemudian Luas = (9 + 8 ) cm 5. Tarik garis-garis sejajar garis singgung melalui pusat-pusat lingkaran, tarik garis-garis hubung pusatnya. Gunakan rumus panjang talibusur persekutuan dan teorema Pythagoras pada segitiga-segitiga siku-siku yang muncul pada gambar. r terkecil = 4 mm. 6. Gunakan sifat samasisi pada lingkaran dan gunakan pula dalil Ptolomeus. P = 1 cm. G Gambar o 60 o LKRIS: PPM

8 7. engan menggunakan kuasa titik T pada lingkaran (atau kesebangunan yang terjadi pada dan didapat panjang. Pusat pada sumbu, 1 cm dari. engan menggunakan teorema Pythagoras diperoleh panjang jari-jari lingkaran luar = 37 cm. 8. Gunakan sifat garis-garis istimewa pada segitiga dan garis berat segitiga siku-siku. 9. Nyatakan L = ½ bc dengan s = a + b + c. Kuadratkan, dan gunakan teorem Pythagoras. 30. Panjang sisi = 0 cm. (Perhatikan sifat segi-4 T). 31. Ingat sifat garis antiparalel. 3. Titik R pada sedemikian sehingga R : = 1 : 8 (Gunakan perbandingan luas segitiga yang memiliki sebuah sudut sama besar). Lihat soal No Melalui M tarik sumbu. erminkan M terhadap sumbu tersebut pq 35. = 60 cm 36. Gunakan segiempat siklik dan perhatikan adanya tigaan Pythagoras Gunakan pola. Luas persegi kedua dan seterusnya = 1 Luas persegi di kirinya cm = cm.. Untuk memperoleh keliling bangun, dengan pola, cari banyak 187 sisi dan panjang setiap sisinya. LKRIS: PPM

BAB III MASALAH GEOMETRI DAN PEMECAHANNYA

BAB III MASALAH GEOMETRI DAN PEMECAHANNYA BB III MSLH GEOMETRI N PEMECHNNY Menurut Posamentier dan Stepelmen (1986), masalah dalam geometri mencakup: 1. Membuktikan teorema atau berbagai akibat situasi geometri secara sistematis a. menggunakan

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

GEOMETRI BIDANG. Disampaikan dalam PEMBEKALAN OSN-2010 SMP N I KEBBUMEN Mata Pelajaran: Matematika

GEOMETRI BIDANG. Disampaikan dalam PEMBEKALAN OSN-2010 SMP N I KEBBUMEN Mata Pelajaran: Matematika GEMETRI ING isampaikan dalam EMEKLN SN-00 SM N I KEUMEN Mata elajaran: Matematika leh: Murdanu, M.d. Jurusan endidikan Matematika FMI Universitas Negeri Yogyakarta SEKLH MENENGH ERTM NEGERI KEUMEN 00 GEMETRI

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

8 SEGITIGA DAN SEGI EMPAT

8 SEGITIGA DAN SEGI EMPAT 8 SEGITIG N SEGI EMPT Hampir setiap konstruksi bangunan yang dibuat manusia memuat bentuk bangun segitiga dan segi empat. matilah lingkungan sekitarmu. entuk bangun manakah yang ada pada benda-benda di

Lebih terperinci

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar

Bab 9. Segitiga. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar Bab 9 Segitiga Standar Kompetensi Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar 6.2 Mengidentifikasi sifat-sifat segitiga berdasarkan sisi susdutnya. 6.3 Menghitung

Lebih terperinci

Apa yang akan kamu pelajari? Syarat Dua Bangun Datar Sebangun. Kata Kunci:

Apa yang akan kamu pelajari? Syarat Dua Bangun Datar Sebangun. Kata Kunci: 933r 1.1 pa yang akan kamu pelajari? Membedakan dua bangun datar sebangun atau tidak seba ngun, dengan menye but syaratnya. Menghitung panjang sisi yang belum diketahui dari dua bangun yang sebangun. Syarat

Lebih terperinci

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika PROGRAM PEMBELAJARAN KELAS VII SEMESTER I Mata Pelajaran : Matematika 191 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 Nama Sekolah : Kelas/ Semester : VII/1 Mata Pelajaran : Matematika Aspek : BILANGAN Standar

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika:

Rasio. atau 20 : 10. Contoh: Tiga sudut memiliki rasio 4 : 3 : 2. tentukan sudut-sudutnya jika: Rasio Rasio adalah perbandingan ukuran. Rasio digunakan untuk membandingkan besaran dengan pembagian. Misal dua segitiga memiliki bentuk yang sama tetapi ukurannya berbeda. Salah satu sisinya yang seletak

Lebih terperinci

Oleh : Ghelvinny, S.Si Kesebangunan & Kongruensi SMPN 199 Jakarta

Oleh : Ghelvinny, S.Si Kesebangunan & Kongruensi SMPN 199 Jakarta TUGS MTMTIK Nama/kls :... Materi : Kesebangunan dan Kongruensi Petunjuk : etak soal ini dan ditempel di portofolio masing-masing Sukses diraih karena Kerja Keras & Kesabaran Kerjakan dengan menggunakan

Lebih terperinci

SEGI BANYAK BAHAN BELAJAR MANDIRI 2

SEGI BANYAK BAHAN BELAJAR MANDIRI 2 BAHAN BELAJAR MANDIRI 2 SEGI BANYAK PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang segitiga, segiempat, segilima, kongruensi dan kesebangunan. Setelah mempelajari BBM 2 ini anda

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Silabus Matematika Kelas VII Semester Genap 44

Silabus Matematika Kelas VII Semester Genap  44 Indikator : 1. Menentukan banyaknya cara persegi panjang dapat menempati bingkainya. 2. Menggunakan sifat-sifat persegi panjang, sisi-sisi yang berhadapan sama panjang dalam perhitungan. 3. Menentukan

Lebih terperinci

Bangunan piramida merupakan salah satu dari tujuh keajaiban dunia. Prisma dan Limas. Bab

Bangunan piramida merupakan salah satu dari tujuh keajaiban dunia. Prisma dan Limas. Bab ab Prisma dan Limas ujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Mengenal dan menyebutkan bidang, rusuk, diagonal bidang, diagonal ruang, bidang diagonal, dan tinggi prisma dan

Lebih terperinci

BAB I KESEBANGUNAN BANGUN DATAR

BAB I KESEBANGUNAN BANGUN DATAR I KSNGUNN NGUN TR Peta Konsep Kesebangunan angun atar prasyarat Kesebangunan ua angun atar terdiri atas ua bangun datar kongruen khususnya Segitiga kongruen ua bangun datar sebangun khususnya Segitiga

Lebih terperinci

KONGRUENSI SEGIEMPAT (Dikaji Berdasarkan Kongruensi Segitiga) Nurul Saila

KONGRUENSI SEGIEMPAT (Dikaji Berdasarkan Kongruensi Segitiga) Nurul Saila ISSN 2354-6948 KONGRUENSI SEGIEMPT (ikaji erdasarkan Kongruensi Segitiga) Nurul Saila Staf Pengajar Universitas Panca Marga Probolinggo nurul.saila.2013.2@gmail.com (diterima: 21.12.2014, direvisi: 28.12.2014)

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang,

SILABUS MATEMATIKA KELAS VII. Menjelaskan jenis-jenis. segitiga. berdasarkan sisisisinya. berdasarkan besar. pengertian jajargenjang, LAMPIRAN 1. Silabus SILABUS MATEMATIKA KELAS VII Standar Kompetensi : GEOMETRI 4.Memahami konsep segi empat dan serta menentukan ukurannya Kompetensi 6.1 Segiempat dan Mengident i fikasi sifat-sifat berdasarka

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I 16 KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMP/MTs... Kelas : VII Semester : I

Lebih terperinci

C oleh lingkaran seperti pada gambar. Keliling lingkaran

C oleh lingkaran seperti pada gambar. Keliling lingkaran . Pilihlah satu jawaban yang benar. 1. Perhatikan gambar berikut. aerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 8. Sebuah lintasan lari berbentuk seperti gambar di samping.

Lebih terperinci

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP

GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP GEOMETRI Geometri Dasar Oleh: WIDOWATI Jurusan Matematika FMIPA UNDIP 1 Geometri dasar Himpunan berbentuk beserta sistem aksioma yang melibatkan 5 aksioma disebut Struktur Geometri Euclid, dengan unsurunsur

Lebih terperinci

Bab 1. Kesebangunan dan Kekongruenan. Standar Kompetensi. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah

Bab 1. Kesebangunan dan Kekongruenan. Standar Kompetensi. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah ab 1 Kesebangunan dan Kekongruenan Standar Kompetensi Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah Kompetensi asar 1. Mengidentifikasi bangun-bangun datar yang sebangun

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT 8 SEGITIG N SEGIEMPT Segitiga Simetri putar Segitiga sama kaki asis bagi Persegi panjang Segitiga sama sisi Garis tinggi Persegi Segitiga sembarang Garis berat Jajar genjang Segitiga lancip Garis sumbu

Lebih terperinci

GEOMETRI LINGKARAN YANG MENANTANG

GEOMETRI LINGKARAN YANG MENANTANG GOMTRI LINGKRN YNG MNNTNG entuk lingkaran banyak ditemui dalam kehidupan sehari-hari, mulai dari ban kendaraan, logo, cermin, tatakan gelas, dan masih banyak lagi yang lainnya. kan menjadi sangat menarik

Lebih terperinci

Uraian Materi. Keliling dan Luas Bangun Datar. A. Macam-Macam Bangun Datar Beraturan. Perlu Tahu

Uraian Materi. Keliling dan Luas Bangun Datar. A. Macam-Macam Bangun Datar Beraturan. Perlu Tahu Keliling dan Luas angun atar Segala sesuatu di muka bumi ini memunyai bentuk dan ukuran. i dalam matematika, benda yang memunyai ukuran dapat dilakukan perhitungan terhadap benda tersebut. Ilmu yang mempelajari

Lebih terperinci

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS

KISI-KISI PENULISAN SOAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS KISI-KISI PENULISAN SAL UNTUK MENGUKUR KEMAMPUAN BERPIKIR KRITIS Mata Pelajaran : Matematika Materi Pokok : Segiempat dan Segitiga Kelas / semester : VII / 2 Standar Komptensi : Memahami konsep segi empat

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010

KUMPULAN RUMUS MATEMATIKA UNTUK SMP SESUAI DENGAN STANDAR KOMPETENSI LULUSAN UJIAN NASIONAL TAHUN PELAJARAN 2009/2010 Rumus-rumus Matematika 1 Sesuai SKL UN 2010 KUMPULN RUMUS MTMTIK UNTUK SMP SSUI NGN STNR KOMPTNSI LULUSN UJIN NSIONL THUN PLJRN 2009/2010 SKL Nomor 1 : Menggunakan konsep operasi hitung dan sifat-sifat

Lebih terperinci

BAB 7 GEOMETRI NETRAL

BAB 7 GEOMETRI NETRAL BAB 7 GEOMETRI NETRAL Ilmuwan besar matematika ini lahir pada bulan April 1777, di Brunswick, Daerah duke Brunswick (sekarang Negara Jerman). Gauss tumbuh didalam keluarga yang agak sederhana, bukan kaya

Lebih terperinci

Bab. Lingkaran. A. Lingkaran dan Unsur- Unsurnya B. Keliling dan Luas Lingkaran C. Busur, Juring, dan Tembereng D. Sudut- Sudut pada Lingkaran

Bab. Lingkaran. A. Lingkaran dan Unsur- Unsurnya B. Keliling dan Luas Lingkaran C. Busur, Juring, dan Tembereng D. Sudut- Sudut pada Lingkaran ab 6 Sumber: okumentasi Penulis Lingkaran Pernahkah kamu berekreasi ke unia Fantasi? i tempat tersebut, kamu dapat menikmati berbagai macam permainan yang unik dan menarik. Mulai dari Halilintar, ntang-nting,

Lebih terperinci

Geometri Dimensi Dua. Bab 4

Geometri Dimensi Dua. Bab 4 ab 4 Sumber: www.swissworld.org Geometri imensi ua Pada bab ini, nda akan diajak untuk memecahkan masalah yang berhubungan dengan menentukan kedudukan, jarak, dan bidang, di antaranya, dapat menggunakan

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya.

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. ab 7 angun Ruang Sisi Datar Standar Kompetensi Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. Kompetensi Dasar 4.1 Menentukan hubungan antara dua garis, serta besar

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) SILABUS PEMELAJARAN ALJABAR Standar : 4. Menggunakan konsep dan diagram Venn dalam pemecahan masalah Kegiatan 4.1 Mema-hami

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN Sekolah : SMP... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) SILABUS PEMBELAJARAN BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan

Lebih terperinci

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras BY : Feni Malinda Safitri Sudah diperiksa Pengertian Teorema Phytagoras Phytagoras adalah seorang ahli matematika dan filsafat berkebangsaan Yunani pada tahun 569-475 sebelum masehi, ia mengungkapkan bahwa

Lebih terperinci

BANGUN RUANG SISI DATAR LIMAS DAN PRISMA TEGAK

BANGUN RUANG SISI DATAR LIMAS DAN PRISMA TEGAK 9 NGUN RUNG SISI R LIMS N PRISM GK Perhatikan atap dari sebuah rumah. agaimanakah bentuk atap rumah? Gambar di samping menunjukkan bangunan Gedung Rektorat Universitas Indonesia. Perhatikan bentuk atap

Lebih terperinci

- - GARIS DAN SUDUT - - tujuh7sudut

- - GARIS DAN SUDUT - - tujuh7sudut - - GRIS N SUUT - - Modul ini singkron dengan plikasi ndroid, ownload melalui Play Store di HP Kamu, ketik di pencarian tujuh7sudut Jika Kamu kesulitan, Tanyakan ke tentor bagaimana cara downloadnya. plikasi

Lebih terperinci

Ruang Lingkup Pengukuran di SD

Ruang Lingkup Pengukuran di SD PENGUKURAN DI SD Ruang Lingkup Pengukuran di SD Pengukuran tentang: 1. panjang dan keliling 2. luas 3. luas bangun gabungan 4. volum 5. volum bangun gabungan 6. sudut 7. suhu 8. waktu, jarak dan kecepatan

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: BANGUN DATAR Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMER ELJR PENUNJNG PLPG 2016 MT PELJRN/PKET KEHLIN GURU KELS S III GEOMETRI ra.hj.rosdiah Salam, M.Pd. ra. Nurfaizah, M.Hum. rs. Latri S, S.Pd., M.Pd. Prof.r.H. Pattabundu, M.Ed. Widya Karmila Sari chmad,

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci

k dan garis l, dan saling berseberangan. Demikian halnya pasangan

k dan garis l, dan saling berseberangan. Demikian halnya pasangan dapun sudut-sudut luar sepihak pada Gambar 3.7 adalah: 1 adalah sudut luar sepihak dengan 4. adalah sudut luar sepihak dengan 3. Ingat kembali bahwa: 1 = 1, dan 1 + 4 = 180 o. kibatnya, diperoleh 1 + 4

Lebih terperinci

Bab 8. Segiempat. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar

Bab 8. Segiempat. Standar Kompetensi. Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi Dasar ab 8 Segiempat Standar Kompetensi Memahami konsep segiempat dan segitiga serta menentukan ukurannya. Kompetensi asar 6.2 Mengidentifikasi sifat-sifat persegi panjang, persegi, trapesium, jajarangenjang,

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN 7 GI INGGUNG LINGKN ernahkah kalian memerhatikan sebuah kerekan atau katrol? Gambar di samping adalah alat pada abad ke-8 yang memperagakan daya angkat sebuah kerekan yang prinsip kerjanya menggunakan

Lebih terperinci

SMP NEGERI 199 JAKARTA LATIHAN PERSIAPAN UJIAN SEKOLAH MATEMATIKA 2012

SMP NEGERI 199 JAKARTA LATIHAN PERSIAPAN UJIAN SEKOLAH MATEMATIKA 2012 SMP NEGERI 199 JKRT LTIHN PERSIPN UJIN SEKOLH MTEMTIK 01 PETUNJUK KHUSUS. Pilih dan hitamkan jawaban yang benar di antara a, b, c, dan d pada lembar jawaban komputer (LJK)! 1. Hasil dari (-0) : + (-) -11

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Geometri Dimensi Dua. Bab 4

Geometri Dimensi Dua. Bab 4 ab 4 Sumber: www.swissworld.org Geometri imensi ua Pada bab ini, nda akan diajak untuk memecahkan masalah yang berhubungan dengan menentukan kedudukan, jarak, dan bidang, di antaranya, dapat menggunakan

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

2 x 1 dengan x anggota bilangan bulat adalah. 1 bagian senang sepakbola, 2

2 x 1 dengan x anggota bilangan bulat adalah. 1 bagian senang sepakbola, 2 PEMNTPN UJIN NSINL 03 Kerjakan dengan sungguh-sungguh dan penuh kejujuran!. alam sebuah ruangan terdapat 5 baris kursi. anyaknya kursi pada baris ke tiga terdapat 3 buah, dan pada baris ke tujuh terdapat

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

KAPITA SELEKTA PEMBELAJARAN GEOMETRI DATAR KELAS VIII DAN IX DI SMP

KAPITA SELEKTA PEMBELAJARAN GEOMETRI DATAR KELAS VIII DAN IX DI SMP KPIT SELEKT PEMELJRN GEOMETRI DTR KELS VIII DN IX DI SMP Penulis: l. Krismanto Sumardyono Penilai: Krisdiyanto HP Muh Isnaeni Editor: Jakim Wiyoto Lay out: Muh. Tamimuddin H. Departemen Pendidikan Nasional

Lebih terperinci

TAHUN PELAJARAN 2003/2004. SMP/MTs. Matematika (C3) PAKET 1 (UTAMA) SELASA, 25 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004. SMP/MTs. Matematika (C3) PAKET 1 (UTAMA) SELASA, 25 MEI 2004 Pukul OKUMEN NEGR SNGT RHSI UJIN NSIONL THUN PELJRN 003/004 SMP/MTs Matematika (3) PKET 1 (UTM) SELS, 5 MEI 004 Pukul 07.30 09.30 EPRTEMEN PENIIKN NSIONL Hak ipta pada Pusat Penilaian Pendidikan LITNG - PETUNJUK

Lebih terperinci

TEOREMA PYTHAGORAS. Kata-Kata Kunci: teorema Pythagoras tripel Pythagoras segitiga siku-siku istimewa. Sumber: Indonesian Heritage, 2002

TEOREMA PYTHAGORAS. Kata-Kata Kunci: teorema Pythagoras tripel Pythagoras segitiga siku-siku istimewa. Sumber: Indonesian Heritage, 2002 5 TEOREM PYTHGORS Sumber: Indonesian Heritage, 00 Pernahkah kalian memerhatikan para tukang kayu atau tukang bangunan? Dalam bekerja, mereka banyak memanfaatkan teorema Pythagoras. oba perhatikan kerangka

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

GEOMETRI DIMENSI TIGA

GEOMETRI DIMENSI TIGA GEOMETRI IMENSI TIG NGUN RUNG Materi tentang bangun ruang sudah pernah dipelajari di SMP, di antaranya : Kubus, alok, Prisma, Limas, Tabung, Kerucut, dan ola. Kubus Kubus adalah bangun ruang yang dibatasi

Lebih terperinci

BAB 5 POSTULAT KESEJAJARAN EUCLIDES

BAB 5 POSTULAT KESEJAJARAN EUCLIDES BAB 5 POSTULAT KESEJAJARAN EUCLIDES Leonhard Euler dilahirkan di Basel (Switzerland), pada tanggal 15 April 1707 di St Petersburg (Rusia).Keluarga Leonhard Euler pindah ke Riehen, daerah yang tidak jauh

Lebih terperinci

(A) Hanya K (B) Hanya L (C) Hanya M K L M (D) Hanya L dan M (E) Semua adalah persegi

(A) Hanya K (B) Hanya L (C) Hanya M K L M (D) Hanya L dan M (E) Semua adalah persegi 1.Manakah bangun berikut yang merupakan persegi? (A) Hanya K (B) Hanya L (C) Hanya M K L M (D) Hanya L dan M (E) emua adalah persegi 2. Manakah bangun berikut yang merupakan segitiga. U V W X (A) emuanya

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk

Lebih terperinci

BAB 1 KESEBANGUNAN DAN KEKONGRUENAN. Inti Materi A. KESEBANGUNAN BANGUN DATAR B. KEKONGRUENAN BANGUN DATAR

BAB 1 KESEBANGUNAN DAN KEKONGRUENAN. Inti Materi A. KESEBANGUNAN BANGUN DATAR B. KEKONGRUENAN BANGUN DATAR 1 KSNGUNN N KKONGRUNN Inti Materi asar Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah Standar Kompetensi Mengidentifikasi bangun-bangun datar yang sebangun dan kongruen Mengidentifikasi

Lebih terperinci

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar. SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada

Lebih terperinci

TUGAS GEOMETRI. EF = 2,70 cm FG = 2,52 cm GE = 2,11 cm

TUGAS GEOMETRI. EF = 2,70 cm FG = 2,52 cm GE = 2,11 cm TUS MTI Kelompok : ri ryanti ut Multahadah ebri Taqiyatul Mardiyah atri Isharyadi 7. Lakukan langkah berikut : Kontruksi, dan sembarang titik ( tidak terletak pada segitiga ). uat garis tegak lurus dari

Lebih terperinci

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut

TEOREMA PYTHAGORAS. Contoh Hitunglah nilai kuadrat bilangan-bilangan berikut Teorema pythagoras berasal dari seorang matematikawan dari Yunani yang bernama Pythagoras, tetapi ada juga yang menyebutkan bahwa teorema pythagoras berasal dari Cina karena ada sebuah buku yang merupakan

Lebih terperinci

BAB 1 KESEBANGUNAN & KONGRUEN

BAB 1 KESEBANGUNAN & KONGRUEN 1 KESENGUNN & KONGRUEN. KESENGUNN 1. ua angun Yang Sebangun ua bangun datar dikatakan sebangun jika dan hanya jika memenuhi: a. Sudut-sudut yang bersesuaian (seletak) sama besar. b. Sisi-sisi yang bersesuaian

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 2011/2012

LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 2011/2012 LATIHAN PERSIAPAN UJIAN KENAIKAN KELAS (UKK) MATEMATIKA 8 TAHUN PELAJARAN 011/01 No. ALTERNATIF SOAL PEMBAHASAN 1 Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur,

Lebih terperinci

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara Sistem Koordinat Cartesius.. Geometri Analitik Geometri analitik adalah suatu cabang ilmu matematika yang merupakan kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara persamaan

Lebih terperinci

BANK SOAL MATEMATIKA SMP/MTs KESEBANGUNAN & KEKONGRUENAN KELAS 9

BANK SOAL MATEMATIKA SMP/MTs KESEBANGUNAN & KEKONGRUENAN KELAS 9 Semua Mimpi Kita, apat Menjadi Kenyataan, ila Kita LOG ILMU MTEMTIK http://ilmu-matematika.blogspot.com matematika.blogspot.com NK SOL MTEMTIK SMP/MTs KESENGUNN & KEKONGRUENN KELS 9 Oleh: YOYO PRIYNTO,

Lebih terperinci

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat!

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat! KUMPULAN SOAL SOAL APROKSIMASI KESALAHAN SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban ang paling tepat!. Banakna angka sinifikan dari bilangan,

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGR SNGT RHSI Ujian khir Nasional Tahun Pelajaran 00/00 SLTP/MTs Paket Utama (P) MTEMTIK () SELS, 0 MEI 00 Pukul 07.0 09.0 0 01-0--P11 0 DEPRTEMEN PENDIDIKN NSIONL Hak ipta pada Pusat Penilaian

Lebih terperinci

LATIHAN ULANGAN UMUM SEMESTER GENAP 2012 MATEMATIKA XI RPL

LATIHAN ULANGAN UMUM SEMESTER GENAP 2012 MATEMATIKA XI RPL 14 Siap Ulangan Umum Semester enap 2012 PILIN N LTIN ULNN UMUM SMSTR NP 2012 MTMTIK XI RPL 1. esar sudut = radian, dalam satuan derajat besar sudut =.... 120 o. 240 o. 150 o. 00 o. 210 o 2. Sudut 225 o

Lebih terperinci

By Drs. La Misu, M.Pd Drs. La Arapu,, M.Si Reviewers: Dr. Sugiman, M.Si SUBJECT MATTER

By Drs. La Misu, M.Pd Drs. La Arapu,, M.Si Reviewers: Dr. Sugiman, M.Si SUBJECT MATTER SUJET MTTER o m p i L e d y rs. La Misu, M.Pd rs. La rapu,, M.Si Reviewers: r. Sugiman, M.Si epartment Of Mathematics Education and Natural Sciences Faculty of Teacher Training and Education H L U O L

Lebih terperinci

Letak Suatu Tempat di Permukaan Bumi

Letak Suatu Tempat di Permukaan Bumi Sumber: www.wikipedia.org Letak Suatu Tempat di Permukaan umi Pernahkah kalian mendengar istilah film 3 dimensi? Film ini disukai karena terlihat lebih nyata. Sebenarnya, apa arti kata dimensi? imensi

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP TAHUN 2013 #Kode Soal 212-Ani-Ina-32# Jawaban : (B) Cara I : Perbandingan uang A : I = 3 : 5, jumlah angka perbandingan = 3 + 5 = 8, sedangkan selisih angka perbandingan

Lebih terperinci

SOAL LATIHAN UKK MATEMATIKA KELAS VIII

SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL PILIHAN GANDA 1. Perhatikan gambar berikut. Daerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 2. Perhatikan kembali lingkaran pada

Lebih terperinci

GEOMETRI EUCLID D I S U S U N OLEH :

GEOMETRI EUCLID D I S U S U N OLEH : GEOMETRI EUCLID D I S U S U N OLEH : SARI MEILANI (11321435) TITIS SETYO BAKTI (11321436) DEWI AYU FATMAWATI (11321439) INKA SEPIANA ROHMAH (11321460) KELAS II B MATEMATIKA UNIVERSITAS MUHAMMADIYAH PONOROGO

Lebih terperinci

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N)

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x 2 + 3xy y 2 terdapat... variabel. a. 1 c. 3 b. 2 d. 4 2. Suku dua terdapat pada bentuk aljabar... a. 2x 2 +

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 OKUMEN NEGR SNGT RHSI Ujian khir Nasional Tahun Pelajaran 00/00 SLTP/MTs Paket Utama (P) MTEMTIK () SELS, 0 MEI 00 Pukul 07.0 09.0 EPRTEMEN PENIIKN NSIONL 0 01-0--P10 0 Hak ipta pada Pusat Penilaian Pendidikan

Lebih terperinci

BAB I TITIK DAN GARIS

BAB I TITIK DAN GARIS 1. Titik, garis, sinar dan ruas garis BB I TITIK DN GRIS Geometri dibangun atas dasar unsur-unsur yang tidak didefinisikan yaitu: titik, garis, dan bidang. Titik dipahami secara intuisi sebagai sebuah

Lebih terperinci

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar

Bab. Kesebangunan dan Kekongruenan Bangun Datar. A. Kesebangunan Bangun Datar B. Kekongruenan Bangun Datar ab 1 umber: Image Kesebangunan dan Kekongruenan angun atar i Kelas VII, kamu telah mempelajari bangun datar segitiga dan segiempat, seperti persegipanjang, persegi, jajargenjang, belah ketupat, layang-layang,

Lebih terperinci

Kesebangunan dan Kekongruenan

Kesebangunan dan Kekongruenan ab 1 Kesebangunan dan Kekongruenan umber: i160.photobucket.com ada bab ini, kamu akan diajak untuk memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah dengan cara mengidentifikasi

Lebih terperinci

Tidak diperjualbelikan

Tidak diperjualbelikan MATEMATIKA KATA PENGANTAR Keputusan Menteri Pendidikan Nasional No. 153/U/003, tanggal 14 Oktober 003, tentang Ujian Akhir Nasional Tahun Pelajaran 003/004, antara lain menetapkan bahwa dalam pelaksanaan

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. Indikator, menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Indikator Soal, menentukan hasil operasi campuran bilangan

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN. Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif

Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN. Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif Lampiran 1.1 Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN Model Pembelajaran Kontekstual dengan Setting Pembelajaran Kooperatif Think Pair Share (TPS) Nama Sekolah : SMP NEGERI 2 KRETEK

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR.

Bab 3 KONSTRUKSI GEOMETRIS 3.1. KONSTRUKSI-KONSTRUKSI DASAR. Bab 3 KONSTRUKSI GEOMETRIS Materi : Konstruksi-konstruksi dasar. Garis-garis lengkung. Gambar proyeksi. Gambar pandangan tunggal. Proyeksi ortogonal (gambar pandangan majemuk). 3.1. KONSTRUKSI-KONSTRUKSI

Lebih terperinci

NASKAH BUKU PENGAYAAN UNTUK SMP SEGITIGA. Disusun Oleh : Nama : MUHAMMAD YUSUF, S.Pd. Pekerjaan : PENDIDIK Unit Kerja : SMP NEGERI 1 BOLO

NASKAH BUKU PENGAYAAN UNTUK SMP SEGITIGA. Disusun Oleh : Nama : MUHAMMAD YUSUF, S.Pd. Pekerjaan : PENDIDIK Unit Kerja : SMP NEGERI 1 BOLO NSKH UKU PENGYN UNTUK SMP SEGITIG isusun Oleh : Nama : MUHMM YUSUF, S.Pd. Pekerjaan : PENIIK Unit Kerja : SMP NEGERI 1 OLO KUPTEN IM NUS TENGGR RT KT PENGNTR Puji dan syukur kehadirat Tuhan Yang Maha Esa

Lebih terperinci

SOAL MATEMATIKA SIAP UN 2012

SOAL MATEMATIKA SIAP UN 2012 SOL MTMTIK SIP UN 1 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Hasil dari 8 ( ) 5 Hasil dari ( 16 ) ( 4 : 4). Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

JARING-JARING BANGUN RUANG

JARING-JARING BANGUN RUANG BAHAN BELAJAR MANDIRI 6 JARING-JARING BANGUN RUANG PENDAHULUAN Bahan Belajar mandiri 6 mempelajari tentang Jaring-jaring Bangun ruang : maksudnya jika bangun ruang seperti kubus, balok, kerucut dan yang

Lebih terperinci