digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam

dokumen-dokumen yang mirip
II. TINJAUAN PUSTAKA. kontinu. Bentuk kurva distribusi logistik adalah simetri dan uni-modal. Bentuk

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,,

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2

TINJAUAN PUSTAKA. mengestimasi parameter regresi. Distribusi generalized. digunakan dalam bidang ekonomi dan keuangan.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

Penentuan Momen ke-5 dari Distribusi Gamma

II. LANDASAN TEORI. beberapa konsep dan teori yang berkaitan dengan penduga parameter distribusi GB2

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711

Distribusi Probabilitas Kontinyu Teoritis

Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711

BAB II LANDASAN TEORI

Distribusi Probabilitas : Gamma & Eksponensial

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

STATISTIK PERTEMUAN VI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP

II. TINJAUAN PUSTAKA

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

STATISTIKA UNIPA SURABAYA

SIFAT-SIFAT DASAR FUNGSI KARAKTERISTIK

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

STK 203 TEORI STATISTIKA I

II. TINJAUAN PUSTAKA

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

Peubah Acak dan Distribusi Kontinu

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematik(a)

Pengantar Proses Stokastik

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Bab 2 DISTRIBUSI PELUANG

ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG

Pengantar Statistika Matematika II

KONSEP DASAR TERKAIT METODE BAYES

II. TINJAUAN PUSTAKA

Pengantar Statistika Matematik(a)

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu

BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Pengantar Statistika Matematika II

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

BAB VI DISTRIBUSI PROBABILITAS MENERUS

Peubah acak X yang berdistribusi normal dengan rataan sebagai: 2 ) X ~ N(,

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

SIFAT-SIFAT DASAR FUNGSI KARAKTERISTIK DARI DISTRIBUSI CAUCHY

Sampling dengan Simulasi Komputer

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

BAB 2 LANDASAN TEORI

BAB 2 MOMEN DAN ENTROPI

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

Pengantar Proses Stokastik

MINGGU KE-9 MACAM-MACAM KONVERGENSI

PEMBANGKIT RANDOM VARIATE

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

DISTRIBUSI PROBABILITAS

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB 9 DISTRIBUSI PELUANG KONTINU

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

KARAKTERISASI SEBARAN BINOMIAL NEGATIF

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL. (Skripsi) Oleh MERDA GUSTINA

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 4. BEBERAPA DISTRIBUSI PELUANG DISKRET

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

Peubah Acak dan Distribusi

Transkripsi:

II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar yang akan digunakan dalam pembahasan hasil penelitian ini, antara lain : 2.1 Fungsi Gamma Fungsi gamma merupakan suatu fungsi khusus. Fungsi ini dapat digunakan untuk menyederhanakan integral-integral khusus. Definisi 2.1 Fungsi gamma yang dinotasikan dengan Г(n) didefinisikn sebagai: Г n = x n 1 e x dx 0 ; n > 0 (2.1) Rumus rekursi untuk fungsi gamma adalah: Г n + 1 = nг(n) (Abramowitz dan Stegun, 1972) Sub-bab selanjutnya akan membahas mengenai fungsi digamma yang akan digunakan untuk menyelesaikan persamaan yang nantinya akan diperoleh dalam penelitian ini.

5 2.2 Fungsi digamma Fungsi digamma merupakan hasil turunan (derivatif) pertama dari fungsi gamma. Definisi 2.2 : Fungsi Digamma didefinisikan sebagai berikut : ψ z = d ln Γ z dz = Γ z Γ z (2.2) (Abramowitz, M. And Stegun,1972) Berikutnya akan dijelaskan tentang fungsi polygamma yang juga merupakan landasan teori yang akan digunakan pada penelitian ini. 2.3 Fungsi Polygamma Fungsi polygamma merupakan fungsi yang diperoleh dari turunan ke-n fungsi gamma. Definisi 2.3: Fungsi polygamma didefinisikan sebagai berikut : ψ n z = dn n+1 d ψ z = ln Γ z (2.3) dzn dz n+1 (Abramowitz, M. andstegun,1972) Selain fungsi gamma, digamma maupun polygamma pada penelitian ini juga menggunakan fungsi beta yang digunakan untuk menyelesaikan integral khusus.

6 2.4 Fungsi Beta Fungsi beta merupakan suatu fungsi khusus. Fungsi ini dapat digunakan untuk menyederhanakan integral-integral khusus. Definisi 2.4 Fungsi beta yang dinotasikan dengan B(a, b) didefinisikan sebagai: B a, b = 1 x a 1 (1 x) b 1 dx 0 ; a > 0, b > 0 (2.4) Rumus rekursi untuk fungsi beta adalah: B a, b = Г a Г b Г a + b (2.5) (James B. McDonald, Yexio J.Xu,1993) Selanjutnya akan dibahas mengenai distribusi eksponensial sebagai pembanding dengan distribusi generalized eksponensial. 2.5 Distribusi Eksponensial Distribusi eksponensial merupakan salah satu distribusi kontinu dan salah satu kasus khusus dari distribusi gamma. Didefinisikan sebagai berikut : Definisi 2.5 Misalkan X adalah peubah acak, menyebar menurut distribusi eksponensial dengan parameter λ > 0 dimana fungsi densitasnya adalah: f x = λe λx ; x > 0; λ > 0 0 ; x lainnya (2.6) s

Observation number 7 dimana: X: Peubah acak λ : Paramater skala Berikut ini adalah bentuk grafik dari distribusi eksponensial. 10 9 8 7 Prob. Density Fcn a=1,b=10 a=1,b=40 a=1,b=70 6 5 4 3 2 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Survival time Gambar 1 Grafik fungsi kepekatan peluang distribusi eksponensial (Gupta dan Kundu, 1999) Pokok kajian dalam penilitian ini yaitu distribusi generalized eksponensial yang akan dibahas pada sub-bab selanjutnya 2.6 Distribusi Generalized Eksponensial Distribusi Generalized Eksponensial pertama kali diperkenalkan oleh Gupta dan Kundu pada tahun 1999. Distribusi ini diambil dari salah satu fungsi kepadatan

8 kumulatif yang digunakan pada pertengahan abad 19 (Gompertz-Verhulst) untuk membandingkan tabel kematian dan menghasilkan laju pertumbuhan penduduk. Yang didefinisikan sebagai berikut : G t = 1 ρe tλ α (2.7) Kemudian dengan menstandarisasikan ρ = 1 dan x = t, maka didapat Univariate Generalized Exponential distribution dengan fungsi kepadatan kumulatif (fkk) dan x > 0, adalah sebagai berikut : F x; α, λ = 1 e λx α (2.8) dari turunan fungsi kepadatan kumulatif di atas, juga didapat fungsi kepadatan peluangnya (fkp) dari distribusi generalized eksponensial. Definisi 2.6 Misalkan X adalah peubah acak dari distribusi generalized eksponensial dengan dua parameter, maka menurut Gupta dan Kundu (1999), fungsi kepekatan peluang dari peubah acak tersebut adalah f x; α, λ = αλe λx 1 e λx α 1 ; α > 0, λ > 0, x > 0 0 ; x lainnya (2.9) dengan : X = peubah acak α = parameter bentuk λ = parameter skala e = 2,7183 Dimana α dan λ masing masing adalah parameter bentuk dan parameter skala. Ini jelas bila α = 1, maka distribusi diatas merupakan distribusi eksponensial. Berikut ini merupakan bentuk grafik dari distribusi generalized eksponensial.

Observation number 9 20 18 16 14 Prob. Density Fcn a=10,b=50 a=50,b=25 a=75,b=10 12 10 8 6 4 2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Survival time Gambar 2 Grafik fungsi kepekatan peluang dari distribusi generalized eksponensial (Gupta dan Kundu, 1999) Pada sub-bab selanjutnya akan diuraikan definisi fungsi pembangkit momen yang akan digunakan untuk mencari momen dari distribusi generalized exponential. 2.7 Fungsi Pembangkit Momen Fungsi pembangkit momen dari suatu distribusi digunakan untuk mencari momen dari suatu distribusi tersebut. Fungsi pembangkit momen dapat diperoleh dari ekspetasi e tx dari suatu distribusi tersebut. Definisi 2.7 Fungsi Pembangkit Momen peubah acak X diperoleh dari E(e tx ) dan dinyatakan dengan M X t = E e tx.

10 Bila X merupakan peubah acak diskrit, maka E e tx = e tx f x (2.10) x dan bila X merupakan peubah acak kontinu, maka E e tx = e tx f x dx (2.11) (Hogg dan craig, 1965) Teorema 2.1 : Bila fungsi pembangkit momen dari peubah acak X ada untuk t T, untuk T > 0, maka E(X r ) dengan (n = 1,2,3, ), maka E X r = M X r (0). E X r = M X r 0 = dr dt r M X t t=0 (2.12) (Edward J. Dudewicz & Satya N.Mishra, 1995) Bukti : Diketahui bahwa M X t = E e tx, dengan menggunakan deret Maclaurin : e Y = 1 + Y + Y2 + Y3 + + Yr 2! 3! (2.13) Jika y diganti tx maka : Sehingga diperoleh : M X t = E e tx e tx = 1 + tx + (tx)2 2! + (tx)3 3! + + (tx)r = E 1 + tx + tx 2 2! + tx 3 3! + + tx r = E 1 + E tx + E tx 2 2! + E tx 3 3! + + E tx r

11 M X t = E 1 + te X + (t)2 2! = 1 + te X + (t)2 2! E X 2 + (t)3 3! E X 2 + (t)3 3! E X 3 + + (t)r E X 3 + + (t)r E X r E X r Jika M X t diturunkan terhadap t, kemudian harganya sama dengan nol, maka akan diperoleh: M X (t) = E X + 2t 2! E X2 + 3t2 3! E X3 + + rtr 1 E X r M X 0 = E X = μ 1 ; momen ke-1 di sekitar titik asal M X (t) = E X 2 + 6t 3! E r(r 1)tr 2 X3 + + E X r M X 0 = E X 2 = μ 2 ; momen ke-2 di sekitar titik asal M X (t) = E X 3 r r 1 (r 2)tr 3 + + E X r M X 0 = E X 3 = μ 3 ; momen ke-3 di sekitar titik asal Sampai turunan ke-r M X r 0 = E X r = μ r ; momen ke-r di sekitar titik asal Jadi untuk mendapatkan momen ke-r dari suatu peubah acak X adalah dengan menurunkan fungsi pembangkit momen sebanyak r kali dan memasukkan nilai t = 0, sehingga terbukti bahwa: E X r = dr dt r M X t t=0 (2.14) (Walck, 2007) Dan pada sub-bab selanjutnya akan dibahas mengenai definisi momen yang merupakan karakteristik dari suatu distribusi.

12 2.8 Momen Karakterisasi terhadap suatu distribusi dapat dilakukan dengan mengkaji momen dari distribusi tersebut. Momen memiliki peran penting dalam statistika karena mampu menjelaskan sebaran dari peubah acak. Momen didefinisikan sebagai berikut : Definisi 2.8 Momen ke-r di sekitar titik asal dari peubah acak didefinisikan oleh μ r = E(X r ). Jika X peubah acak diskrit, maka μ r = E X r = x r f x x (2.15) Dan jika X peubah acak kontinu, maka μ r = E X r = x r f x dx (2.16) Bila momen pertama dan kedua di sekitar titik asal dinyatakan dengan μ 1= E X dan μ 2 = E X 2, maka rataan dan variansi suatu peubah acak dapat ditulis sebagai berikut: μ = E X = μ 1 dan Var X = μ 2 μ 2 (Walck, 2007) Pada sub-bab selanjutnya akan diuraikan mengenai fungsi pembangkit kumulan dari distribusi generalized eksponensial.

13 2.9 Fungsi Pembangkit Kumulan Fungsi pembangkit kumulan digunakan untuk menghitung kumulan dari variabel acak X. Fungsi pembangkit kumulan disimbolkan dengan φ t, didefinisikan sebagai berikut : Definisi 2.9 Fungsi Pembangkit Kumulan didefinisikan sebagai ln φ X t n=1 k n (it) n n! atau ln M X t = ln E e tx (2.17) Dimana φ X t : Fungsi Karakteristik M X t : Fungsi Pembangkit momen (Walck, 2007) Karakteristik lain dari distribusi generalized eksponensial yang akan dicari dalam penelitian ini adalah kumulan. Definisi kumulan akan diuraikan pada sub-bab selanjutnya. 2.10 Kumulan Kumulan merupakan suatu karakteristik dari suatu distribusi peluang. Kumulan dapat dicari menggunakan cara langsung atau dengan penurunan fungsi pembangkit kumulan.

14 Definisi 2.10 Kumulan k r didefinisikan sebagai berikut: ln φ X t n=1 k n (it) n n! (2.18) Dengan menggunakan deret Maclaurin maka didapat : ln φ X t = it μ 1 + 1 2 it 2 μ 2 μ 1 2 + 1 3! it 3 (2μ 1 3 3μ 1 μ 2 +μ 3 ) + 1 4! it 4 6μ 1 4 + 12μ 1 2 μ 2 3μ 1 2 4μ 1 μ 3 + μ 4 + 1 5! it 5 24μ 1 5 60μ 1 3 μ 2 + 20μ 1 2 μ 3 10μ 2 μ 3 +5μ 1 6μ 2 2 μ 4 + μ 5 + Dimana μ r momen baku, maka dapat dituis kembali sebagai berikut: k 1 = μ 1 k 2 = μ 2 μ 1 2 k 3 = 2μ 1 3 3μ 1 μ 2 + μ 3 k 4 = 6μ 4 1 + 12μ 2 1 μ 2 3μ 2 2 4μ 1 μ 3 + μ 4 Sampai kumulan ke r sebagai berikut k r = μ r r 1 n=1 r 1 n 1 k n μ r n (Kendall & Stuart, 1977) Kemudian, kumulan-kumulan diatas dapat digunakan untuk mencari skewness yang akan dijelaskan pada sub-bab selanjutnya.

15 2.11 Skewness Kemencengan atau kecondongan (skewness) adalah tingkat ketidaksimetrisan atau kejauhan simetri dari sebuah distribusi. Sebuah distribusi yang tidak simetris akan memiliki rata-rata, median, dan modus yang tidak sama besarnya. Definisi 2.11 Skewness dari suatu variable random X yang dinotasikan dengan Skew[X] didefinisikan sebagai: Skew X = E[ X μ 3 ] E[ X μ 2 ]) 3 = K 3 2 K 2 3 2 (2.19) Skewness merupakan ukuran dari kesimetrisan atau lebih tepatnya kekurangsimetrisan. Suatu distribusi dikatakan simetris jika distribusi tersebut nampak sama antara sebelah kanan dan sebelah kiri titik.pusatnya. Distribusi - distribusi yang simetris misalnya distribusi normal, distribusi t dan distribusi seragam. Distribusi distribusi yang mempunyai skewness positif misalnya distribusi eksponensial, distribusi Chi-kuadrat, distribusi Poisson dan distribusi Binomial dengan p > 0.5 sedangkan distribusi yang mempunyai skewness negatif misalnya distribusi Binomial dengan p < 0.5. (degunst dan van der Vaart, 1993) Selain itu, kumulan juga dapat digunakan untuk mencari kurtosis yang akan dijelaskan definisinya pada sub-bab selanjutnya.

16 2.12 Kurtosis Kurtosis (keruncingan distribusi data) adalah ukuran tinggi rendahnya puncak dari suatu ditribusi. Kurtosis dilambangkan dengan α 4 dan dapat diperoleh dengan rumus : α 3 = K 4 s 4 (2.20) Dimana s merupakan simpangan baku yang dapat diperoleh dari K 2. (Edward J. Dudewicz & Satya N.Mishra, 1995) Kemudian pada sub-bab terakhir akan dijelaskan mengenai fungsi karakteristik dari distribusi generalized eksponensial. 2.13 Fungsi Karakteristik Fungsi karakteristik merupakan fungsi pembangkit momen dari distribusi generalized eksponential dengan menambahkan i sebagai bagian imaginer atau momen dari (itx) atau ekspektasi dari e itx. Definisi 2.9 Fungsi karakteristik (φ X ) dari peubah acak X, didefinisikan sebagai nilai ekspektasi dari e itx, dimana i adalah unit imaginer dan t R dapat dinyatakan sebagai berikut: φ X t = E e itx = e itx df(x) = e itx f x dx (2.21) dimana φ X t = E e itx = E{cos tx + i sin(tx) = E [cos tx ] + i[e sin(tx)]

17 Dan F(x) merupakan fungsi kumulatif dari distribusi X, sedangkan f(x) merupakan fungsi kepakatan peluang dari distribusi X. (Kendall & Stuart, 1977) Pada sub-bab selanjutnya akan dijelaskan mengenai fungsi eksponensial yang juga akan digunakan dalam penelitian ini. 2.14 Fungsi Eksponensial Rumus Euler, dinamakan untuk Leonhard Euler, adalah rumus matematika dalam analisis kompleks yang menunjukkan hubungan mendalam antara fungsi trigonometri dan fungsi eksponensial. (Identitas Euler adalah kasus spesial dari rumus Euler.) Rumus Euler menyatakan bahwa, untuk setiap bilangan real x, e it = cos t + i sin t (2.22) Dimana e adalah basis logaritma natural i adalah unit imajiner Dan fungsi sekawannya e it = cos t i sin t (2.23) yang diperoleh dari cos t = cos t, sin t = sin t dengan t = nx, sehingga e inx = cos nx + i sin nx (2.24)

18 e inx = cos nx i sin nx (2.25) Persamaan (2.24) dan (2.25) dijumlahkan kemudian dibagi dengan 2 sehingga diperoleh cos nx = eitx + e itx 2 (2.26) Persamaan (2.24) dan (2.25) dikurangkan kemudian dibagi dengan 2i sehingga diperoleh sin nx = eitx e itx 2i (2.27) (Kreyszig, 1993)