Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
|
|
- Devi Gunardi
- 4 tahun lalu
- Tontonan:
Transkripsi
1 Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
2 Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi Beberapa Fungsi Distribusi Analisis Hasil Simulasi 2
3 Variabel Acak (1) Variabel Acak (Deskripsi Numerik dari hasil ekperimen) Variabel Acak Diskrit Hanya memiliki nilai tertentu Bilangan cacah Hasil perhitungan Variabel Acak Kontinu Memiliki nilai pada suatu interval tertentu Bilangan real Hasil pengukuran 3
4 Variabel Acak (2) 4
5 Contoh Variabel Acak Diskrit Jumlah kemunculan sisi muka pada pelemparan koin Jumlah anak dalam sebuah keluarga Jumlah pembeli yang memasuki sebuah toko Banyaknya produk yang rusak Variabel Acak Kontinu Usia penduduk suatu daerah Panjang beberpa helai kain Jarak kota A ke kota B Waktu produksi per unit 5
6 Pola Distribusi Masukan Hampir semua sistem nyata memiliki satu atau lebih unsur keacakan. Aktualisasi keacakan dalam simulasi sering dinyatakan sebagai fungsi distribusi probabilitas. Kesalahan atau kekurangtepatan dalam memilih fungsi distribusi probabilitas untuk menggambarkan keacakan sistem nyata akan berakibat fatal pada hasil simulasi, sehingga memungkinkan akan diperoleh kesimpulan yang bias. Untuk mengetahui pola fungsi distribusi probabilitas atas variabel acak adalah dengan mengumpulkan data historis variabel tersebut. 6
7 Beberapa Pendekatan Menggunakan langsung data historis variabel acak Pendekatan empiris metode heuristik diperoleh fungsi distribusi empirisnya Pendekatan teoritis teknik inferensif baku diperoleh fungsi distribusi teoritis P O L A D I S T R I B U S I Cara Pendugaan Ringkasan Statistik Nilai nilai pemusatan (Mean & Median) Koefisien varian Skewness Histogram & Grafik Garis 7
8 Membandingkan Histogram dengan Pola Baku 8
9 Contoh Data waktu antar kedatangan mobil yang masuk ke loket pengambilan karcis masuk jalan tol (dalam satuan detik). Pengukuran dilakukan dalam waktu 90 menit. 7,8 1 10,2 19,7 8,2 9, , ,3 1,3 13 0,9 5,2 5, ,9 7,6 12,5 4 0,7 10, ,3 2 4,2 10,7 7,7 5,8 0,9 13,8 17,3 2,5 5 10,8 13,8 8,5 8,6 9,5 1,4 12,2 22,4 10,3 2,1 0,2 0,8 0,2 26,5 3,7 6,5 28,8 2 17,6 5,7 7 2,1 21,1 21 5,2 15,5 3,8 4,6 7,6 3,8 2,5 1,1 9 2,3 3,8 11,5 7 14,5 15 2,8 7,6 9,2 12,3 6,2 23,6 0,7 7,2 1,4 3 27,6 2,5 9,3 1,1 6,5 21, ,1 4,5 9 2,8 30,2 2,9 1,5 1,5 1,2 1,7 0,3 4,2 0,4 4,6 12,6 0,6 24,8 9,9 8 0,6 1,8 14,9 3 4,6 9,4 16,6 14,4 0,6 15,4 14, ,8 1,6 16, ,9 10,4 2 2,4 34,3 1,3 5 17,4 3 4,3 15,2 0,5 6 2,5 5,4 5,2 4,1 13 5,3 6,2 2 3,8 1, ,3 3 24,9 4,3 2 10,1 7,3 9,6 10,8 4,2 22 9,4 17,4 8,9 36,6 5
10 Diperoleh beberapa besaran statistik sebagai berikut : Rata-rata = 7,94144 Median = 5,65 Variance = 57,3898 Std Deviasi = 7,5756 Minimum = 0,1 Maksimum = 39,0 Std Skewness = 8,89099 (miring ke kiri/menjulur ke kanan) Std Kurtosis = 6,72817 Koef. Var = 95,3933% (mendekati angka 1)
11 Histogram waktu antar kedatangan mobil yang dibandingkan dengan kurva fungsi eksponensial baku :
12 Uji Distribusi Dilakukan untuk mengetahui seberapa baik dan sesuai fungsi itu dapat mencerminkan pola populasinya. Beberapa cara pengujian yg sering digunakan : 1. Uji Chi-Square 2. Uji Kolmogorov-Smirnov 12
13 Uji Chi Square (1) Secara umum digunakan untuk mencari kesesuaian atau menguji ketidakadaan hubungan ntara beberapa populasi. Prosedur pengujian : Menetapkan hipotesis H 0 : Tidak ada perbedaan antara nilai atau frekuensi observasi dengan yang diharapkan H 1 : Ada perbedaan antara nilai atau frekuensi observasi dengan yang diharapkan Menentukan jumlah pengamatan (n) dan jumlah kategori (k) Menentukan level signifikan ( =k -1) 13
14 Uji Chi Square (2) Mengitung 2 Hitung Menentukan daerah penolakan hipotesiskriteria penolakan, jika nilai 2 Hitung > 2,df maka H 0 ditolak 2,df diperoleh dengan melihat tabel distribusi Chi-Square Membuat kesimpulan 14
15 Tabel Chi Square 15
16 Uji Kolmogorov Smirnov (1) Digunakan untuk menguji hipotesis bahwa distribusi variabel yang diamati berbeda dengan distribusi variabel yang diharapkan. Biasa digunakan untuk pengujian terhadap distribusi yang diasumsikan kontinu Prosedur pengujian : Menetapkan hipotesis H 0 : Distribusi dari observasi yang diharapkan tidak berbeda H 1 : Distribusi dari observasi dan yang diharapkan berbeda Menentukan jumlah pengamatan (n) Menentukan level signifikan ( ) 16
17 Uji Kolmogorov Smirnov (2) Mengitung T Hitung = Maks F(x) P(x) F(x) : fungsi distribusi kumulatif dari suatu distribusi normal P(x) : fungsi distribusi kumulatif dari suatu distribusi pengamatan. Menentukan daerah penolakan hipotesiskriteria penolakan, jika nilai T Hitung T 1- maka H 0 ditolak T 1- diperoleh dengan melihat tabel Kolmogorov-Smirnov. Membuat kesimpulan 17
18 Tabel Kolmogorov Smirnov 18
19 Beberapa Fungsi Distribusi Distribusi Diskrit Distribusi Kontinu Binomial Normal Poisson Weibull Geometric Uniform Diskrit lainnya Eksponensial Uniform lainnya 19
20 Distribusi Uniform Kontinyu U(, ) Distribusi : Densitas : Parameter :, real ; < Mean: Variansi: 20
21 Distribusi Normal N(, 2 ) Densitas : Parameter :, ; > 0 Distribusi normal standar N(0,1): 21
22 Distribusi Exponential expo( ) Distribusi : Densitas : Parameter : > 0 22
23 Distribusi Diskrit Uniform DU(i,j) Distribusi : Massa : Parameter : i, j integer ; i j Mean: Variansi: 23
24 Distribusi Poisson Poisson( ) Distribusi : Massa : Parameter : > 0 24
25 Distribusi Binomial bin(t,p) Distribusi : Densitas : Parameter : t integer ; t > 0, p (0,1) dimana Mean: tp Variansi: tp (1-p) 25
Haryoso Wicaksono, S.Si., M.M., M.Kom. 26
Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random
Mata Kuliah Pemodelan & Simulasi
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik
PEMBANGKIT RANDOM VARIATE
PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik
Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah
Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi
PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam
BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :
BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak
Distribusi Normal, Skewness dan Qurtosis
Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan
Model dan Simulasi Universitas Indo Global Mandiri
Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan
PENGUJIAN POLA DISTRIBUSI
PENGUJIAN POLA DISTRIBUSI 1. Pengujian Kolmogorov-Smirnov Normal Langkah-langkah : a. Menetapkan hipotesis H0 : data berdistribusi normal H1 : data tidak berdistribusi normal b. Menghitung statistik uji
THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP
THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL
MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1
Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan
Distribusi Peluang. Maka peubah acak X dinyatakan dengan banyaknya kemunculan angka. angka sama sekali. angka.
Distribusi Peluang Definisi peubah acak: Misalkan E adalah sebuah percobaan dengan ruang sampel T. Sebuah fungsi X yang memetakan setiap anggota t T dengan sebuah bilangan real X(t) dinamakan peubah acak.
Bab 2 DISTRIBUSI PELUANG
Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut
SATUAN ACARA PERKULIAHAN
Topik Bahasan : Membahas Silabus Perkuliahan Tujuan Umum : Mahasiswa Mengetahui Komponen Yang Perlu Dipersiapkan Dalam Matakuliah Ini satu kali Tujuan 1 Menjelaskan tentang Mengakomodasi berbagai masukan
SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS
Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika
SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks
Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan
STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP
STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan
Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu
Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat
II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi
II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull
I. PENDAHULUAN II. TINJAUAN PUSTAKA
I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat diterapkan dalam banyak hal yang memberikan keuntungan serta manfaat dalam pengaplikasiannya. Misalnya, pada
Statistika & Probabilitas
Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah
STATISTIK PERTEMUAN V
STATISTIK PERTEMUAN V Variabel Random/ Acak variabel yg nilai-nilainya ditentukan oleh kesempatan/ variabel yang bernilai numerik yg didefinisikan dlm suatu ruang sampel 1. Variabel Random diskrit Variabel
SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF (TK) KODE / SKS: KD / 2 SKS
Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika
Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1
Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI
BAB III SIMULASI PENGGUNAAN PERTIDAKSAMAAN PADA DISTRIBUSI 3.1 Pendahuluan Pada bab sebelumnya telah dibahas mengenai pertidaksamaan Chernoff dengan terlebih dahulu diberi pemaparan mengenai dua pertidaksamaan
MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan
STATISTIK PERTEMUAN VI
STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu
BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kode / SKS Program Studi Fakultas : Statistika Dasar : IT012244 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan konsep statistika dan notasi penjumlahan 1.1. Konsep statistika
Dasar-dasar Statistika Pemodelan Sistem
Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016
DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS
DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK
DISTRIBUSI VARIABEL RANDOM
DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu
Analisa Frekuensi dan Probabilitas Curah Hujan
Analisa Frekuensi dan Probabilitas Curah Hujan Rekayasa Hidrologi Universitas Indo Global Mandiri Norma Puspita, ST.MT Sistem hidrologi terkadang dipengaruhi oleh peristiwa-peristiwa yang luar biasa, seperti
FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING
FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan
PERSATUAN AKTUARIS INDONESIA
PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A70 Pemodelan dan Teori Risiko TANGGAL : 25 Juni 2013 JAM : 13.30 16.30 WIB LAMA UJIAN : 180
Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya
LANDASAN TEORI. Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan
4 II. LANDASAN TEORI Generalized Lambda Distribution (GLD) awalnya diusulkan oleh Ramberg dan Schmeiser (1974), yang memiliki empat parameter dari pengembangan distribusi Lambda Tukey. Keluarga distribusi
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah,, ST., MT UJI KERANDOMAN (RANDOMNESS TEST / RUN TEST) Uji KERANDOMAN Untuk menguji apakah data sampel yang diambil merupakan data yang acak / random Prosedur
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan
II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda
Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB
Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters
SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL
SEMINAR TUGAS AKHIR SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL (STUDI KASUS TERMINAL MIRAH PELABUHAN TANJUNG PERAK SURABAYA) Oleh : Risky Abadi 1203.109.004 Latar Belakang Pelabuhan Tanjung Perak sebagai
DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30
DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu
Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R
Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi
6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.
Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat
I. PENDAHULUAN II. TINJAUAN PUSTAKA
I. PENDAHULUAN 1.1 Latar Belakang Pada kehidupan sehari-hari, distribusi probabilitas dapat ditemukan dalam banyak hal yang dapat memberikan manfaat dalam penerapannya. Distribusi probabilitas merupakan
DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat
BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu
xiv BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2006, hal: 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi
PEMBAHASAN UTS 2015/2016 STATISTIKA 1
PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)
Distribusi Probabilitas Kontinyu Teoritis
Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi
Modul Responsi. Statistika Dasar. Dosen Pengampu: Widiarti, M.Si. Penyusun:
Daftar Isi Modul Responsi Statistika Dasar Dosen Pengampu: Widiarti, M.Si. Penyusun: Firmansyah Feri Krisnanto Mei Rusfandi Ichwan Almaza Muammar Rizki F.I. Faiz Azmi Rekatama Edisi 1 (2017) Laboratorium
BAB 2 TINJAUAN TEORITIS. Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu
BAB 2 TINJAUAN TEORITIS 2.1 Pendahuluan Menurut Open Darnius (2009, hal : 53) simulasi dapat diartikan sebagai suatu rekayasa dari suatu model secara logika ilmiah merupakan suatu metode alternatif untuk
STATISTIKA UNIPA SURABAYA
MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi
DISTRIBUSI PROBABILITAS (PELUANG)
DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,
Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.
6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling
STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial
II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam
4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik
ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG
LAPORAN RESMI PRAKTIKUM PENGANTAR METODE STATISTIKA MODUL 3 ANALISIS DATA SECARA RANDOM PADA APLIKASI MINITAB DENGAN MENGGUNAKAN DISTRIBUSI PELUANG Oleh : Diana Nafkiyah 1314030028 Nilamsari Farah Millatina
DISTRIBUSI SATU PEUBAH ACAK
0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak
CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya
CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Menyelesaikan masalah probabilitas baik secara teoritik maupun aplikasinya dalam kehidupan.
RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 306203 Nama Mata Kuliah : Probabilitas Jumlah sks : 3 sks Semester : III Alokasi Waktu
DEPARTEMEN ILMU EKONOMI F A K U L T A S E K O N O M I D A N B I S N I S S I L A B U S STATISTIK I MAS 101 / 3 SKS
S I L A B U S STATISTIK I MAS 101 / 3 SKS Deskripsi Jenis Mata Kuliah Prasyarat : Mata kuliah ini membahas tentang konsep dasar metode statistik, yaitu Statistika Deskriptif dan Statistika Inferensial,
Mata Kuliah Pemodelan & Simulasi. Riani Lubis. Universitas Komputer Indonesia
Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Sistem Antrian Antrian ialah suatu garis tunggu pelanggan yang memerlukan layanan dari satu/lebih
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas
DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)
Metode Statistika (STK 211) Pertemuan ke-5
Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak
DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1
DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori
BAB 4 HASIL DAN PEMBAHASAN
BAB 4 HASIL DAN PEMBAHASAN 4.1 Pengantar Pada Bab ini akan dilakukan pembahasan untuk menetapkan beban overbooking melalui model penghitungan. Untuk dapat melakukan penghitungan tersebut, terlebih dahulu
Simulasi Monte Carlo
Simulasi Monte Carlo Simulasi Monte Carlo Simulasi monte carlo melibatkan penggunaan angka acak untuk memodelkan sistem, dimana waktu tidak memegang peranan yang substantif (model statis) Pembangkitan
BAB II DISTRIBUSI PROBABILITAS
BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)
l.makalah DISTRIBUSI PROBABILITAS DISKRIT
l.makalah DISTRIBUSI PROBABILITAS DISKRIT Kata Pengantar Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT
REVIEW BIOSTATISTIK DESKRIPTIF
REVIEW BIOSTATISTIK DESKRIPTIF POKOK BAHASAN 1. Konsep statistik deskriptif 2. Data dan variabel 3. Nilai Tengah (Ukuran Pusat), posisi dan variasi) pada data tunggal dan kelompok 4. Penyajian data 5.
Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan
Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial
ANALISA STATISTIK DISKRIPTIF
ANALISA STATISTIK DISKRIPTIF DISTRIBUSI FREKUENSI A. Distribusi Frekuensi Katagorik Misal : Dalam penelitian persepsi masyarakat tentang akan dibangunnya suatu kawasan industri di daerah permukiman, dng
Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG
Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah
Metode Statistika STK211/ 3(2-3)
Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan
PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA
Saintia Matematika Vol. 1, No. 3 (2013), pp. 299 312. PERBANDINGAN DISTRIBUSI BINOMIAL DAN DISTRIBUSI POISSON DENGAN PARAMETER YANG BERBEDA Raini Manurung, Suwarno Ariswoyo, Pasukat Sembiring Abstrak.
Statistik Non Parametrik-2
Statistik Non Parametrik-2 UJI RUN 2 Uji Run Disebut juga uji random Bertujuan untuk menentukan apakah urutan yang dipilih atau sampel yang diambil diperoleh secara random atau tidak Didasarkan atas banyaknya
RENCANA PEMBELAJARAN SEMESTER GANJIL 2017/2018 PRODI MANAJEMEN INFORMASI KESEHATAN FAKULTAS ILMU-ILMU KESEHATAN UNIVERSITAS ESA UNGGUL
RENCANA PEMBELAJARAN SEMESTER GANJIL 2017/2018 PRODI MANAJEMEN INFORMASI KESEHATAN FAKULTAS ILMU-ILMU KESEHATAN UNIVERSITAS ESA UNGGUL Mata Kuliah : Statistik Deskriptif Kode MK : MIK321 Mata Kuliah Prasyarat
Peubah Acak dan Distribusi
BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari
I. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan praktikum II. TINJAUAN PUSTAKA 2.1 Definisi Distribusi Probabilitas
I. PENDAHULUAN 1.1 Latar Belakang Distribusi probabilitas dapat diterapkan dalam banyak hal seperti pada kehidupan sehari-hari, kegiatan bisnis maupun pada dunia industri. Distribusi probabilitas berguna
BAHAN KULIAH. Konsep Probabilitas Probabilitas Diskrit dan Kontinyu
BAHAN KULIAH Konsep Probabilitas Probabilitas Diskrit dan Kontinyu Soal UTS periode November 00 Mata Kuliah : Statistika & Probabilitas Waktu : 0 menit. Suatu sistem pipa seperti ditunjukkan pada gambar
MA2181 Analisis Data - U. Mukhaiyar 1
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:
Probabilitas & Distribusi Probabilitas
Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang
DISTRIBUSI PROBABILITAS
DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah
SATUAN ACARA PERKULIAHAN MATA KULIAH : STATISTIKA DASAR JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 2
SATUAN ACAA PEKULIAHAN MATA KULIAH : STATISTIKA DASA JUUSAN : TEKNIK KOMPUTE Minggu Pokok Bahasan ke dan TIU 1 Pendahuluan tentang konsep statistika dan notasi Sub Pokok Bahasan dan Sasaran Belajar Konsep
DISTRIBUSI KONTINU. Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U
FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah
Mata Kuliah Pemodelan & Simulasi. Universitas Komputer Indonesia
MODEL INVENTORY Mata Kuliah Pemodelan & Simulasi Jurusan Teknik Informatika Universitas Komputer Indonesia Pendahuluan Inventory merupakan pengumpulan atau penyimpanan komoditas yang akan digunakan untuk
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : STATISTIKA DAN PROBABILITAS KODE / SKS : IT042238 / 2 SKS Program Studi Teknik Mesin S1 Pokok Bahasan Pertemuan dan TIU 1 Pendahuluan memahami tentang konsep statistik
Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA
CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi
EKSPEKTASI. Achmad Basuki. Politeknik Elektronika Negeri Surabaya 2004
EKSPEKTASI Achmad Basuki Politeknik Elektronika Negeri Surabaya 004 Jam Jumlah bemo 06.00-06.30 5 06.30-07.00 9 07.00-07.30 7 07.30-08.00 7 08.00-08.30 5 08.30-09.00 4 09.00-09.30 09.30-0.00 4 0.00-0.30