BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI. Untung Trisna Suwaji. Agus Suharjana"

Transkripsi

1 BAHAN BELAJAR: UNSUR DASAR PEMBANGUN GEOMETRI Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA 2015

2 KATA PENGANTAR Puji syukur ke hadirat Tuhan Yang Maha Esa, karena atas karunia-nya, bahan ajar ini dapat diselesaikan dengan baik. bahan ajar ini diharapkan dapat menjadi salah satu rujukan dalam usaha peningkatan mutu pengelolaan pembelajaran matematika di sekolah serta dapat dipelajari secara mandiri oleh peserta diklat di dalam maupun di luar kegiatan diklat. Diharapkan dengan mempelajari bahan ajar ini, peserta diklat dapat menambah wawasan dan pengetahuan sehingga dapat mengadakan refleksi sejauh mana pemahaman terhadap mata diklat yang sedang/telah diikuti. Kami mengucapkan terima kasih kepada semua pihak yang telah berpartisipasi dalam proses penyusunan bahan ajar ini. Kepada para pemerhati dan pelaku pendidikan, kami berharap bahan ajar ini dapat dimanfaatkan dengan baik guna peningkatan mutu pembelajaran matematika di negeri ini. Demi perbaikan bahan ajar ini, kami mengharapkan adanya saran untuk penyempurnaan di masa yang akan datang. Saran dapat disampaikan kepada kami di PPPPTK Matematika dengan alamat: Jl. Kaliurang KM. 6, Sambisari, Condongcatur, Depok, Sleman, DIY, Kotak Pos 31 YK-BS Yogyakarta Telepon (0274) , , Fax. (0274) Sleman, Kepala PPPPTK matematika Prof. rer. nat. Widodo, M. S. NIP ii

3 Unsur Dasar Pembangun Geometri A. Pengertian pangkal Titik, garis, dan bidang merupakan pengertian pangkal yang tidak didefinisikan (undefined term). Beberapa istilah lain dalam geometri juga cukup diterima secara intuitif, tetapi tidak didefinisikan, seperti terletak, di luar, kelurusan suatu garis, atau datarnya bidang. Titik dapat dibayangkan seperti bola yang semakin mengecil sehingga jari-jarinya nol. Karena tidak memiliki ukuran, maka titik dikatakan berdimensi nol. Titik dapat ditentukan letaknya. Titik biasa direpresentasikan sebagai noktah. Besar kecilnya noktak tidak berpengaruh, tetap saja titik tidak memiliki ukuran.dan dinotasikan dengan huruf kapital (misal:,, ). Garis dapat dibayangkan sebagai jejak titik yang bergerak lurus. Garis memanjang ke dua arah. Dengan demikian garis hanya memiliki panjang, tidak memiliki ketebalan sehingga dikatakan garis berdimensi satu. Akibat dari hal ini adalah, jarak dua titik pada suatu garis dapat ditentukan ukurannya. Garis dinotasikan dengan huruf non kapital (misal garis,, ) atau dengan menyebutkan dua titik yang dilalui (misal ). Bidang dapat dibayangkan sebagai jejak garis yang bergerak menyamping tanpoa mengubah arah garis. Bidang meluas ke segala arah tanpa batas. Dalam lukisan geometris, bidang dapat dilukiskan sebagiannya dalam bentuk jajargenjang. Bidang dinotasikan dengan huruf Yunani, atau tiga titik yang dilaluinya (misal bidang bidang, bidang ). B. Definisi, Aksioma, dan Teorema Setelah mengenal undefined term titik, garis, dan bidang, diperlukan pernyataanpernyataan yang menjelaskan suatu istilah. Pernyataan ini disebut sebagai definisi. Dalam mendefinisikan sesuatu, hanya boleh menggunakan undefined term, atau istilah-istilah yang telah dikenal sebelumnya. Berikut ini beberapa definisi dalam geometri. 1. Kolinear (segaris): Tiga titik dikatakan kolinear (segaris) jika semua titik tersebut terletak pada garis yang sama. Pada gambar limas di samping, titik E terletak di tengah, sehingga ketiga titik,, dan segaris. Sementara itu tiga titik, dan tak segaris (non kolinear). 2. Koplanar (sebidang): 3

4 Dua garis dikatakan koplanar jika keduanya terletak pada bidang yang sama. Empat titik dikatakan koplanar jika keempat titik tersebut terletak sebidang. Pada gambar di samping, garis AB dan BC koplanar, sedang garis AB dan TC non koplanar. Empat titik,,, tak sebidang karena tidak terletak di bidang yang memuat. 3. Ruas garis Ruas garis (dilambangkan dengan ) merupakan himpunan titik, dan semua titik di antara dan yang kolinear dengan garis melalui kedua titik tersebut. Titik dan dalam hal ini disebut sebagai ujung-ujung ruas garis. Dalam penulisan berikutnya, dapat diartikan sebagai ruas garis, dapat juga diartikan sebagai panjang ruas garis tergantung pada konteksnya. 4. Sinar Garis (Ray): Sinar (ditulis ) merupakan bagian dari yang terdiri atas dan semua titik pada sedemikian hingga terletak di antara dan. Selanjutnya titik ini dinamakan sebagai titik pangkal. Harap dicatat bahwa dan merupakan sinar yang berbeda. Sebagai catatan, definisi yang baik, menyajikan hal-hal berikut: 1. Nama atau istilah yang akan didefinisikan. 2. Posisi istilah tersebut dalam himpunan atau kategori. 3. Dapat membedakan istilah yang didefinisikan dengan istilah lain tanpa memberikan fakta-fakta yang tidak diperlukan. 4. Berlaku bolak-balik. Contoh definisi: Segitiga samakaki adalah segitiga yang memiliki dua sisi yang kongruen. Perhatikan bahwa: (1) Istilah yang didefinisikan adalah segitiga samakaki. (2) Posisi segitiga samakakai termasuk dalam himpunan segitiga. (3) Hal yang membedakan segitiga samakaki dengan segitiga yang lain adalah memiliki dua sisi yang kongruen. (4) berlaku bolak balik, dimaksudkan sebagai berikut: 1. Jika suatu segitiga itu samakaki, maka ia memiliki dua kaki yang kongruen 2. Jika suatu segitiga memiliki dua sisi yang kongruen, maka ia merupakan segitiga samakaki. Selain undefined term dan definisi, untuk membangun geometri juga dibutuhkan sekumpulan aksioma atau postulat. Aksioma merupakan pernyataan pangkal yang secara intuitif mudah dipahami, sehingga diterima kebenarannya tanpa bukti. Beberapa aksioma dalam geometri di antaranya: 4

5 Aksioma 1. Aksioma 2. Aksioma 3. Melalui dua titik berbeda, dapat dibuat tepat satu garis. Jika dua titik pada suatu garis terletak pada suatu bidang, maka titik-titik pada garis tersebut seluruhnya terletak pada bidang. Melalui tiga titik tidak segaris dapat dibuat tepat satu bidang. Dengan menggunakan kaidah-kaidah logika berdasarkan suatu pernyataan dapat ditentukan benar dan salahnya. Dalam matematika pernyataan yang dapat dibuktikan kebenarannya dengan menggunakan penalaran deduktif dinamakan sebagai teorema. Dalam membuktikan suatu teorema hanya boleh menggunakan aksioma, definisi, dan teorema sebelumnya yang telah terbukti kebenarannya. Pernyataan yang belum dibuktikan kebenarannya dinamakan sebagai konjektur (conjecture) atau dugaan. Teorema 1. Melalui satu garis dan sebuah titik di luar garis hanya dapat dibuat satu bidang. Bukti: Misalkan diberikan garis, maka dapat ditentukan dua titik berbeda dan yang terletak pada garis. Karena bidang melalui maka seluruh titik pada garis itu terletak pada bidang (Aksioma 1). Sementara itu masih ada satu titik lagi di luar garis, sehingga terdapat tiga titik yang tidak segaris. Menurut aksioma 3, maka dapat dibuat tepat satu bidang. Jadi melalui satu garis dan sebuah titik di luar garis hanya dapat dibuat satu bidang. Teorema 2. Melalui dua garis berpotongan hanya dapat dibuat satu bidang. Bukti: misal dibarikan garis dan berpotongan di titik. Tanpa mengurangi keumuman, pandang garis, dan ambil titik di garis. Menurut teorema 1, dapat dibuat satu bidang. Jadi melalui dua garis berpotongan hanya dapat dibuat satu bidang. Sudut Sudut adalah gabungan dua sinar yang bersekutu di titik pangkalnya. Dua sinar ini dinamakan kaki sudut, sedangkan titik pangkal persekutuan dinamakan sebagai titik sudut. Kedua kaki sudut memisahkan bidang menjadi dua bagian yaitu daerah sudut (interior) dan eksterior sudut. Pada gambar, ruas garis berada di interior. Dalam beberapa kasus seperti dalam trigonometri, sudut dapat pula dipandang sebagai bukaan (putaran) dari sinar yang berimpit pada pangkalnya. 5

6 A. Satuan Pengukuran Sudut 1. Besar Sudut dalam Derajat Dalam satuan derajat, jika membentuk garis lurus maka besar adalah 180 derajat (dilambangkan dengan 180 ). Dengan demikian 1 merupakan besar sudut yang besarnya sudut lurus (dikatakan sudut lurus jika kedua sinar pembentuknya terletak segaris). Untuk ukuran sudut yang lebih kecil, 1 terdiri atas 60 menit (60 ), dan 1 terdiri atas 60. Dalam satuan ini, sudut yang dibentuk oleh satu putaran penuh adalah 360. Untuk mengetahui besar sudut dalam satuan derajat, biasanya digunakan busur derajat. Cara menggunakan busur derajat Alat-alat lain yang berkaitan dengan pengukuran besar sudut dapat dilihat di 2. Besar Sudut dalam Radian Jika menyatakan besar sudut dalam radian, menyatakan panjang busur, dan menyatakan jari-jari, maka. Dengan memandang sudut sebagai perputaran, maka sudut 180 tidak lain merupakan hasil perputaran setengah lingkaran, sehingga besar sudut dalam radian adalah. Jika maka dapat ditentukan bahwa besar sudut yang membentuk garis lurus adalah radian. Dengan demikian 180 rad. Catatan: Perhatikan bahwa besar sudut dalam radian berupa bilangan real. Sehingga jika besar suatu sudut tidak disebutkan satuannya, maka yang dimaksudkan adalah besar sudut dalam radian. 6

7 3. Besar Sudut dalam satuan yang lain. Di Perancis dan Inggris secara terpisah pada sekitar tahun 1900, diciptakan sistim baru untuk membagi sudut-sudut dalam lingkaran. Mereka membagi 1 lingkaran ke dalam 400 gradien (dilambangkan dengan 400 g ). Terdapat beberapa istilah untuk satuan ini, yaitu grade, gon, atau Neugrad (new degree). Di dunia militer, dikenal satuan angular mil, yang diadopsi dari satuan radian. Sudut satu putaran dalam radian adalah dibagi menjadi satuan-satuan yang lebih kecil yaitu mili radian atau mil rad. Untuk mempermudah perhitungan, akhirnya terdapat ukuran berbeda untuk satu angular mil (1 mil), yaitu setara dengan 1/6400, 1/6300, atau 1/6000 putaran penuh (tergantung negara masing-masing). atau sumber-sumber lainnya. Lebih lanjut dapat dibaca di B. Macam-macam Sudut, Hubungan antar Sudut dan Garis dengan Sudut 1. Macam-macam Sudut Menurut Besarnya Sudut lancip Sudut siku-siku Sudut tumpul Catatan: Terdapat perbedaan dalam menuliskan notasi ukuran sudut yaitu: a. sebagai notasi sudut, dan untuk menyatakan ukuran sudut. b. Notasi digunakan sekaligus untuk sudut dan besar sudut. Dalam bahan belajar ini, digunakan pilihan b. 2. Hubungan antara sudut-sudut a. Sudut yang berdekatan/berdampingan Sudut yang berdekatan adalah dua sudut yang memiliki titik sudut yang sama, sebuah kaki sudut yang sama, tetapi tidak memiliki titik-titik interior yang sama. Contoh pasangan sudut berdekatan:, Bukan pasangan berdekatan: (interior bersama), dengan (titik sudut berbeda) 7

8 b. Sudut-sudut berpenyiku Dua sudut dikatakan berpenyiku jika jumlah besar kedua sudut 90. Satu sudut merupakan penyiku (komplemen) bagi sudut yang lain. c. Sudut-sudut berpelurus Dua sudut dikatakan berpelurus jika jumlah besar kedua sudut 180. merupakan pelurus (suplemen) bagi sudut yang lain. Satu sudut d. Dua sudut bertolak belakang Sudut bertolak belakang terbentuk ketika dua garis saling berpotongan dan membentuk empat sudut. Setiap dua sudut yang tidak berdampingan dari keempat sudut disebut sudut bertolak belakang. Pada gambar di samping, Pasangan sudut bertolak belakang: Pasangan sudut berdekatan: Perhatikan bahwa akibatnya (berpelurus) (berpelurus) dan Dengan cara yang sama dapat ditunjukkan bahwa bahwa dua sudut yang bertolak belakang sama besar.. Sehingga dapat disimpulkan 8

9 C. Transversal dan Kesejajaran 1. Transversal (melintang) Jika dua garis dan dipotong oleh garis, seperti pada gambar, maka dikatakan transversal memotong garis dan. Perhatikan istilah-istilah yang digunakan. Istilah-istilah sudut pada transversal. Gambar Sudut Nama Sudut-sudut dalam (sudut yang terletak di antara garis q dan r). Sudut-sudut luar (sudut yang tidak terletak di antara garis q dan r). Sudut-sudut sepihak (sudut di sebelah kiri garis p) Sudut-sudut sepihak (sudut di sebelah kanan garis p) Sudut-sudut sehadap (menghadap arah yang sama) dengan Sudut-sudut berlainan pihak/ berseberangan (sudut-sudut di sebelah kiri garis p dikatakan berseberangan dengan sudutsudut di sebelah kanan garis p). 9 Sudut luar berseberangan Catatan: perhatikan bahwa istilah-istilah sudut sehadap, berseberangan, sudut luar, dan lain-lain seperti di atas berlaku secara umum tidak hanya berlaku untuk dua garis sejajar yang dipotong oleh garis lain. 2. Postulat Kesejajaran Dua garis dikatakan sejajar jika kedua garis tersebut terletak pada bidang yang sama dan tidak memiliki titik persekutuan. Postulat 1 Garis Sejajar: Jika dua garis sejajar dipotong oleh sebuah garis melintang, maka masing-masing pasangan sudut sehadap sama besar. Sehingga, pada gambar di samping, garis sejajar dipotong garis p, maka berlaku:,,, dan

10 Catatan: postulat merupakan pernyataan yang diterima kebenarannya tanpa bukti. Akibat-akibat yang muncul dari postulat sejajar adalah: Jika dua garis sejajar dipotong oleh garis melintang, maka 1) sudut luar berseberangan sama besar. 2) sudut dalam berseberangan sama besar. 3) sudut-sudut dalam sepihak saling berpelurus. 4) sudut luar sepihak saling berpelurus. Bukti: (sudut bertolak belakang sama besar) (sudut sehadap sama besar) Sehingga, sudut luar berseberangan sama besar. (no. 1 terbukti) Dengan cara serupa, pernyataan-pernyataan 2, 3, dan 4 dapat Anda buktikan kebenarannya. Postulat 2 garis sejajar. Jika dua garis dipotong oleh garis melintang membentuk sudut sehadap yang sama besar, maka dua garis tersebut sejajar. Atau dapat juga dituliskan: Misalkan garis dan dipotong oleh garis melintang, jika maka. Dengan postulat 2 kesejajaran, dapat diturunkan teorema-teorema berikut. a. Jika dua garis dipotong oleh garis melintang sehingga sudut dalam berseberangan sama besar maka kedua garis tersebut sejajar. Bukti: Diketahui garis dan dipotong oleh garis, dan. Akan ditunjukkan bahwa. (diketahui) (sudut bertolak belakang sama besar) Akibatnya sehingga menurut postulat sejajar 2 diperoleh garis. (terbukti). b. Jika dua garis dipotong oleh garis melintang sehingga sudut luar berseberangan sama besar maka kedua garis tersebut sejajar. Bukti: Diketahui garis dan dipotong oleh garis, dan 10

11 Akan ditunjukkan bahwa. Akibatnya (diketahui) (sudut bertolak belakang sama besar), sehingga menurut postulat sejajar 2, maka garis. c. Jika dua garis dipotong oleh garis melintang sehingga sudut dalam Bukti: sepihak saling berpelurus maka kedua garis tersebut sejajar. Diketahui garis j dan k dipotong oleh garis l, dan Akan ditunjukkan bahwa. (diketahui) (sudut berpelurus) Akibatnya sehingga menurut postulat sejajar 2, maka garis. Konstruksi Geometri Peralatan yang sering digunakan dalam geometri adalah jangka yang digunakan untuk melukis lingkaran dan bagian dari lingkaran yang dinamakan busur. Dengan jangka dan penggaris, berbagai konstruksi geometri dapat dibuat. Pada bagian ini hanya diberikan langkah-langkah teknis melukis konstruksi geometri. Sementara itu alasan/mengapa langkah-langkah tersebut menghasilkan konstruksi yang diinginkan dapat dipelajari setelah mempelajari sifat-sifat bangun datar. A. Menyalin sudut Diberikan akan dilukis yang besarnya sama dengan. 11

12 Langkah-langkah : 1) Lukis busur 1 berpusat di, memotong kaki-kaki sudut di dan (Gambar kiri atas). 2) Dengan jari-jari yang sama dengan busur 1, lukis busur 2 dengan pusat di (Gambar kiri bawah). 3) Lukis busur 3 berpusat di, berjari-jari (Gambar tengah atas). 5) Lukis busur 4 dengan jari-jari sama dengan busur 3 dan berpusat di hingga memotong busur 3 di titik (Gambar tengah bawah). 6) Tarik sinar garis. Diperoleh (Gambar kanan). Melalui proses menyalin sudut dan berbekal postulat 2 kesejajaran, maka dimungkinkan untuk melukis garis sejajar melalui sebuah titik di luar garis dengan cara sebagai berikut: 1) Diberikan sebuah garis dan sebuah titik di luar garis. 2) Tarik garis melalui memotong garis (misalkan memotong di titik ). 3)Buat sudut yang besarnya sama dengan sudut. 4) Tarik garis melalui, diperoleh garis sejajar garis. B. Membagi dua suatu sudut Diberikan sebarang sudut, akan dibuat sudut yang besarnya setengah sudut yang diberikan. Berikut ini langkah-langkah melukis garis bagi sudut dengan mistar dan jangka. 1) Lukis busur 1 berpusat di dan memotong kaki-kaki sudut di dan. 2) Lukis busur 2 berpusat di, jari-jari busur menyesuaikan besar sudut. 3) Dengan jari-jari sama dengan busur 2, lukis busur berpusat di dan memotong busur 2 di. 4) Tarik garis melalui dan. Garis membagi menjadi dua bagian sama besar,. 12

13 C. Membagi dua ruas garis (melukis titik tengah) Langkah-langkah: 1) Diberikan sebarang ruas garis. 2) Lukis busur berjari-jari, berpusat di. 3) Lukis busur berjari-jari, berpusat di. 4) Kedua busur beropotongan di dan. 5) Tarik garis, memotong di, maka merupakan titik tengah. D. Membagi ruas garis menjadi bagian yang sama panjang Misalkan diberikan ruas garis yang akan dibagi menjadi tiga bagian yang sama panjang. Langkah-langkahnya adalah sebagai berikut: 1) Tarik garis melalui 2) Dengan jari-jari busur yang sama, buat busur 1 berpusat di dan memotong di, busur 2 berpusat di dan memotong garis di, serta busur 3 berpusat di dan memotong garis di. 3) Tarik garis melalui B dan A 3. 4) Salin ke titik dan dengan garis sebagai salah satu kakinya. 5) Perpanjang kaki-kaki sudut yang lain hingga memotong di dan. 6) Diperoleh E. Melukis sudut siku-siku 1. Melalui titik di luar garis Cara 1. 13

14 1) Buat busur berpusat di A sehingga memotong garis di B dan C (Gb. b). 2) Buat dua busur dengan jari-jari sama berpusat di A dan B sehingga berpotongan di D (Gb. c dan d). 3)Tarik garis dari A ke D. Diperoleh garis AD tegaklurus BC (Gb. e). Cara 2. Langkah-langkah melukis sudut siku-siku melalui titik diluar garis: 1) Lukis garis melalui memotong garis yang diberikan di dan tentukan titik tengahnya. 2) Buat busur berdiameter sehingga memotong garis di. 3) Tarik garis melalui dan (gambar d), diperoleh tegak lurus. 2. Melalui Titik pada Garis Langkah-langkah melukis sudut siku-siku melalui titik pada garis: 1) Buat busur berpusat di sehingga memotong garis di dan. 2) Buat dua busur berjari-jari sama dengan pusat di dan di sehingga berpotongan di (Gambar c dan d). 3) Tarik garis dari ke. Diperoleh garis tegaklurus. F. Melukis sudut 60 Langkah-langkah melukis sudut 60. 1) Gunakan jari-jari yang sama untuk busur 1 dan 2. 2) Buat busur 1 berpusat di, memotong garis di titik. 3) Buat busur 2 berpusat di hingga memotong busur 1 di. 4) Tarik garis melalui yang besarnya 60. dan, maka terbentuk 14

15 G. Melukis sudut 30 Langkah-langkah melukis sudut 30. 1) Gunakan jari-jari yang sama untuk semua busur yang dibuat. 2) Lukis busur 1 berpusat di A hingga memotong garis di B. 3) Lukis busur 2 hingga memotong busur 1 di C. 4) Lukis busur 3 hingga memotong busur 2 di D. 5) Tarik garis melalui A dan D, maka terbentuk sudut BAD yang besarnya 30. H. Melukis sudut 45 Melukis sudut 45 dapat dilakukan dengan melukis sudut siku-siku terlebih dahulu, kemudian dibagi dua sama besar. 15

16 DAFTAR PUSTAKA Ann Xavier Gantert, 2008, Amsco s Geometry, New York: Amsco School Publication Daniel C. Alexander & Geralyn M. Koeberlein, 2011, Elementary Geometry for College Students, Belmont: Brooks/Cole H.S. Hall, & F.H. Stevens School Geometry Parts I VI. London: MacMillan and Co.. David M. Burton, 2011, The History of Mathematics : An Introduction, New York: McGraw-Hill. Michael Serra, 2008, Discovering Geometry: An Investigative Approach, Emeryville California: Key Curriculum Press Thomas H. Sidebotham The A to Z of Mathematics, A basic guide. New York: John Wiley & Sons, Inc. Untung T.S., Jakim Wiyoto Kapita Selekta Pembelajaran Geometri Datar Kelas VII di SMP. Yogyakarta: PPPPTK Matematika. W. Gellert, H. Kastner, & M. Helwich The VNR Concise Encyclopedia of Mathematics, New York: Van Nostrand Reinhold Company.

BAHAN BELAJAR: LINGKARAN. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: LINGKARAN. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: LINGKARAN Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA 2015

Lebih terperinci

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana

BAHAN BELAJAR: BANGUN DATAR. Untung Trisna Suwaji. Agus Suharjana BAHAN BELAJAR: BANGUN DATAR Untung Trisna Suwaji Agus Suharjana KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN (PPPPTK) MATEMATIKA YOGYAKARTA

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

D. GEOMETRI 2. URAIAN MATERI

D. GEOMETRI 2. URAIAN MATERI D. GEOMETRI 1. TUJUAN Setelah mempelajari modul ini diharapkan peserta diklat memahami dan dapat menjelaskan unsur-unsur geometri, hubungan titik, garis dan bidang; sudut; melukis bangun geometri; segibanyak;

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang digunakan pada bagian pembahasan. Tinjauan yang dilakukan dengan memaparkan definisi mengenai unsur-unsur kajian geometri, aksioma kekongruenan,

Lebih terperinci

KAPITA SELEKTA PEMBELAJARAN GEOMETRI DATAR KELAS VII DI SMP

KAPITA SELEKTA PEMBELAJARAN GEOMETRI DATAR KELAS VII DI SMP KAPITA SELEKTA PEMBELAJARAN GEOMETRI DATAR KELAS VII DI SMP Penulis: Untung TS Jakim Wiyoto Penilai: Djadir Budi Sudiarso Editor: Wiworo Lay out: Nur Hamid Departemen Pendidikan Nasional Direktorat Jenderal

Lebih terperinci

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam

MAKALAH. GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam MAKALAH GEOMETRI BIDANG Oleh Asmadi STKIP Muhammadiyah Pagaralam 1 BAB I PENDAHULUAN A. Latar Belakang Kata geometri berasal dari bahasa Yunani yang berarti ukuran bumi. Maksudnya mencakup segala sesuatu

Lebih terperinci

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan

Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Titik, Garis, dan Bidang Pada geometri, tepatnya pada sistem aksioma, terdapat istilah tak terdefinisi. Istilah tak terdefinisi adalah istilah dasar yang digunakan dalam membangun

Lebih terperinci

BAB II MATERI. sejajar dengan garis CD. B

BAB II MATERI. sejajar dengan garis CD. B BAB I PENDAHULUAN A. LATAR BELAKANG Penulisan makalah ini merupakan pemaparan mengenai definisi garis sejajar, jarak dan jumlah sudut. Dengan materi yang diambil dari sumber tertentu. Pembahasan ini terkhusus

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

Geometri Dimensi Dua

Geometri Dimensi Dua Geometri Dimensi Dua Materi Pelatihan Guru SMK Model Seni/Pariwisata/Bisnis Manajemen Yogyakarta, 28 November 23 Desember 2010 Oleh Dr. Ali Mahmudi JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T.

Geometri Bangun Datar. Suprih Widodo, S.Si., M.T. Geometri Bangun Datar Suprih Widodo, S.Si., M.T. Geometri Adalah pengukuran tentang bumi Merupakan cabang matematika yang mempelajari hubungan dalam ruang Mesir kuno & Yunani Euclid Geometri Aksioma /postulat

Lebih terperinci

GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1)

GARIS DAN SUDUT. (Materi SMP Kelas VII Semester1) GARIS DAN SUDUT (Materi SMP Kelas VII Semester1) Garis dan Sudut Memahami Kedudukan Garis dan Sudut a. Menemukan konsep titik, garis, dan bidang Dalam ilmu Geometri, terdapat beberapa istilah atau sebutan

Lebih terperinci

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( )

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( ) BB 7 GRIS DN SUDUT. SUDUT 1. Pengertian Sudut Sudut dibentuk dari dua sinar yang titik pangkalnya berimpit. Sinar digambarkan berupa garis lurus yang di ujungnya tanda panah dan di pangkalnya tanda titik.

Lebih terperinci

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang

BAB III PEMBAHASAN. Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang BAB III PEMBAHASAN Pada bab pembahasan ini akan dibahas mengenai Geometri Hiperbolik yang didasarkan kepada enam postulat pada Geometri Netral dan Postulat Kesejajaran Hiperbolik. Akan dibahas sifat-sifat

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus D. Materi Pelajaran Pendahuluan Modul 1 SUDUT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian sudut, ukuran sudut, satuan ukuran sudut, ragam sudut berdasarkan ukuran sudut, cara pengukuran

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: peace_ay@yahoo.com

Lebih terperinci

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

1. BARISAN ARITMATIKA

1. BARISAN ARITMATIKA MATEMATIKA DASAR ARITMATIKA BARISAN ARITMATIKA 1. BARISAN ARITMATIKA Sering disebut barisan hitung, adalah barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya dengan menambah atau mengurangi

Lebih terperinci

Lampiran 1. Jadwal Penelitian. Lampiran 1.1 Jadwal Pelaksanaan Penelitian. Lampiran 2. RPP dan LKS. Lampiran 2.1 RPP Kelompok Eksperimen 1

Lampiran 1. Jadwal Penelitian. Lampiran 1.1 Jadwal Pelaksanaan Penelitian. Lampiran 2. RPP dan LKS. Lampiran 2.1 RPP Kelompok Eksperimen 1 Lampiran. Jadwal Penelitian Lampiran. Jadwal Pelaksanaan Penelitian Lampiran 2. RPP dan LKS Lampiran 2. RPP Kelompok Eksperimen Lampiran 2.2 RPP Kelompok Eksperimen 2 Lampiran 2.3 LKS Kelompok Eksperimen

Lebih terperinci

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik.

A. Titik, Garis, dan Bidang dalam Ruang. Definisi 1 (Space) Ruang (space) adalah himpunan semua titik. Dalam geometri bidang atau geometri dimensi-2 perhatian kita pada dua dimensi, yaitu dimensi-1 dan dimensi-2. Ketika kita mempelajarinya, imajinasi kita pada selembar kertas tipis yang terhampar tak terbatas.

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

Fuat. Buku Ajar GMKM (Seri Kongruensi Segitiga)

Fuat. Buku Ajar GMKM (Seri Kongruensi Segitiga) Fuat Buku Ajar GMKM (Seri Kongruensi Segitiga) 2014 P R O G R A M S T U D I P E N D I D I K A N M A T E M A T I K A S T K I P P G R I P A S U R U A N Geometri dibangun menurut penalaran deduktif tersusun

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN

KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN 1 Kajian Segiempat Tali (Izza Nur Sabila) KAJIAN SEGIEMPAT TALI BUSUR DAN SEGIEMPAT GARIS SINGGUNG PADA SATU LINGKARAN STUDY OF INSCRIBED QUADRILATERAL AND CIRCUMSCRIBED QUADRILATERAL IN ONE CIRCLE Oleh:

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya.

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. ab 7 angun Ruang Sisi Datar Standar Kompetensi Memahami hubungan garis dengan garis, garis dengan sudut, serta menentukan ukuranya. Kompetensi Dasar 4.1 Menentukan hubungan antara dua garis, serta besar

Lebih terperinci

BAB I TITIK DAN GARIS

BAB I TITIK DAN GARIS 1. Titik, garis, sinar dan ruas garis BB I TITIK DN GRIS Geometri dibangun atas dasar unsur-unsur yang tidak didefinisikan yaitu: titik, garis, dan bidang. Titik dipahami secara intuisi sebagai sebuah

Lebih terperinci

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS Modul 2 SEGITIGA & TEOREMA PYTHAGORAS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian segitiga, hubungan sisi-sisi segitiga, jenis-jenis segitiga ditinjau

Lebih terperinci

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT

RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT RINGKASAN MATERI SUDUT DAN PENGUKURAN SUDUT Besar sudut dapat ditentukan atau diukur dengan berbagai cara, di antaranya dengan menggunakan sudut satuan dan yang paling tepat menggunakan sebuah alat yang

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

Daftar Simbol. akar pangkat tiga adalah anggota dari. Glosarium 237

Daftar Simbol. akar pangkat tiga adalah anggota dari. Glosarium 237 Daftar Simbol sudut m gradien D diameter r jari-jari + tambah; plus; positif kurang; minus; negatif kali : bagi = sama dengan tidak sama dengan < lebih kecil daripada > lebih besar daripada lebih kecil

Lebih terperinci

Bab 5 - Garis dan Sudut

Bab 5 - Garis dan Sudut Bab 5 - Garis dan Sudut Gambar 5.1 Gambar benda di sekitar kita yang membentuk sudut Sumber: Koleksi pribadi Di Sekolah Dasar, kita sudah diperkenalkan tentang garis dan sudut. Ini bisa menjadi dasar bagi

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun

Lebih terperinci

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA

JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA JENIS-JENIS SEGITIGA YANG TERBENTUK AKIBAT TERBENTUKNYA SEBUAH SEGIEMPAT PADA SEBUAH BOLA SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi

Lebih terperinci

BAB II TABUNG, KERUCUT, DAN BOLA. Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya

BAB II TABUNG, KERUCUT, DAN BOLA. Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya BAB II TABUNG, KERUCUT, DAN BOLA Tujuan Pembelajaran Memahami sifat-sifat tabung, kerucut dan bola, serta menentukan ukurannya A. Pendahuluan Istilah tabung, kerucut, dan bola di sini adalah istilah-istilah

Lebih terperinci

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki

- Segitiga dengan dua sisinya sama panjang dan terbentuk dari dua segitiga siku-siku yang kongruen disebut segitiga samakaki SEGITIG DN SEGIEMPT. SEGITIG 1. Mengenal Segitiga Jika persegi panjang PQRS dipotong melalui diagonal PR, maka akan didapat dua bangun yang berbentuk segitiga yang sama dan sebangun atau kongruen. Semua

Lebih terperinci

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA)

BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) BAHAN AJAR MATEMATIKA SMP KELAS VIII LINGKARAN (SUDUT KELILING, SUDUT PUSAT, PANJANG BUSUR, LUAS JURING DAN HUBUNGANNYA) ANWARIL HAMIDY NIM. 15709251018 PROGRAM STUDI PENDIDIKAN MATEMATIKA PROGRAM PASCASARJANA

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I 16 KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMP/MTs... Kelas : VII Semester : I

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Tes tertulis Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) SILABUS PEMELAJARAN ALJABAR Standar : 4. Menggunakan konsep dan diagram Venn dalam pemecahan masalah Kegiatan 4.1 Mema-hami

Lebih terperinci

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Lampiran 1.1. Rencana Pelaksanaan Pembelajaran (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 1 Ngemplak Mata Pelajaran : Matematika Kelas/ Semester : VII/ 2 Materi Ajar : Garis

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah

BAB I PENDAHULUAN. A. Latar Belakang. B. Tujuan. D. Rumusan Masalah I PENDHULUN. Latar elakang Geometri (daribahasayunani, geo = bumi, metria = pengukuran) secaraharfiah berarti pengukuran tentang bumi, adalahcabangdarimatematika yang mempelajari hubungan di dalamruang.

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

PENDIDIKAN MATEMATIKA SD 1

PENDIDIKAN MATEMATIKA SD 1 PENDIDIKAN MATEMATIKA SD (KPD / sks ) Oleh: M. Coesamin FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS LAMPUNG 0 PENDIDIKAN MATEMATIKA SD Materi:. Bilangan Bulat dan Bilangan Pecah a. Bilangan Bulat

Lebih terperinci

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT

HUBUNGAN SATUAN PANJANG DENGAN DERAJAT GEOMETRI BIDANG Pada bab ini akan dibahas bentuk-bentuk bidang dalam ruang dimensi dua, keliling serta luasan dari bidang tersebut, bentuk ini banyak kaitannya dengan kegiatan ekonomi (bisnis dan manajemen)

Lebih terperinci

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN

DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 2009 Dinamika Kelompok GY A Y O M AT E M A T AK A R Sukeksi, S.H. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENINGKATAN

Lebih terperinci

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember Penalaran Dalam Matematika Drs. Slamin, M.Comp.Sc., Ph.D Program Studi Sistem Informasi Universitas Jember Outline Berpikir Kritis 1 p 2 Penalaran Induktif 3 Bekerja dengan Pola Pola Bilangan Pola Geometri

Lebih terperinci

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika Pembahasan OSK Tahun 011 Tingkat SMP Bidang Matematika Bagian A : Pilihan Ganda 1. Nilai dari a. 113 b. c. 91 73 1 8! 9! + 3 adalah... d. e. 71 4 Jawaban : c 1 8! 9! + 3 = 10 9 10 + 3 = 73. Menggunakan

Lebih terperinci

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika PROGRAM PEMBELAJARAN KELAS VII SEMESTER I Mata Pelajaran : Matematika 191 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 Nama Sekolah : Kelas/ Semester : VII/1 Mata Pelajaran : Matematika Aspek : BILANGAN Standar

Lebih terperinci

GEOMETRI EUCLID D I S U S U N OLEH :

GEOMETRI EUCLID D I S U S U N OLEH : GEOMETRI EUCLID D I S U S U N OLEH : SARI MEILANI (11321435) TITIS SETYO BAKTI (11321436) DEWI AYU FATMAWATI (11321439) INKA SEPIANA ROHMAH (11321460) KELAS II B MATEMATIKA UNIVERSITAS MUHAMMADIYAH PONOROGO

Lebih terperinci

Sifat-Sifat Bangun Datar

Sifat-Sifat Bangun Datar Sifat-Sifat Bangun Datar Bangun datar merupakan sebuah bangun berupa bidang datar yang dibatasi oleh beberapa ruas garis. Jumlah dan model ruas garis yang membatasi bangun tersebut menentukan nama dan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMER ELJR PENUNJNG PLPG 2016 MT PELJRN/PKET KEHLIN GURU KELS S III GEOMETRI ra.hj.rosdiah Salam, M.Pd. ra. Nurfaizah, M.Hum. rs. Latri S, S.Pd., M.Pd. Prof.r.H. Pattabundu, M.Ed. Widya Karmila Sari chmad,

Lebih terperinci

SUDUT DAN GARIS GARIS SEJAJAR

SUDUT DAN GARIS GARIS SEJAJAR SUDUT DAN GARIS GARIS SEJAJAR Seorang pemain sepak bola dari club tranmere, dave challinor, memegang rekor dunia untuk pelemparan bola terjauh dengan jarak 46,34 m. Untuk mencapai jarak lemparan maksimum,

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

BAB 3 PENALARAN DALAM GEOMETRI

BAB 3 PENALARAN DALAM GEOMETRI BAB 3 PENALARAN DALAM GEOMETRI A. Kompetensi dan Indikator A.1 Kompetensi Memahami penalaran dalam geometri A.2 Indikator 1. Menjelaskan penalaran induksi 2. Menjelaskan contoh sangkalan 3. Menjelaskan

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

matematika K-13 PERSAMAAN GARIS LURUS K e l a s

matematika K-13 PERSAMAAN GARIS LURUS K e l a s K- matematika K e l a s XI PERSAMAAN GARIS LURUS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian garis, garis pada koordinat Cartesius,

Lebih terperinci

Hutan. Barat Laut. Pejabat Pos. Barat Daya. Kedai

Hutan. Barat Laut. Pejabat Pos. Barat Daya. Kedai 1 ab 4 Garis ILNGN dan Sudut K ata Kunci Hutan Sekolah ukit Titik Garis idang Sudut Sudut erpenyiku Sudut erpelurus Sudut Sehadap Sudut erseberangan Sudut ertolak elakang. K D ompetensi asar 1. Memahami

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP

KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN AKHIR SEMESTER GENAP Jenis Sekolah : SMP/MTs Penulis : Gresiana P Mata Pelajaran : Matematika Jumlah Soal : 40 nomor Kelas : VII (TUJUH) Bentuk Soal : Pilihan

Lebih terperinci

GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 3) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Kuliah geometri pada rabu pagi tanggal 25 september 2013 disampaikan

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya

SILABUS PEMELAJARAN. Indikator Pencapaian Kompetensi. Menjelaskan jenisjenis. berdasarkan sisisisinya. berdasarkan besar sudutnya 42 43 SILABUS PEMELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : II (dua) GEOMETRI Standar Kompetensi : 6. Memahami konsep segiempat dan segitiga serta menentukan ukurannya

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB XII BANGUN DATAR Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara, S.Si.,M.Si

Lebih terperinci

Inisiasi 2 Geometri dan Pengukuran

Inisiasi 2 Geometri dan Pengukuran Inisiasi 2 Geometri dan Pengukuran Apa kabar Saudara? Semoga Anda dalam keadaan sehat dan semangat selalu. Selamat berjumpa pada inisiasi kedua pada mata kuliah Pemecahan Masalah Matematika. Kali ini topik

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1 GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

Lebih terperinci

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Prosiding Seminar Nasional Volume 02, Nomor 1 ISSN 2443-1109 KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Rio Fabrika Pasandaran 1, Patmaniar 2 Universitas Cokroaminoto

Lebih terperinci

KOMPETENSI. Menentukan nilai perbandingan trigonometri suatu sudut.

KOMPETENSI. Menentukan nilai perbandingan trigonometri suatu sudut. TRIGONOMETRI KOMPETENSI SK Menerapkan perbandingan, fungsi, persamaan, dan identitas trigonometri dalam pemecahan masalah KD Menentukan nilai perbandingan trigonometri suatu sudut. Mengkonversi koordinat

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2 KTSP Perangkat Pembelajaran SMP/MTs, PERANGKAT PEMBELAJARAN STANDAR KOMPETENSI DAN KOMPETENSI DASAR Mata Pelajaran Satuan Pendidikan Kelas/Semester : Matematika. : SMP/MTs. : VII s/d IX /1-2 Nama Guru

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Geometri Insidensi. Modul 1 PENDAHULUAN

Geometri Insidensi. Modul 1 PENDAHULUAN Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 0 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 0 BIDANG STUDI

Lebih terperinci

Bangun Datar. Modul 1 PENDAHULUAN

Bangun Datar. Modul 1 PENDAHULUAN Modul 1 Bangun Datar Muchtar Abdul Karim Erry Hidayanto B PENDAHULUAN angun datar merupakan salah satu pokok bahasan yang sangat penting baik dalam mempelajari geometri, maupun penggunaannya dalam kehidupan

Lebih terperinci

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( )

MAKALAH SEGITIGA BOLA. disusun guna memenuhi tugas mata kuliah Astronomi. Program Studi Pendidikan Fisika. oleh. 1. Dyah Larasati ( ) MAKALAH SEGITIGA BOLA disusun guna memenuhi tugas mata kuliah Astronomi Program Studi Pendidikan Fisika oleh 1. Dyah Larasati (4201412042) 2. Lina Kurniawati (4201412091) 3. Qonia Kisbata Rodiya (4201412116)

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

PEMBELAJARAN BANGUN-BANGUN DATAR (1)

PEMBELAJARAN BANGUN-BANGUN DATAR (1) H. Sufyani Prabawanto, M. Ed. Bahan Belajar Mandiri 3 PEMBELAJARAN BANGUN-BANGUN DATAR (1) Pendahuluan Bahan belajar mandiri ini menyajikan pembelajaran bangun-bangun datar yang dibagi menjadi dua kegiatan

Lebih terperinci