UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI

Ukuran: px
Mulai penontonan dengan halaman:

Download "UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI"

Transkripsi

1 R N E/R N / E E -

2 R tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba omput ().. aktu yag disdiaka mit utuk mgjaka ts tsbut.. ada stiap buti soal tdapat (mpat) piliha jawaba.. iksa da bacalah soal-soal sblum da mjawabya.. apoka kpada pgawas ujia apabila tdapat lmba soal yag kuag jlas, usak, atau tidak lgkap.. idak diizika mgguaka kalkulato,, tabl matmatika, atau alat batu hitug laiya.. iksalah pkjaa da sblum disahka kpada pgawas ujia.. mba soal bolh dicot-cot utuk mgjaka hituga. E ENERN N ak taa /

3 . asil dai + ( ) adalah asil dai ( ) : adalah uhu spotog dagig di lmai s mula-mula. ika dagig tsbut dikluaka dai lmai s, suhuya aik tiap mit. uhu dagig stlah mit dikluaka dai lmai s adalah dai,, da adalah buah toko dikujugi olh pmasok sabu madi stiap hai skali, pmasok miyak gog stiap hai skali, da pmasok tpug tigu stiap hai skali. ika pada taggal gustus ktiga pmasok datag bsamaa, mka aka datag bsamaa lagi pada taggal..... gustus. gustus. gustus. ptmb.. =

4 . uta pcaha ; %;,;. ; ;,; %. ;,; %;. ; %;,;. ;,; ; % dai yag tbsa adalah..... = : = tuk ps dai pcaha adalah..... %. %. %. %. yah mmiliki dua batag pipa spajag m da m. tlah dipasag di kama madi, pipa milik ayah tsisa, mt. ajag pipa yag dipasag di kama madi adalah... m..... N ak taa /

5 . badiga jumlah buug da kucig yag diplihaa siswa klas adalah :. ika jumlah kdua jis hwa tsbut ko, jumlah kucig yag diplihaa adalah... ko yah aka mmbuat kolam ika bbtuk psgi pajag. ada dah bskala :, kolam tsbut digambaka dga ukua pajag cm da lba cm. uas sbaya kolam ika yag aka dibuat ayah adalah... m alam sbuah kgiata amuka, stiap klompok siswa haus bjala dai pos ptama higga pos ktiga. aak ataa pos ptama da kdua km lbih m. aak pos kdua da ktiga, dam. lisih jaak yag haus ditmpuh siswa saat bjala dai pos ptama k pos kdua dga pjalaa dai pos kdua k pos ktiga adalah... m buah ag mmiliki psdiaa kuital bas,, to tpug tigu, da kg sagu. umlah baag yag dimiliki ag tsbut adalah... kg akk busia dasawasa tahu. sia ayah widu tahu lbih muda dai kakk. sia ayah adalah... tahu.....

6 . buah pkbua mmiliki luas ha. kbua tsbut ditaami poho lada sluas a, poho coklat sluas. m², da sisaya aka dibagu sbuah gudag pyimpaa. uas laha yag aka dibagu gudag pyimpaa adalah... m oag pdagag bsi mmasukka bsi k dalam tiga dum yag bukua. ml, lit, da dm. ika hai ii ada moto yag mmbli bsi dagagaya masig-masig lit, sisa bsi pdagag tsbut adalah... lit alam waktu mit, sbuah bduga mdapat tambaha ai dai sbuah sugai sbayak m. bit ai sugai tsbut adalah... lit/dtik hatika sifat-sifat bagu data bikut! miliki spasag sisi yag sjaja. dapat dua pasag sudut yag sama bsa da diagoalya sama pajag. agu data yag mmiliki sifat-sifat tsbut adalah..... psgi. layag-layag. tapsium siku-siku. tapsium sama kaki. lilig bagu data bikut adalah... cm..... cm cm. lilig bagu data bikut adalah... cm..,.,. cm. N ak taa /

7 . uas bagu data bikut adalah... cm..... cm cm. uas bagu data bikut adalah... cm.. cm uas gabuga bagu data bikut adalah... cm..... cm. lilig pmukaa mja yag bbtuk psgi pajag adalah cm. ika lba pmukaa mja tsbut cm, pajag pmukaa mja tsbut adalah... cm olum tabug di sampig adalah... cm olum bagu uag bikut adalah... cm..... cm cm cm cm cm. amba bikut mupaka jaig-jaig bagu..... tabug. kucut. pisma sgitiga. limas sgi mpat

8 . hatika bidag koodiat bikut! N itik yag bada pada koodiat (, ) adalah titik N. ayak sumbu simti bagu sgitiga sama sisi adalah amba pcmia bagu data bikut yag tpat adalah N ak taa /

9 . hatika data ilai ujia akhi matmatika siswa klas pada tabl bikut! Nilai ayak iswa umlah siswa yag mdapat ilai tdah da ttiggi adalah... oag ikut adalah data cita-cita siswa klas. ita-ita ayak iswa okt gusaha uu olisi iagam yag ssuai dga data tsbut adalah..... olisi o uu o okt o gusaha o. okt o olisi o gusaha o uu o. okt o gusaha o olisi o uu o. olisi o okt o uu o gusaha o. ikut adalah data bayak buah yag tjual di sbuah toko buah dalam smiggu (dalam kg). umlah jual (kg) ika jumlah sluuh pjuala dalam smiggu kg, bayak pjuala magga... kg..... pl uk agga uku alak is uah

10 . abl bikut mujukka hasil pjuala asi di sbuah waug maka dalam shai. is Nasi jual (piig) Nasi ams Nasi uduk Nasi kbuli Nasi gog Nasi kuig Rata-ata bayak stiap jis asi yag tjual pada hai itu adalah... piig hatika diagam kgmaa siswa klas bikut! yayi % lukis % lahaga ai % ika bayak siswa yag gma mai aak, slisih bayak siswa yag gma myayi da olahaga adalah... aak ikut adalah data hasil pa bawag mah slama tahu. kuital kuital kuital kuital kuital kuital dia dai data di atas adalah..... kuital. kuital. kuital. kuital. iagam batag bikut mujukka data mata pcahaia pduduk di sa mai. umlah tai uuh Nlayadagaggawai gi ata cahaia odus mata pcahaia pduduk di dsa tsbut adalah..... pgawai gi. laya. ptai. buuh. ikut tabl data bayak pasi yag bobat di sbuah usksmas dalam mpat hai. ai ayak asi i lasa Rabu amis Rata-ata bayak pasi yag bobat stiap haiya adalah... oag..... N ak taa /

11 uci awaba yout atmatika

12 a l a h a l a h a l a h ama / / : alilah kalimat bikut ii: aya mgjaka ujia dga juju... aggal jia... Nama ata jia (ilaglah salah satu) ada aga sta R / N ERN / N / EbR wbn N otoh caa myilag N EER :. silah haya dga psil.. mba awaba ii tidak bolh koto, basah, obk, atau tlipat.. awablah dga mmbi ada ilag (x) pada salah satu kotak piliha jawaba yag ba.. ulislah ama sta pada kotak yag disdiaka, lalu silaglah (x) kotak di bawahya ssuai dga huuf di atasya.. ulislah omo sta da aggal ahi pada kolom yag disdiaka, lalu silaglah (x) kotak di bawahya ssuai dga agka di atasya.. ilaglah (x) kotak pada kolom ama ata jia yag sdag diujika.. ulislah ama kolah, aggal jia da ubuhka ada aga pada kotak yag disdiaka.. ika salah, hapus sbsih mugki dga kat pghapus. mudia, silaglah (x) kotak yag ba. N o m o s t a aggal ahi gl bl h ahasa dosia atmatika w b N ilah tada () pada salah satu piliha jawaba yag ba N ak taa /

TRYOUT MATEMATIKA UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI MA12TEMATIKA TAHUN AJARAN 2017/2018. SDN Perak Utara I/58, Surabaya

TRYOUT MATEMATIKA UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI MA12TEMATIKA TAHUN AJARAN 2017/2018. SDN Perak Utara I/58, Surabaya / / / ak taa /, uabaya tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

TRYOUT 3 UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI ILMU PENGETAHUAN ALAM

TRYOUT 3 UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI ILMU PENGETAHUAN ALAM R N E/R N / ENEN ENE - R tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

TRYOUT IPA UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI IPA TAHUN SDN Perak Utara I/58, Surabaya

TRYOUT IPA UJIAN SEKOLAH/MADRASAH TINGKAT SD/MI IPA TAHUN SDN Perak Utara I/58, Surabaya / / - ak taa /, uabaya tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

ILMU PENGETAHUAN ALAM

ILMU PENGETAHUAN ALAM R N E/R N / ENEN - R tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN SEMARANG SMP NEGERI SATU ATAP AMBARAWA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN KABUPATEN SEMARANG SMP NEGERI SATU ATAP AMBARAWA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 / ata elajaran : atematika ari, anggal : abu, aktu :.. etunjuk mum:. ulislah nomor ujian nda pada lembar jawab yang telah disediakan.. acalah dengan teliti petunjuk dan cara mengerjakan soal.. erjakan

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las

Sambungan Las. Sambungan las ada dua macam, yaitu: Tegangan: - las tumpul. - las sudut. las Sambuga Las Sambuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: as 0, 6 a Las Tumpu: s s s=a Utuk s = s ---- tba as tumpu (a) = s Utuk s s ----- tba as tumpu (a) = s mi as = a ---- = pajag as

Lebih terperinci

STRUKTUR BAJA I. Perhitungan Sambungan Las

STRUKTUR BAJA I. Perhitungan Sambungan Las STRUKTUR BAJA I rhituga Samuga Las Samuga Las Samuga as ada dua macam, yaitu: - as tumpu - as sudut Tgaga: σ as σ 0, 6σ a Las Tumpu: s s sa Utuk s s ---- ta as tumpu (a) s Utuk s s ----- ta as tumpu (a)

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat

SISTEM PENGOLAHAN ISYARAT. Kuliah 7 Transformasi Fourier Cepat TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 7 Tasomasi Foui Cpat FFT : Fast Foui Tasom Idah Susilaati, S.T., M.Eg. Pogam Studi Tkik Elkto Fakultas Tkik da Ilmu Komput Uivsitas Mcu Buaa Yogyakata 9 KULIAH 7 SISTEM

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Kita meilai diri kita dega megukur dari apa yag kita rasa mampu utuk kerjaka, orag lai megukur kita dega megukur dari adap yag telah kita

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- ( ) a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a ) atau S (a ( ) b) Dega S dapat juga

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A.

KUNCI JAWABAN UJI KOPETENSI SEMESTER 1 A. KUNCI JWN UJI KOPETENSI SEMESTER. Piliha Gada. Jawaba: b Titik da G mempuyai fase sama sebab aahya sama (ke atas) da beada di atas gais setimbag (sb x).. Jawaba: d Gelmbag elektmagetik adalah gelmbag yag

Lebih terperinci

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT

BAB 1 HAMPIRAN TAYLOR DAN ANALISIS GALAT Catata Kuliah EL Aalisis Numrik BAB HAMPIRAN TAYLOR DAN ANALISIS GALAT. Pgatar Mtod Numrik Ktika kita mylsaika prsamaa-prsamaa matmatika di maa torma-tormaya masih dapat ditrapka, solusi aalitik atau solusi

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR

METODE NEWTON-STEFFENSEN DENGAN ORDE KEKONVERGENAN TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR METDE NEWTN-STEFFENSEN DENGN RDE KEKNVERGENN TIG UNTUK MENYELESIKN PERSMN NNLINER Fitiai, Joha Kho, Supiadi Puta Mahaiwa Pogam Studi S Matmatika FMIP Uivita Riau Do JuuaMatmatika FMIP Uivita Riau Fakulta

Lebih terperinci

TRYOUT B. INDONESIA 1

TRYOUT B. INDONESIA 1 R. NNE R NNE N / N RN / tujuk mum. sika idtitas da k dalam mba awaba omput () yag tsdia dga mgguaka psil, ssuai ptujuk di mba awaba omput ().. ilaglah () jawaba pada huuf yag da aggap ba k dalam mba awaba

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret

SISTEM PENGOLAHAN ISYARAT. Kuliah 6 Transformasi Fourier Diskret TKE 43 SISTEM PEGOLAHA ISYARAT Kuliah 6 Tafomai Foui Dik Idah Suilawai, S.T., M.Eg. Pogam Sudi Tkik Elko Fakula Tkik da Ilmu Komu Uivia Mcu Buaa Yogyakaa 9 KULIAH 6 SISTEM PEGOLAHA ISYARAT TRASFORMASI

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan SMA - ELUANG A. Kaidah emutasi da kombiasi. emutasi : Bayakya kemugkia dega mempehatika uuta ada Misalka A,B,,D Tejadiya 2 kemugkia kejadia yaitu : AB, A,AD, BA,B,BD, A,B,D, DA,DB,D 2 kemugkia 4 ; 2 Rumusya

Lebih terperinci

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dega caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia adalah

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar, istilah istilah dan definisi II. TINJAUAN PUSTAKA Pada bab ii aka dibeika bebeapa kosep dasa, istilah istilah da defiisi yag eat kaitaya dega masalah yag haus dibahas yaitu megeai bayakya caa megkostuksi Dyck path dega pajag k upstokes

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

Dari DFT menjadi FFT

Dari DFT menjadi FFT Dai DFT mnjadi FFT D Eng Risanui Hidayat Juusan Tni Elt FT UGM, Ygyaata I PEDAHULUA Biut aan dijlasan Dmpsisi DFT shingga mnjadi FFT dngan algithma Cly and Tuy II PERSAMAA DFT DFT mmpunyai psamaan () Dngan

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t}

TEORI ANTRIAN. Elemen Dasar Model Antrian. Distribusi Poisson dan eksponensial. =, t 0, dimana E { t} Elm Dasar Modl Atria. TEORI ANTRIAN Aktor utama customr da srvr. Elm dasar :. distribusi kdataga customr.. distribusi waktu playaa. 3. disai fasilitas playaa (sri, parall atau jariga). 4. disipli atria

Lebih terperinci

BAB 2 SOLUSI NUMERIK PERSAMAAN

BAB 2 SOLUSI NUMERIK PERSAMAAN BAB SOLUSI NUMERIK PERSAMAAN Dalam sais da rkayasa, kita srigkali harus mcari akar solusi dari prsamaa f 0. Jika f mrupaka fugsi poliomial liar atau kuadratis, solusi ksakya mudah utuk didapatka kara rumusya

Lebih terperinci

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah...

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah... . Igkara dari kalimat Jika koruptor tidak dapat ditagkap, maka rakyat tidak percaya kepada aparat hukum adalah... A. Jika koruptor dapat ditagkap, maka rakyat percaya kepada aparat hukum B. Jika koruptor

Lebih terperinci

Inflasi dan Indeks Harga I

Inflasi dan Indeks Harga I PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data

Lebih terperinci

Transformasi Fourier Waktu Diskrit

Transformasi Fourier Waktu Diskrit Praktikum Isyarat da Sistm Topik 5 Trasformasi ourir Waktu Diskrit Tuua Mahasiswa dapat mtuka da mgguaka trasformasi ourir waktu diskrit dalam aalisa suatu sistm LTI Mahasiswa dapat mgguaka MATLAB sbagai

Lebih terperinci

Statistik (statistics)

Statistik (statistics) Matematika-Fisika-Kimia Jadi Mudah & Meyeagka R Statistik (statistics) Modul Pelatiha Guru soal-soal yag dijelaska. Rataa ilai ulaga dari 4 orag murid sama dega 6. Jika ilai dari dua orag murid tidak disertaka

Lebih terperinci

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika Evaluasi Belajar Tahap Akir Nasioal Tahu 987 Matematika EBTANAS SMP 87 0 Diagram di awah yag merupaka jarig-jarig kuus adalah I II III IV I, II da IV I, II da III II, III da IV I, III da IV EBTANAS SMP

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

SILABUS PEMBELAJARAN. Pencapaian Kompetensi

SILABUS PEMBELAJARAN. Pencapaian Kompetensi SILABUS PEMBELAJARAN Sekolah Kelas Mata Pelajara Semester : SMP NEGERI 3 MAGELANG : VIII (Delapa) : Matematika : I (satu) ALJABAR Stadar :1. Memahami betuk aljabar, relasi, fugsi, da persamaa garis lurus

Lebih terperinci

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com

Kombinatorial dan Peluang. Adri Priadana ilkomadri.com Kombiatorial da Peluag Adri Priadaa ilkomadri.com Pedahulua Sebuah kata-sadi (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa bayak kemugkia kata-sadi yag dapat dibuat?

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z

BAB 2. Teori Pendukung Lingkungan. Misalkan z. adalah suatu titik pada bidang dan r adalah bilangan nyata. positif. Lingkungan r bagi z BAB Toi Pdukug.. Ligkuga Misalka z adalah suatu titik pada bidag da adalah bilaga yata positi. Ligkuga bagi z -ighbohood o z didiisika sbagai sluuh titik z pada bidag, sdmikia shigga z z < ; ditulis z,.

Lebih terperinci

KORELASI DAN REGRESI BERGANDA

KORELASI DAN REGRESI BERGANDA KORELASI DAN REGRESI BERGANDA KORELASI BERGANDA Koelasi begada meupaka alat uku megeai hubuga yag tejadi ataa vaiabel depede () dega dua atau lebih vaiabel idepede,. Dega koelasi begada kekuata atau keeata

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1

4. KOMBINATORIKA ... S 1. S n S 2. Gambar 4.1 4. KOMBINATORIKA 4. Atua Utuk Suatu Peistiwa Evet sesuatu yag tejadi. Jika peistiwa A dapat tejadi dalam m caa da peistiwa B dapat tejadi dalam N caa, maka tedapat (m, ) caa kedua peistiwa tejadi besama-sama.

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi.

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi. SOL-SOL HOTS. LJBR Pagkat Bulat Positif, Betuk kar, da Logaritma 1. Jumlah bakteri pada saat mula-mula adalah M 0. Karea suatu hal, setiap selag satu hari jumlah bakteri aka leyap r%. Jika M0 1.0 da r

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

VIII. KELEMBAGAAN PENGELOLAAN ENERGI

VIII. KELEMBAGAAN PENGELOLAAN ENERGI VIII. KELEMBAGAAN PENGELOLAAN ENERGI Kondisi obyktif pnglolaan ngi di Nusa Pnida dapat dikmukakan bdasakan tahapan pnglolaan yang mliputi tahap pncanaan, plaksanaan, dan pngndalian. Pada tahap pncanaan

Lebih terperinci

Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh :

Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh : Pmbahasan Soal SELEKSI MASUK UNIVERSITAS INDONESIA Disrtai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Olh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pmbahasan Soal SIMAK UI 2011 Matmatika

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT

Oleh: Yunissa Rara Fahreza Akuntansi Teknologi Sistem Informasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT Oleh: Yuissa Rara Fahreza Akutasi Tekologi Sistem Iformasi KOMBINATORIAL & PELUANG DISKRIT : PERMUTASI MATEMATIKA DISKRIT ILUSTRASI 1 Misal ada 3 buah kelereg yag berbeda wara : merah (m), kuig (k) da

Lebih terperinci

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1

LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1 LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat

Lebih terperinci

UJIAN TENGAH SEMESTER STATISTIKA

UJIAN TENGAH SEMESTER STATISTIKA UJIAN TENGAH SEMESTER STATISTIKA Sei, 5 Jui 9 Ope Book meit ATATAN Dr. Ir. Istiarto, M.Eg. Soal ujia ii utuk dikerjaka sediri tapa kerjasama dega orag lai. Tidak ada pegawasa oleh petugas jaga selama ujia

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra

METODE SECANT-MIDPOINT NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Supriadi Putra METODE SENT-MIDPOINT NEWTON UNTUK MENYELESIKN PERSMN NONLINER Supriadi Putra [email protected] Laboratorium Komputasi Jurusa Matmatika Fakultas Matmatika da Ilmu Pgtahua lam Uivrsitas Riau Kampus Biawidya

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga)

INTEGRAL FOURIER. DISUSUN OLEH : Kelompok III (Tiga) INTEGRA FOURIER DISUSUN OEH : Klompok III (Tiga). Maruah (7 6). Yusi Oktavia (7 45 ) 3. Widya Elvi AS (7 45) 4. Azar Saarudi (7 454) 5. Irmaati (7 455) Mata Kuliah Dos Pgasuh Klas : Matmatika ajuta : Fadli,

Lebih terperinci

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian

TEORI ANTRIAN. A. Definisi dan Unsur-unsur Dasar Model Antrian TEORI ANTRIAN Tori atria mrupaka studi matmatis mgai atria atau waitig lis yag di dalamya disdiaka bbrapa altratif modl matmatika yag dapat diguaka utuk mtuka bbrapa karaktristik da optimasi dalam pgambila

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Antena Array 4 Patch Mikrostrip Sirkular Pada Frekuensi MHz

Antena Array 4 Patch Mikrostrip Sirkular Pada Frekuensi MHz Ata Aay 4 Patch Mikostip Sikula Pada Fkusi 2300-2400 MHz Si Hadiati*, Yuyu Wahyu*, Foli Oktafiai*, *)Pliti Pusat Plitia Elktoika da Tlkomuikasi (PPET-LIPI) Jl. Sagkuiag Badug 40135 -mail:[email protected]

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2011 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 1. Jia x adalah jumlah 99 bilaga gajil terecil yag lebih besar

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

Bahan Bacaan 3.3 Volume Bangun Ruang

Bahan Bacaan 3.3 Volume Bangun Ruang Bahan Bacaan 3.3 Volume Bangun Ruang Dalam kehidupan sehari-hari, banyak kejadian-kejadian/peristiwa-peristiwa yang berhubungan dengan pengukuran, khususnya pengukuran tentang volume. Contoh: berapa gelas

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP)

FUNGSI RASIONAL DAN EKSPANSI FRAKSI PARSIAL (EFP) UNGSI RASIONAL DAN EKSPANSI RAKSI PARSIAL (EP) Ap Namuokhma Juua Tkik Elko Uivia Jdal Achmad Yai Mach EL Siyal da Sim Tuua Blaa : mgahui buk poliomial aau pamaa uku bayak dalam vaiabl mghiug aka-aka poliomial

Lebih terperinci

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?

Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu

Lebih terperinci

PDP 03 Tipe Data, Operator dan Expresi

PDP 03 Tipe Data, Operator dan Expresi PDP 03 Tipe Data, Operator da Expresi Petujuk Umum: Selesaika semua permasalaha di bawah ii dega alat batu compiler gcc (migw atau code block) Sebagai peujag utuk megerjaka pdp 03 di lab. Maka ada harus

Lebih terperinci

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü PRSIAPAN UTS MATH IPS BHS. Jagkaua dari 4, 42, 2, 0, 4, 62, 8,, 60, 2, 4, 48,, 44,, 7 adalah.... J = 62 2 = 7 ü 2. Jika rataa 4, 0, 22, m, 6 adalah 8 maka a =... 4 + 0 + 22 + m + 6 8 = 0 = m + 62 m = 28

Lebih terperinci

LAMPIRAN-LAMPIRAN 110

LAMPIRAN-LAMPIRAN 110 LAMPIRAN-LAMPIRAN 110 Lampira 1. Kuesioer SURAT PERMOHONAN Perihal : Permohoa Batua Pegisia Kuesioer Peelitia No : Kepada Yth : Bpk/Ibu/Sdr-I Selaku Respode Di Tempat. Dega Hormat, Dalam ragka memeuhi

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

Algoritma Branch and Bound pada Permasalahan 0-1 Knapsack

Algoritma Branch and Bound pada Permasalahan 0-1 Knapsack Algoritma Brach ad Boud pada Permasalaha 0-1 Kapsack Sady Socrates (13508044) Program Studi Tekik Iformatika 2008, Istitut Tekologi Badug Jl. Gaesha 10, 40116 Badug e-mail: [email protected]

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

BILANGAN BAB V BARISAN BILANGAN DAN DERET

BILANGAN BAB V BARISAN BILANGAN DAN DERET Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh

Lebih terperinci

MOMEN, KEMIRINGAN, DAN KURTOSIS

MOMEN, KEMIRINGAN, DAN KURTOSIS 00 MOMEN, KEMIRINGAN, DAN KURTOSIS Achmad Samsudi, S.Pd., M.Pd. Juusa Pedidika Fisika FPMIPA Uivesitas Pedidika Idoesia /8/00 MODUL MOMEN, KEMIRINGAN, DAN KURTOSIS Achmad Samsudi, S.Pd., M.Pd. Pedahulua

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 10

MODUL MATEMATIKA SMA IPA Kelas 10 SMA IPA Kelas 0 A. BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- (U ) U a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a U ) atau S (a ( ) b) Dega

Lebih terperinci

Komang Suardika, Jurusan Pendidikan Fisika Fisika Kuantum

Komang Suardika, Jurusan Pendidikan Fisika Fisika Kuantum Komag Suadika, Juusa Pdidika Fisika Fisika Kuatum I. Ppadaa Fkusi Boh Modl atom muut Ruthfod tdii dai iti atom yag bmuata positif da masif sta dikliligi pada jaak yag latif bsa olh lktolkto yag satiasa

Lebih terperinci

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku petama suku kedua

Lebih terperinci

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL

MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL MODEL LOGIT KUMULATIF UNTUK RESPON ORDINAL Robah P Rahaat da Tatk Wdhah Juusa Matmatka FMIPA UNDIP Jl. Pof. H. Sodato, S.H, Smaag 575 Abstat. Logt umulatv modl s usd to dsb th latoshp btw a spos vaabl

Lebih terperinci

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 www.plusido.wodpess.com BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,,

Lebih terperinci