Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

dokumen-dokumen yang mirip
Bab 3 Gelanggang Polinom Miring

BAB III PERLUASAN INTEGRAL

Daerah Ideal Utama Adalah Almost Euclidean

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

STRUKTUR ALJABAR: RING

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

Pengantar Teori Bilangan

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d

Pengantar Teori Bilangan. Kuliah 4

BAB I Ring dan Ring Bagian

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION

Pemfaktoran prima (2)

Sistem Bilangan Kompleks (Bagian Pertama)

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Pembahasan Soal-Soal Latihan 1.1

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

LIMIT KED. Perhatikan fungsi di bawah ini:

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

BAB I PENDAHULUAN 1.1 Latar Belakang

Volume 9 Nomor 1 Maret 2015

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

1 SISTEM BILANGAN REAL

BAB II TEORI KODING DAN TEORI INVARIAN

Rencana Perkuliahan. Semester/Kelas : VI (Enam), A. SKS/JS : 3/4 Hari/Jam/Tempat : Senin, 12-14, R-516 : Yus Mochamad Cholily

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

UNIVERSITAS GADJAH MADA. Bahan Ajar:

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

Bilangan Prima dan Teorema Fundamental Aritmatika

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

KONSTRUKSI SISTEM BILANGAN

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

UNIVERSITAS GADJAH MADA. Bahan Ajar:

2. Pengurangan pada Bilangan Bulat

BAB 4. TEOREMA FERMAT DAN WILSON

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

SIFAT GELANGGANG NOETHERIAN DAN GELANGGANG PERLUASANNYA. ABSTRAK Suatu gelanggang R disebut gelanggang Noetherian jika memenuhi sifat :

I PENDAHULUAN II LANDASAN TEORI. Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas)

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

BAB 1 PENDAHULUAN. Contoh sederhana dari ring adalah himpunan bilangan bulat Z.

KARAKTERISTIK GELANGGANG BILANGAN BULAT DAN PENGAITANNYA DENGAN TIGA STRUKTUR KHUSUS DAERAH INTEGRAL

PEMBENTUKAN IDEAL MAKSIMAL GELANGGANG POLINOM MIRING MENGGUNAKAN IDEAL GELANGGANG TUMPUANNYA

BAB 2 LANDASAN TEORI

Pertemuan 3 METODE PEMBUKTIAN

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ;

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

Parameterisasi Pengontrol yang Menstabilkan Melalui Pendekatan Faktorisasi

IDEAL DAN SIFAT-SIFATNYA

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI

PERANAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MATEMATIKA

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB II TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

BAB II TINJAUAN PUSTAKA

1 SISTEM BILANGAN REAL

HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR. Jl. Prof. H. Soedarto, S.H. Semarang 50275

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

1 INDUKSI MATEMATIKA

Antonius C. Prihandoko

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

SISTEM BILANGAN REAL

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

GLOSSARIUM. A Akar kuadrat

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

DIAGONALISASI MATRIKS KOMPLEKS

DAERAH INTEGRAL, DIU, DFT

Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

Keterbagian Pada Bilangan Bulat

Pengantar Teori Bilangan. Kuliah 10

SIFAT-SIFAT RING EUCLID SKRIPSI. Oleh: SYARIF HIDAYATULLOH NIM

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

6 Sistem Persamaan Linear

1 SISTEM BILANGAN REAL

Transkripsi:

Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang polinom. 2.1 Struktur Daerah Euclid Keberadaan suatu fungsi bernilai bulat tak negatif yang memungkinkan berlakunya algoritma pembagian di suatu daerah integral memunculkan suatu definisi daerah Euclid. Definisi 2.1.1 Suatu daerah integral D disebut daerah Euclid atau Euclidean domain (ED) jika terdapat suatu fungsi sehingga (i) untuk semua berlaku, (ii) untuk semua terdapat sehingga atau. Contoh 2.1.2 Berikut contoh-contoh daerah Euclid. a. Himpunan bilangan bulat beserta fungsi. b. Himpunan bilangan bulat Gauss (Gaussian integers) bentuk beserta suatu fungsi (Rujukan Durbin [2000], Section 37). 3

Pengkajian struktur daerah Euclid dibatasi pada kaitan daerah Euclid dua struktur aljabar lain yaitu daerah ideal utama dan daerah faktorisasi tunggal. Berikut definisi dan contoh dari kedua struktur aljabar tersebut. Definisi 2.1.3 Daerah integral D disebut daerah ideal utama atau principal ideal domain (PID) jika setiap ideal pada D merupakan ideal utama (ideal yang dibangun oleh satu unsur). Contoh 2.1.4 Himpunan bilangan bulat juga merupakan suatu daerah ideal utama karena setiap ideal pada dapat dibangun oleh satu unsur. Definisi 2.1.5 Suatu daerah integral D disebut daerah faktorisasi tunggal atau Unique Factorization Domain (UFD) jika memenuhi (i) jika dan bukan unit, maka dapat ditulis sebagai perkalian sejumlah hingga unsur-unsur tak terurai di D, yaitu unsur-unsur tak terurai ( ) dan unit di D, (ii) jika dan masing-masing dan unsur-unsur tak terurai, unit di D, maka dan untuk suatu dan. Contoh 2.1.6 Gelanggang bilangan bulat merupakan suatu daerah faktorisasi tunggal. Pernyataan ini sesuai Teorema Dasar Aritmatika (The Fundamental Theorem of Arithmetic) yang menyatakan bahwa setiap bilangan bulat lebih dari 1 dapat ditulis sebagai hasiil kali bilangan prima secara tunggal. Teorema ini dapat dilihat pada rujukan Durbin (2000), Section 13. Ketiga struktur aljabar di atas merupakan struktur atau kelas khusus dari daerah integral. Ketiganya berbeda, namun memiliki hubungan yang cukup dinilai penting dalam pengkajian ini. 4

Berikut dua buah teorema yang menyatakan hubungan antara daerah Euclid, daerah ideal utama, dan daerah faktorisasi tunggal. Teorema 2.1.7 maka D daerah ideal utama. Jika D suatu daerah integral yang merupakan daerah Euclid Bukti Misalkan D daerah integral yang merupakan daerah Euclid dan misalkan I suatu ideal di D. Akan ditunjukkan bahwa setiap ideal di D merupakan ideal utama. Untuk jelas I dibangun oleh unsur, sehingga Misalkan. Karena D merupakan daerah Euclid, maka terdapat pemetaan sehingga adalah himpunan tak hampa yang memuat bilangan nonnegatif. Perhatikan bahwa A tak hampa karena terdapat sehingga Karena yang tak hampa, maka A memilki nilai minimum misalnya. Artinya, untuk setiap berlaku. Selanjutnya, pilih sehingga, maka untuk setiap berlaku. Ambil sehingga menurut definisi daerah Euclid terdapat yang memenuhi,. Diketahui bahwa (karena ). Karena untuk setiap, maka untuk setiap. Andaikan maka, kontradiksi. Dengan demikian, haruslah. Diperoleh. Maka Sedangkan, karena Jadi, Akibatnya, D merupakan daerah ideal utama. Perlu dicatat bahwa kebalikan teorema ini tidak berlaku. Tidak setiap daerah ideal utama merupakan daerah Euclid. Contohnya, himpunan bilangan kompleks merupakan suatu daerah ideal utama namun bukan daerah Euclid (non-euclidean PID). Pembuktian dari contoh ini dapat dilihat pada rujukan Iwanto (2011) halaman 14. 5

Teorema 2.1.8 tunggal. Setiap daerah ideal utama merupakan daerah faktorisasi Bukti Misalkan R suatu daerah integral yang merupakan daerah ideal utama. Akan ditunjukkan bahwa R merupakan daerah faktorisasi tunggal. i) Pertama, akan ditunjukkan bahwa sebarang unsur tak nol dan bukan unit di R dapat dinyatakan sebagai perkalian sejumlah hingga unsur tak terurai. Misalkan, adalah unsur tak nol dan bukan unit di R. Jika tak terurai, maka selesai. Misalkan komposit (terurai) sehingga terdapat dan di R dan bukan unit yang memenuhi. Artinya, dan sebab. Jika maka artinya haruslah unit, kontradiksi. Jika dan tak terurai, selesai. Namun jika tidak, misalkan komposit (sama halnya jika komposit), sehingga ada dan di R yang bukan unit dan memenuhi sehingga dan dan seterusnya sehingga jika merupakan hasilkali sejumlah tak hingga unsur lain, maka diperoleh dan untuk setiap Selanjutnya, misalkan. Ambil sebarang, maka terdapat dan, sedemikian sehingga dan. Tanpa mengurangi keumuman misalkan, maka sehingga dan. Untuk dan berlaku dan. Perhatikan bahwa, maka dan. Jadi, ideal di R. Karena R merupakan daerah ideal utama maka terdapat sehingga. Karena,, maka untuk suatu. Jadi,. Diperoleh,. Padahal,. Diperoleh kontradiksi. Maka haruslah ada sehingga untuk setiap. Jadi, unsur sebarang dapat dinyatakan sebagai hasil kali sejumlah hingga unsur tak terurai. 6

ii) Selanjutnya, akan ditunjukkan bahwa penulisan unsur tak nol dan bukan unit di R sebagai perkalian sejumlah hingga unsur tak terurai adalah tunggal. Ambil. Misalkan dan adalah unsur-unsur tak terurai di R serta u dan v adalah unit di R. Tanpa mengurangi keumuman, misalkan. Perhatikan bahwa, hal ini berarti. Akibatnya, untuk suatu. Misalkan. Karena tak terurai, maka, unit. Jadi, diperoleh. Andaikan. Karena R komutatif, mengulangi proses, akan diperoleh Karena haruslah Persamaan terakhir menimbulksn kontradiksi karena tidak mungkin unsur-unsur tak terurai membagi 1. Dengan demikian pengandaian di atas salah dan haruslah. Selanjutnya, untuk setiap terdapat sehingga atau, unit. Jadi, ( dan sekawan/ associated). Seperti juga teorema sebelumnya, Teorema 2.1.8 ini pun tidak berlaku sebaliknya. Tidak semua daerah faktorisasi tunggal merupakan daerah ideal utama. Contohnya, yaitu gelanggang polinom atas bilangan bulat. Himpunan polinom konstanta genap membentuk ideal di namun bukan merupakan ideal utama. Contoh ini dapat dilihat di rujukan Durbin (2000), Section 41. 7

Dari uraian di atas dapat disimpulkan bahwa daerah Euclid merupakan daerah ideal utama dan juga merupakan daerah faktorisasi tunggal. Hal ini dapat digambarkan dalam bagan berikut. Daerah Euclid Daerah Ideal Utama Daerah Faktorisasi Tunggal 2.2 Gelanggang Polinom atas Lapangan sebagai Daerah Euclid Berikut akan diuraikan mengenai gelanggang polinom dan kaitannya struktur aljabar yang telah dijelaskan pada Subbab 2.1. Definisi 2.2.1 Misalkan R suatu gelanggang komutatif unsur kesatuan (untuk selanjutnya gelanggang R selalu dimaksudkan bersifat komutatif juga unsur kesatuan kecuali jika disebut lain). Polinom dalam atas R berbentuk. Dengan definisi ini dapat dikatakan sebagai variabel tak diketahui dan R sebagai gelanggang koefisien dari polinom tersebut. Jika maka adalah derajat polinom dan disebut koefisien utama (leading coefficient). Polinom-polinom tersebut dihimpun dalam suatu gelanggang polinom Contoh 2.2.2 adalah gelanggang polinom atas bilangan bulat, yaitu himpunan polinom berbentuk masing-masing bilangan bulat. 8

Contoh di atas merupakan suatu contoh gelanggang polinom atas gelanggang (koefisien-koefisien dari polinom-polinomnya merupakan anggota suatu gelanggang). Namun, jika kita melihat ke ruang yang lebih khusus daripada gelanggang yaitu lapangan, akan ditemukan bahwa suatu gelanggang polinom atas lapangan merupakan suatu daerah Euclid. Misalkan F suatu lapangan. Kita dapat membentuk suatu gelanggang polinom atas F yang berbentuk: Karena F adalah suatu lapangan maka F merupakan daerah integral. Berikut pembuktiannya. Ambil sebarang dan akan dibuktikan bahwa atau. Misalkan. Karena F lapangan dan maka terdapat demikian sehingga diperoleh atau. Selanjutnya, karena F adalah daerah integral maka merupakan daerah integral. Perhatikan bahwa untuk setiap di dan berlaku atau. Misalkan pemetaan untuk setiap (i) Untuk setiap. Perhatikan bahwa dan berlaku. Maka,. Jadi, 9

(ii) Juga untuk setiap Untuk, pilih dan, maka berlaku. Dalam hal ini, jelas. Untuk, terapkan induksi matematika pada. Misalkan sifat berlaku untuk. Selanjutnya, akan dibuktikan juga sifat berlaku untuk. Misalkan dan, dan. Pandang dua kasus: a) Jika. Pilih dan. Diperoleh. b) Jika. Pandang. Dalam hal ini,. Menurut hipotesis induksi terdapat dan di yang memenuhi hubungan atau. Diperoleh Tulis maka. Dengan uraian di atas terbukti bahwa gelanggang polinom atas suatu lapangan merupakan suatu daerah Euclid yang berarti juga merupakan daerah ideal utama dan daerah faktorisasi tunggal. 10