HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
|
|
|
- Hendri Tanuwidjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma
2 Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
3 Pengertian Himpunan Himpunan : Suatu kumpulan atau gugusan dari sejumlah obyek. Secara umum himpunan dilambangkan A, B, C,... Z Obyek dilambangkan a, b, c,... z Notasi : - p A p anggota A - A B A himpunan bagian dari B - A = B himpunan A sama dengan B - = ingkaran
4 Penyajian Himpunan Penyajian Himpunan cara daftar A = {1,2,3,4,5} berarti: himpunan A beranggotakan bilanganbilangan bulat positif 1,2,3,4, dan 5. cara kaidah A = {x; 0 < x < 6} berarti: himpunan A beranggotakan obyek x, dimana x adalah bilangan-bilangan bulat positif yang lebih besar dari nol tetapi lebih kecil dari enam.
5 Himpunan semesta (universal set) Notasi: U atau S Untuk membatasi himpunan yang dibicarakan Setiap himpunan yang dibicarakan selalu ada dalam himpunan semesta Contoh: Misalkan U = {1, 2, 3, 4, 5} A dan B adalah himpunan bagian dari U, dengan A = {1, 3, 5} dan B = {2, 3, 4}
6 Himpunan Bagian (Subset) Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. Diagram Venn: U A B NOTASI : himpunanbagian Superset, sumber himpunan himpunanbagian sejati
7 P A B C D E 1,2,3,5 3,1 1 1,2 F 1,2,3 1,3,5,2 A P P A B A E P D B F A
8 Himpunan kosong (null set) Himpunan dengan kardinal = 0 disebut himpunan kosong (null set). Notasi : atau {{ }} Contoh (i) Himpunan bilangan genap yang ganjil (ii) E = { x x < x }, maka n(e) = 0 (iii) P = { orang Indonesia yang pernah ke bulan }, maka n(p) = 0 (iv) A = {x x adalah akar persamaan kuadrat x = 0 }, n(a) = 0 Himpunan {{ }} dapat juga ditulis sebagai { } Himpunan {{ }, {{ }}} dapat juga ditulis sebagai {, { }} { } bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.
9 Operasi Himpunan Irisan (Intersection) A B = {x; x Є A dan x Є B} Gabungan (Union) A U B = {x; x Є A atau x Є B} Selisih A - B = A B {x; x Є A tetapi x Є B} Pelengkap (Complement) Ā = {x; x Є U tetapi x Є A} = U A Beda setangkup (symmetric difference)
10 Diagram Venn Contoh Misalkan U = {1, 2,, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn: U A B
11 Diagram Venn Gabungan ( A U B ) Irisan
12 Lanjutan... Selisih ( A B = A B ) Pelengkap / complement ( Ā )
13
14 Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A B =. Artinya: A // B
15 2. Gabungan (union) Notasi : A B = { x x A atau x B } Contoh (i) Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A B = { 2, 5, 7, 8, 22 } (ii) A = A
16 3. Komplemen (complement) Notasi : A = { x x U, x A } Contoh Misalkan U = { 1, 2, 3,..., 9 }, (i) jika A = {1, 3, 7, 9}, maka A = {2, 4, 6, 8} (ii) jika A = { x x/2 P, x < 9 }, maka A= { 1, 3, 5, 7, 9 }
17 4. Selisih (difference) Selisih antara dua buah himpunan dinotasikan oleh tanda. Misalkan A dan B adalah himpunan, maka selisih A dan B dinotasikan oleh A B = { x x A dan x B } = A B Jika A = { 1, 2, 3,..., 10 } dan B = { 2, 3, 5, 7}, maka A B = { 1, 4, 6, 8, 9 } dan B A =
18 5. Beda setangkup (symmetric difference) Beda setangkup antara dua buah himpunan dinotasikan oleh tanda. Misalkan A dan B adalah himpunan, maka A B = (A B) (A B) = (A B) (B A) Jika A = { 2, 3, 5, 7} dan B = { 1, 2, 3, 4, 5 }, maka A B = { 1, 4, 7 } Beda setangkup memenuhi sifat-sifat berikut: (a) A B = B A (hukum komutatif) (b) (A B ) C = A (B C ) (hukum asosiatif)
19 Hukum Aljabar Himpunan Kaidah Idempoten a. A U A = A b. A A = A Kaidah Asosiatif a. ( A U B ) U C = A U ( B U C ) b. ( A B ) C = A ( B C ) Kaidah Komutatif a. A U B = B U A b. A B = B A Kaidah Distributif a. A U ( B C ) = ( A U B ) ( A U C ) b. A ( B U C ) = ( A B ) U ( A C )
20 Lanjutan... Kaidah Identitas a. A U Ø = A b. A Ø = Ø c. A U U = U d. A U = A Kaidah Kelengkapan a. A U Ā = U b. A Ā= Ø c. ( Ā ) = A d. U = Ø Ø = U Kaidah De Morgan a. (A U B)= A B b. (A B) = A U B
21 PEMBUKTIAN KESAMAAN 2 HIMPUNAN 1. Pembuktian dengan menggunakan diagram Venn Contoh 22. Misalkan A, B, dan C adalah himpunan. Buktikan bahwa A (B C) = (A B) (A C) dengan diagram Venn. Bukti: A (B C) (A B) (A C) Kedua digaram Venn memberikan area arsiran yang sama. Terbukti bahwa A (B C) = (A B) (A C).
22 LANJUTAN Pembuktian dengan menggunakan aljabar himpunan. Contoh Misalkan A dan B himpunan. Buktikan bahwa (A B) (A B) = A Bukti: (A B) (A B) = A (B B) (Hukum distributif) = A U (Hukum komplemen) = A (Hukum identitas)
23 LANJUTAN... Contoh Misalkan A dan B himpunan. Buktikan bahwa A (B A) = A B Bukti: A (B A) = A (B A) (Definisi operasi selisih) = (A B) (A A) (Hukum distributif) = (A B) U (Hukum komplemen) = A B (Hukum identitas)
24 Latihan 1) Gambarkan sebuah diagram venn untuk menunjukkan himpunan universal U dan himpunan-himpunan bagian A serta B jika : U = {1,2,3,4,5,6,7,8 } A = {2,3,5,7} B = {1,3,4,7,8 } Kemudian selesaikan : (a) A B (c) A B (e) Ā B (g) A B (b) B A (d) A U B (f) Ā U B
25 Latihan 2. Buktikan bahwa untuk sembarang himpunan A dan B, bahwa (i) A ( A B) = A B dan (ii) A ( A B) = A B
26 3. S P Q R Sebutkan seluruh anggota himpunan di bawah ini: S= Q= R = P Q P R P Q R R Q P P Q R P Q R P Q R
27 FINISH
MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.
MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO
MTEMTIK BISNIS BY : NIN SUDIBYO BB 1. HIMPUNN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek yang harus didefinisikan dengan jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
HIMPUNAN MEMBAHAS TENTANG:
Modul ke: HIMPUNAN MEMBAHAS TENTANG: Fakultas Ekonomi dan Bisnis Program Studi Akuntansi www.mercubuana.ac.id PENGERTIAN HIMPUNAN, PENYAJIAN HIMPUNAN, HIMPUNAN UNIVERSAL DAN HIMPUNAN KOSONG, OPERASI HIMPUNAN,
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Teori Himpunan 2011 Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. -
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
1 HIMPUNAN DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMK adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Bahan kuliah Matematika Diskrit 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan,
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si
HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas
TEORI HIMPUNAN. A. Penyajian Himpunan
TEORI HIMPUNAN A. Penyajian Himpunan Definisi 1 Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Dalam
BAB I H I M P U N A N
1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan
BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1
BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur, anggota, elemen) yang dirumuskan secara jelas dan tegas, sehingga dapat dibeda-bedakan antara satu dengan
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota
Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa.
Logika Matematika Modul ke: Himpunan
Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga
Himpunan. Himpunan (set)
BAB 1 HIMPUNAN Himpunan (set) Himpunan Himpunan (set) adalah kumpulan dari objek-objek yang mempunyai sifat tertentu dan didefinisikan secara jelas. Anggota Himpunan Objek di dalam himpunan disebut elemen,
DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.
HIMPUNN Himpunan (set): DEFINISI Kumpulan objek-objek yang berbeda. Dengan kata lain : Kumpulan dari objek-objek tertentu yang merupakan suatu kesatuan. Elemen dari himpunan : Obyek-obyek itu sendiri.
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
[HIMPUNAN] MODUL MATEMATIKA SMP KELAS VII KURIKULUM 2013 RAJASOAL..COM. istiyanto
2014 MODUL MATEMATIKA SMP KELAS VII RAJASOAL..COM KURIKULUM 2013 istiyanto [HIMPUNAN] Modul ini berisi rangkuman materi mengenai Himpunan untuk siswa SMP kelas VII. Modul ini disusun sesuai dengan kurikulum
Bahan kuliah Matematika Diskrit. Himpunan. Oleh: Didin Astriani P, M.Stat. Fakultas Ilkmu Komputer Universitas Indo Global Mandiri
Bahan kuliah Matematika Diskrit Himpunan Oleh: Didin Astriani P, M.Stat Fakultas Ilkmu Komputer Universitas Indo Global Mandiri 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek
Mohammad Fal Sadikin
Mohammad Fal Sadikin Purcell, Varberg, Rigdon, Kalkulus, Erlangga, 2004. Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi, Penerbit BPFE Yogyakarta, 1996. Himpunan : kumpulan objek yang didefinisikan
MATEMATIKA BISNIS. Dosen Hikmah Agustin,SP.,MM. Politeknik Dharma Patria Kebumen 2016
MATEMATIKA BISNIS Dosen Hikmah Agustin,SP.,MM Politeknik Dharma Patria Kebumen 2016 Himpunan Himpunan adalah kumpulan benda atau objek-objek atau lambang-lambang yang mempunyai arti yang dapat didefinisikan
LANDASAN MATEMATIKA Handout 2
LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. [email protected]
INF-104 Matematika Diskrit
Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan
Bab1. Himpunan. Gajah Merpati. Burung Nuri Jerapah
Bab1. Himpunan I. Pengantar Himpunan merupakan konsep yang sangat mendasar dalam ilmu matematika. Banyak sekali kegiatan-kegiatan dalam kehidupan sehari-hari berkaitan dengan himpunan. Untuk memahami himpunan
Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15
Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
LOGIKA MATEMATIKA PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN. TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
LOGIKA MATEMATIKA Modul ke: PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN Fakultas ILKOM TITI RATNASARI, SSi., MSi Program Studi SISTEM INFORMASI www.mercubuana.ac.id Pengertian Himpunan Definisi
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;
BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga
Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union),
Lecture 1: ALGEBRA OF SETS Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union), A B = {x x A x B} Irisan (intersection),
BAB V HIMPUNAN. Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas.
BAB V HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas. Contoh: 1. A adalah himpunan bilangan genap antara 1 sampai dengan 11. Anggota
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2 2/24/2016 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN Apakah himpunan itu? Tidak ada definisi himpunan, yang ada hanya sinonim-sinonim atau kesamaan kata. 1. Menurut Kamus Besar Bahasa Indonesia: himpunan
MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H
MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,
1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.
I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan
Materi Ke_2 (dua) Himpunan
Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill Book Company,
Pertemuan 6. Operasi Himpunan
Pertemuan 6 Operasi Himpunan Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika
MATEMATIKA DISKRIT MATEMATIKA DISKRIT
MATEMATIKA DISKRIT BAB I HIMPUNAN Huruf-huruf besar A, B, C,... menyatakan himpunan dan huruf-huruf kecil a, b, c,... menyatakan elemen-elemen atau anggota dari himpunan. Notasi himpunan : p Є A A B atau
Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.
Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo 1 2 Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggotaanggota dari
MODUL 1. Himpunan FEB. Nur Azmi Karim, SE, M.Si. Fakultas. Modul ke: Program Studi
MODUL 1 Modul ke: Himpunan Fakultas 01 FEB Nur Azmi Karim, SE, M.Si Program Studi Penulisan Himpunan Himpunan adalah suatu kumpulan objek yang berbeda, yang mungkin merupakan suatu kelompok bilangan- bilangan
Modul ke: Matematika Ekonomi. Himpunan dan Bilangan. Bahan Ajar dan E-learning
Modul ke: 01 Pusat Matematika Ekonomi Himpunan dan Bilangan Bahan Ajar dan E-learning MAFIZATUN NURHAYATI, SE.MM. 08159122650 [email protected] Selamat Datang di Perkuliahan MATEMATIKA EKONOMI 2 BUKU
Kata kata Motivasi. Malas belajar hanya akan membuat suatu pelajaran semakin sulit dipelajari.
M e n g e n a l H i m p u n a n 1 Kata kata Motivasi Malas belajar hanya akan membuat suatu pelajaran semakin sulit dipelajari. Tidak ada mata pelajaran yang sulit, kecuali kemalasan akan mempelajari mata
H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.
H i m p u n a n Oleh : Panca Mudji Rahardjo, ST. MT. Himpunan Definisi himpunan Penyajian himpunan Definisi-definisi Operasi himpunan Prinsip inklusi dan eksklusi Himpunan ganda 1 Definisi Himpunan (set)
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
1.2 PENULISAN HIMPUNAN
BAB I HIMPUNAN 1.1 PENGERTIAN Definisi : Himpunan adalah kumpulan benda atau hal hal lain yang telah terdefinisi secara jelas. Benda atau hal hal lain tersebut disebut elemen atau unsure atau anggota himpunan.
Materi 1: Teori Himpunan
Materi 1: Teori Himpunan I Nyoman Kusuma Wardana STMIK STIKOM Bali Himpunan (set) kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Terdapat beberapa cara
FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011
FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan 4. Beda Setangkup
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
Urian Singkat Himpunan
Urian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] February 27, 2013 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
A. Pengertian dan Notasi Himpunan 1. Pengertian Himpunan Istilah kelompok, kumpulan, kelas, maupun gugus dalam matematika dikenal sebagai istilah
A. Pengertian dan Notasi Himpunan 1. Pengertian Himpunan Istilah kelompok, kumpulan, kelas, maupun gugus dalam matematika dikenal sebagai istilah himpunan. Konsep tentang himpunan pertama kali dikemukakan
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
MATEMATIKA 1. Pengantar Teori Himpunan
MATEMATIKA 1 Silabus: Logika, Teori Himpunan, Sistem Bilangan, Grup, Aljabar Linier, Matriks, Fungsi, Barisan dan deret, Beberapa Cara pembuktian Pengertian Himpunan Pengantar Teori Himpunan Himpunan adalah
Uraian Singkat Himpunan
Uraian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 3, 2014 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Pengertian Himpunan. a. kumpulan makanan lezat b. kumpulan batu-batu besar c. kumpulan lukisan indah. 1. Kumpulan yang bukan merupakan himpunan
Pengertian Himpunan Himpunan adalah sekumpulan objek yang mempunyai syarat tertentu dan jelas. Objek yang dimaksud dapat berupa bilangan, manusia, hewan, tumbuhan, negara dan sebagainya. Objek ini selanjutnya
Logika Matematika Teori Himpunan
Pertemuan ke-2 Logika Matematika Teori Himpunan Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Perampatan Operasi Himpunan A1 A2... An = Ai A1 U A2 U... U An = U
Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:
Teori himpunan Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang
MSH1B3 LOGIKA MATEMATIKA Teori Himpunan (Lanjutan)
MSH1B3 LOGIKA MATEMATIKA Teori Himpunan (Lanjutan) Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Lanjutan: Hukum Operasi Aljabar Tunjukkan A (B C) = (A B) (A
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 08125218506 / 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill
TEORI HIMPUNAN. Yusman, SE., MM.
TEORI HIMPUNAN Modul ke: Himpunan adalah kumpulan obyek, di mana obyek itu dinamakan unsur atau elemen ataupun anggota himpunan. Pasangan kurawal {.} merupakan lambang yang menunjukkan himpunan. Himpunan
Logika Matematika Himpunan
Modul ke: Logika Matematika Himpunan Modul ini menjelaskan mengenai himpunan dan operasi-operasi dasar himpunan. Fakultas ILMU KOMPUTER Tedjo Nugroho, ST. MT Program Studi Sistem Informasi www.mercubuana.ac.id
1 Pendahuluan I PENDAHULUAN
1 Pendahuluan 1.1 Himpunan I PENDAHULUAN Himpunan merupakan suatu konsep mendasar dalam semua cabang ilmu matematika. Mengapa himpunan adalah hal yang sangat penting dalam matematika?, untuk mencari jawaban
Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.
BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan
BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional
Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011
Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan
Matematika Diskrit 1
Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai
H I M P U N A N. 1 Matematika Ekonomi Definisi Dasar
H I M P U N A N 1.1. Definisi Dasar Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu
PERTEMUAN 5. Teori Himpunan
PERTEMUAN 5 Teori Himpunan Teori Himpunan Definisi 7: Himpunan (set) adalah kumpulan objek-objek yang terdfinisi dengan jelas Penyajian Himpunan 1. Enumerasi Enumerasi artinya menuliskan semua elemen (anggota)
BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan
BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional
BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan
MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.
MODUL 1 A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu. 2. Penyajian Himpunan Suatu himpunan dapat disajikan dengan
Himpunan. by Ira Prasetyaningrum. Page 1
Himpunan by Ira Prasetyaningrum Page 1 Set / Himpunan Set/Himpunan = kumpulan dari objek-objek yang berbeda Anggota Himpunan disebut elemen/anggota Contoh Listing: Example: A = {1,3,5,7} = {7, 5, 3, 1,
HIMPUNAN, RELASI DAN FUNGSI
Kegiatan Belajar Mengajar 4 HIMPUNAN, RELASI DAN FUNGSI Zainuddin Akina Kegiatan belajar mengajar 4 ini akan membahas tentang himpunan, relasi, dan fungsi.. Kegiatan belajar mengajar 4 ini mencakup 3 pokok
LOGIKA MATEMATIKA. Dosen: Drs. Sumardi Hs., M.Sc. Modul ke: 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM LOGIKA MATEMATIKA Dosen: Program Studi Teknik Informatika Drs. Sumardi Hs., M.Sc. Template Modul Himpunan 1 Tentang Abstrak Modul ini membahas pengertian himpunan, notasi-notasi,
Dasar Logika Matematika
Dasar Logika Matematika Pertemuan 4: Objective Mahasiswa dapat menjelaskan himpunan (set) Himpunan (Set) Mahasiswa dapat memodelkan himpunan dengan menggunakan diagram venn Himpunan (Set) 2 Definisi Himpunan
Teori Himpunan Elementer
Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements
Matematika Ekonomi. Bab I Himpunan
Matematika Ekonomi Bab I Himpunan 1.1 Pengantar Pernahkah kalian masuk ke sebuah supermarket? Tentu hampir semua orang pernah ke sana. Hal yang kita lihat adalah susunan barang yang sejenis ditempatkan
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
Teori Himpunan. Modul 1 PENDAHULUAN
Modul 1 Teori Himpunan Drs. Sukirman, M.Pd. M PENDAHULUAN odul ini memuat pembahasan teori himpunan dan himpunan bilangan bulat. Teori himpunan memuat notasi himpunan, relasi dan operasi dua himpunan atau
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I oleh : Lisna Zahrotun, S.T, M.Cs [email protected] lisnazahrotun.tif.uad.ac.id 1 Penilaian : 1. UTS 25% 2. UAS 30% 3. Keaktifan 4. Praktikum
SISTEM BILANGAN BULAT
SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil
SISTEM BILANGAN REAL
SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan
