II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

Ukuran: px
Mulai penontonan dengan halaman:

Download "II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu"

Transkripsi

1 II KONSEP DASAR GRUP Suatu cabang matematika yang mempelajari struktur aljabar dinamakan aljabar abstrak abstract algebra Sistem aljabar algebraic system terdiri dari suatu himpunan obyek satu atau lebih operasi pada himpunan bersama dengan hukum tertentu yang dipenuhi oleh operasi Salah satu alasan yang paling penting untuk mempelajari sistem tersebut adalah untuk menyatukan sifat-sifat pada topik-topik yang berbeda dalam matematika Setiawan 20 2 Grup Subgrup Suatu himpunan tak kosong G bersama-sama dengan hukum komposisi atau operasi biner * merupakan Grup G* : yang memenuhi aksioma-aksioma berikut 2 untuk semua 3 Untuk setiap Jika Ada sedemikian sehingga ada yang memenuhi untuk semua komutatif Judson 204 untuk semua maka grup G disebut grup Abelian atau

2 5 Sifat-sifat grup : Unsur identitas grup G tunggal sehingga hanya terdapat satu unsur sedemikian sehingga ukti isalkan untuk semua unsur identitas G aka untuk semua Akan ditunjukkan bahwa persamaan tersebut didapatkan Jika isalkan Dari kedua adalah sembarang elemen grup untuk semua adalah unsur identitas tapi jika adalah unsur identitas maka maka 2 maka invers yaitu adalah tunggal ukti Jika " keduanya adalah invers Akan ditunjukkan bahwa " 3 " maka " " " G adalah suatu grup Jika maka

3 6 ukti isalkan dengan yaitu invers adalah tunggal maka 4 Karena egitu juga erdasarkan sifat sebelumnya G adalah suatu grup Untuk sembarang ukti 5 maka maka : G adalah suatu grup berakibat ukti Dengan cara yang sama berakibat Hal ini disebut dengan hukum pencoretan maka

4 7 Contoh 2 Himpunan bilangan rasional merupakan grup terhadap operasi + Sistem ini dilambangkan dengan + dengan + penjumlahan didefinisikan dengan aturan 0 Operasi akan dibuktikan bahwa Q grup berdasarkan sifat-sifat bilangan bulat Sifat tertutup isalkan erdasarkan definisi operasi penjumlahan pada bilangan rasional didapat Karena operasi perkalian penjumlahan dalam bilangan bulat bersifat tertutup maka pembilang penyebutnya merupakan bilangan bulat Karena b d tidak nol maka bd juga tidak nol erarti penjumlahan bilangan rasional bersifat tertutup Sifat assosiatif isalkan berlaku [ + + Akan ditunjukkan bahwa sifat assosiatif [ ] + [ ] erarti sifat assosiatif berlaku Sifat identitas Elemen merupakan identitas karena Pada sisi lain + +

5 8 Sifat invers Untuk sembarang anggota merupakan inversnya Jelas bahwa + karena akan ditunjukkan bahwa Anggota merupakan invers Terbukti Q grup 2 Himpunan bilangan bulat positif dengan operasi penjumlahan bukan merupakan grup karena pada himpunan bilangan bulat positif tidak terdapat elemen identitas 0 tidak memiliki invers di sehingga untuk setiap Subgrup isalkan adalah suatu grup aka H himpunan bagian tak kosong G adalah subgrup G jika H itu sendiri membentuk suatu grup dengan operasi biner Lal 202 Contoh 22 isalkan G suatu grup dengan elemen identitas e aka G { } adalah grup karenanya G { } adalah subgrup G Kedua subgrup ini disebut subgrup trivial Teorema 2 Tes Subgrup Lal 202 isalkan G suatu grup misalkan H himpunan bagian tak kosong G aka H adalah suatu subgrup G jika untuk setiap

6 9 ukti Karena H tak kosong maka dapat dicari suatu kondisi berakibat identitas G Karenanya untuk setiap ℎ Sehingga untuk ℎℎℎ ℎ maka Sehingga H memiliki elemen Kemudian akan ditunjukkan bahwa untuk setiap ℎ menunjukkannya misalkan ℎ ℎ untuk setiap elemen H memiliki invers di H Untuk ℎ Langkah berikutnya yaitu akan ditunjukkan bahwa H juga tertutup pada operasi biner G Jadi misalkan Sehingga untuk aka berdasarkan langkah sebelumnya terdapat kondisi Karenanya H juga tertutup seperti juga pada operasi biner G Kemudian karena H himpunan bagian G maka sifat asosiatif G juga berlaku di H Contoh 23 isalkan { } { } dengan maka adalah grup terhadap perkalian bilangan kompleks adalah subgrup G 22 Jenis-Jenis Grup a Grup Siklik Grup G disebut siklik jika ada sehingga { } Elemen g disebut generator dari grup siklik Grup siklik dengan generator g dinotasikan dengan tergantung dari operasi pada grup G tersebut Gozali 200

7 0 Contoh 24 Pada Contoh 23 grup G dapat dinyatakan dengan { } sehingga G merupakan grup siklik yang dibangun oleh i Grup G dapat ditulis dengan b Grup Simetris Teorema 22 Lal 202 isalkan X suatu himpunan beranggotakan sebanyak n maka banyaknya permutasi dari himpunan X adalah n! ukti Dengan induksi matematika isal k menyatakan banyaknya anggota himpunan X untuk banyaknya permutasi pada X adalah benar isal teorema tersebut benar untuk adalah! maka banyaknya permutasi pada X Akan ditunjukkan teorema tersebut juga benar untuk anyaknya permutasi untuk maka adalah! Jika ditambahkan elemen lagi maka elemen baru tersebut dapat menempati sebanyak n posisi sehingga banyaknya permutasi padax dengan!! isalkan misalkan memenuhi ℓ ℓ adalah { } {2 } berbeda Jika untuk semua ℓ 2

8 untuk aka disebut k-cycle dinotasikan seterusnya atau Contoh 25 isal 3 maka {234} : Contoh dengan Pada Contoh 25 dapat dilihat bahwa 2 2 atau 2 yang dapat ditulis dapat ditulis 3 4 sehingga permutasi 23 4 Dua cycle 4 3 atau yang dapat ditulis dengan notasi disebut saling lepas jika { } { } Judson 204 Teorema 23 Judson 204 Setiap permutasi pada dapat ditulis sebagai produk disjoint cycle ukti Asumsikan bahwa {2 } isalkan definisikan { } Himpunan { } aka X2 juga himpunan terhingga Dengan meneruskan pola ini terhingga karena X terhingga Sekarang misalkan i adalah bilangan bulat pertama pada X tidak pada X definisikan X2 dengan dapat didefinisikan himpunan disjoint terhingga X3 X4 Karena X suatu himpunan terhingga dapat dijamin bahwa proses ini akan berhenti hanya akan ada suatu bilangan terhingga dari himpunan-himpunan ini disebut dengan r

9 2 Jika adalah cycle yang didefinisikan oleh { aka cycle-cycle Karena himpunan-himpunan X X2 Xr disjoint maka juga pasti disjoint Permutasi paling sederhana adalah suatu cycle dengan panjang 2 Cycle seperti ini disebut dengan transposisi Karena sembarang cycle dapat ditulis sebagai produk transposisi atau komposisi transposisi Judson 204 Proposisi Judson 204 Sembarang permutasi suatu himpunan berhingga yang terdiri dari setidaknya dua elemen dapat ditulis sebagai produk transposisi atau komposisi transposisi Contoh 27 Jika cycle ℎ ℎ Jika cycle maka maka cycle cycle h dapat dinyatakan dengan k dapat dinyatakan dengan Dari Contoh 27 dapat dilihat bahwa suatu cycle dengan panjang r dapat dinyatakan dengan komposisi dari transposisi Jadi jika r bilangan genap maka cycle tersebut dapat dinyatakan sebagai komposisi sejumlah transposisi yang banyaknya ganjil segkan jika r ganjil maka cycle tersebut dapat dinyatakan sebagai komposisi sejumlah transposisi yang banyaknya genap

10 3 Grup simetris pada n huruf isalkan permutasi { : pada n elemen jika f {2 } Fungsi : adalah fungsi } dengan kata lain \ bijektif disebut isalkan merupakan himpunan semua permutasi himpunan {2 } aka hal-hal berikut ini berlaku : isalkan aka : : adalah dua fungsi bijektif oleh karena itu salah satu fungsi digunakan sebagai komposisi fungsi untuk : mendefinisikan fungsi komposisi aka juga bijektif Karenanya dengan Dengan kata lain fungsi komposisi dinotasikan dengan mendefinisikan operasi biner pada 2 3 Fungsi komposisi merupakan operasi yang asosiatif sehingga ℎ ℎ : Fungsi didefinisikan oleh adalah fungsi identitas yaitu 4 isalkan Sebagaimana : didefinisikan oleh ketika untuk semua untuk semua 2 adalah fungsi bijektif untuk semua : 2 adalah fungsi yang terdefinisi dengan baik juga bijektif yaitu untuk setiap Dengan demikian simetri Jika adalah suatu grup Grup ini disebut grup permutasi atau grup maka penulisannya adalah Penulisan seperti ini disebut notasi dua baris Dapat dilihat bahwa bijektif dari N ke N ke 2 ke 2 2 adalah fungsi adalah pemetaan identitas yang memetakan ke 2 Sehingga { 2 } Oleh karena itu

11 4 terdapat n pilihan untuk pilihan untuk 2 semua elemen N kecuali seterusnya Dengan demikian jumlah elemen adalah 2 Lal 202! Contoh 28 {23} maka 3! 6 isal Grup simetri X adalah atau atau { } dengan 2 3 atau atau atau atau eberapa konsep dasar mengenai Teorema Langrange berikut diambil dari ahmudah 2006 isalkan G grup H subgrup G untuk sembarang a tetap di G {ℎ \ℎ } disebut koset kanan dari H yang ditentukan oleh a untuk sembarang a tetap di G ditentukan oleh a { ℎ\ℎ } disebut koset kiri dari H yang Jika H subgrup G maka banyaknya semua koset kanan H di G disebut dengan indeks H di G dinotasikan dengan : Contoh 29 isal { } seperti yang telah diuraikan pada Contoh 28 jika { }< { } maka ; { }

12 5 { } { } ; { } { } ; Karena ada dua koset kiri H di G yaitu : 2 Dapat dilihat bahwa adalah koset-koset dari H jika maka { } maka { } maka isal Jika Lemma 2 Wilkins 2007 isalkan H subgrup G aka koset kiri H di G memiliki sifat-sifat berikut : 2 3 untuk semua ; Jika a b elemen G jika ; Jika a b elemen G jika ukti 2 aka isalkan aka maka ℎ 3 ℎ maka untuk beberapa untuk semua ℎ untuk beberapa Sehingga maka ℎ untuk semua ℎ oleh karena itu isalkan untuk beberapa dimana e adalah elemen identitas G Tapi isalkan a b elemen G dimana ℎ ℎ ℎ maka maka Karena H subgrup G Sehingga untuk beberapa erdasarkan sifat 2 yaitu

13 6 Lemma 22 Wilkins 2007 isalkan H subgrup terhingga G aka setiap koset kiri H di G memiliki jumlah elemen yang sama dengan H ukti isalkan {ℎ ℎ ℎ } dimana ℎ ℎ ℎ berbeda misalkan aka koset kiri ah terdiri dari elemen-elemen xhj untuk 2 Anggap bahwa j k bilangan bulat antara m dimana ℎ ℎ aka ℎ ℎ maka ℎ ℎ ℎ ℎ ℎ sehingga karena ℎ ℎ ℎ berbeda berbeda Dapat disimpulkan bahwa subgrup H koset kiri ah keduanya memiliki m elemen seperti yang dipersyaratkan eberapa definisi teorema proposisi berikut diambil dari Lal 202 Order G adalah jumlah elemen di G dinotasikan dengan Jika < maka g disebut suatu grup order terhingga isalkan G suatu grup aka order suatu elemen adalah bilangan bulat positif terkecil m sedemikian sehingga dengan Order suatu elemen dinotasikan Contoh 20 Dari Contoh 23 dapat dilihat bahwa 4 2 order setiap elemen G adalah 2 4 4

14 7 Teorema 24 Teorema Langrange Lal 202 Jika G berhingga H subgrup G maka membagi Selanjutnya jumlah koset H yang berbeda di G sama dengan ukti Karena G grup terhingga jumlah koset kiri H di G terhingga isalkan kumpulan semua koset kiri H di G aka berdasarkan Lemma dua koset itu adalah sama atau disjoint yaitu G adalah suatu gabungan disjoint koset-koset Juga dapat diverifikasi bahwa itu dengan untuk semua untuk setiap 2 Oleh karena Sehingga Sehingga membagi jumlah koset kiri sama Catatan Lal 202 Nilai m pada teorema 4 disebut index H di G dinotasikan dengan [ : ] atau Proposisi 2 Lal 202 isalkan G suatu grup berhingga membagi maka Catatan 2 Lal 202 Proposisi berakibat bahwa jika G suatu grup berhingga order n maka order yang mungkin dari elemen-elemennya adalah pembagi n Contoh 2 Jika 30 maka untuk setiap { }

15 8 isalkan G grup berhingga maka berdasarkan proposisi 3 akan ditunjukkan bahwa untuk sembarang membagi aka beberapa bilangan bulat positif m Sehingga untuk erikut ini akan diberikan definisi tentang grup aksi yang diberikan oleh Lal 202 c Grup aksi isalkan adalah grup dengan identitas e aka G disebut aksi pada suatu himpunan X jika terdapat operator : untuk semua ℎ ℎ 2 untuk semua memenuhi kondisi berikut : ℎ Contoh 22 Pada grup dihedral { } dengan f menyatakan perputaran vertikal r rotasi searah jarum jam dengan sudut putar aka beraksi pada sisi atau titik berlabel dari suatu segi enam beraturan dengan mempermutasi label pada sisi atau titik lihat pada Gambar Gambar r Aksi f pada sisi berlabel aksi r2 pada titik berlabel pada suatu segi enam beraturan

16 9 Contoh 23 isalkan X menyatakan himpunan cara mewarnai titik-titik suatu persegi dengan dua warna misalkan merah biru aka X sama dengan himpunan semua fungsi ℎ: {234} { } dimana titik-titik kanan bawah kiri bawah ℎ kiri atas kanan atas diberi label 23 4 aka 2 6 anyaknya pewarnaan yang berbeda dapat dilihat pada Gambar 2 dimana menyatakan warna merah menyatakan warna biru Sebagai contoh gambar berlabel x9 pada Gambar 2 berhubungan dengan ℎ ℎ3 ℎ4 ℎ2 Kemudian nyatakan permutasi 234 dengan r permutasi { 234 dengan f aka grup dihedral pada himpunan X } beraksi a x x6 dipetakan ke dirinya sendiri dibawah aksi setiap elemen D4 Yaitu b untuk semua Gambar 2 Pewarnaan titik pada persegi Catatan 3

17 20 Asumsikan bahwa X terdiri dari himpunan titik-titik anggap bahwa grup G beraksi pada X dengan memindahkan titik-titiknya aka berdasarkan definisi grup aksi dapat diinterprestasikan sebagai berikut : a Kondisi pertama berakibat bahwa elemen identitas grup tidak memindahkan elemen X manapun Sehingga titik-titik di X akan tetap ketika diberi aksi oleh elemen identitas G b Kondisi kedua berakibat bahwa jika suatu titik misal pertama atas elemen ℎ kemudian posisi terakhir jika 2 Tentukan Sebaliknya terdapat definisi grup aksi adalah sama dengan posisi yang akan dicapai ℎ Kemudian himpunan sehingga { : } aka berdasarkan kemudian oleh suatu elemen diaksikan tepat sekali oleh elemen sebuah adalah aksi Dengan kata lain g hanya mempermutasikan elemen X Atau secara ekuivalen setiap sendiri menyebabkan fungsi bijektif dari X ke dirinya

18 2 3 ℎ dengan ungkin terdapat semua ℎ sehingga ℎ untuk isalkan G aksi pada himpunan X maka : Untuk 2 Untuk 3 Untuk tetap { : tetap tetap { { : } disebut orbit x } disebut penstabil x di G } disebut Fix g Contoh 24 Perhatikan himpunan X yang diberikan pada Contoh 23 Dengan menggunakan penggambaran himpunan X pada Gambar 2 didapat { } { } { } Proposisi 3 isalkan G aksi pada himpunan X aka untuk setiap 2 Definisi sebuah relasi dinyatakan dengan ~ pada himpunan X dengan x~y sehingga jika ada tetap himpunan Gx adalah subgrup G aka buktikan bahwa ~ mendefinisikan relasi ekuivalen pada himpunan X Lebih jauh kelas ekuivalen mengandung 3 sama dengan { : maka Tentukan misalkan } aka Selain itu jika Teorema 25 Teorema 26 Lemma 3 Lemma 4 berikut diambil dari Lal 202 Teorema 25 isalkan suatu grup G beraksi pada himpunan X aka untuk setiap tetap terdapat korespondensi satu-satu antara elemen-elemen

19 22 himpunan semua koset kiri Gx di G Secara khusus [ : ] jumlah koset kiri Gx di G Selain itu jika G adalah grup terhingga maka untuk semua ukti isalkan S himpunan koset kiri Gx yang berbeda di G aka [ : { : ] Pertimbangkan pemetaan : oleh } Akan diperiksa apakah pemetaannya terdefinisi dengan baik Jadi anggap koset ℎ kiri ℎ adalah sama yaitu aka dengan menggunakan Lemma definisi grup aksi diperoleh barisan penegasan berikut : ℎ ℎ ℎ ℎ ℎ pada ingat bahwa untuk setiap ℎ sedemikian sehingga ℎ Karenanya terdapat suatu Juga untuk ℎ Oleh karena itu untuk ℎ pada yang dipilih koset yang dipilih berlaku ℎ Oleh karena itu telah ditunjukkan bahwa setiap subgrup di G ketika terhingga maka karena isalkan { } sedemikian sehingga aka untuk setiap i ℎ memberikan korespondensi satu-satu antara himpunan S Kemudian berdasarkan definisi [ : Oleh karena itu tidak hanya terdefinisi dengan baik tapi juga satu-satu Untuk menunjukkan ℎ ℎ Sehingga berdasarkan definisi pemetaan diperoleh ℎ Anggap bahwa ] untuk subgrup di G terdapat suatu aka

20 23 Sehingga karenanya akibatnya disjoint Selanjutnya jika g maka Sehingga Karenanya Langrange Oleh karena itu koset : Oleh adalah pasangan untuk beberapa i juga karena itu Akibatnya berdasarkan Teorema Lemma 3 isalkan G grup aksi terhingga pada himpunan X aka untuk setiap ukti Ingat bahwa untuk setiap Karenanya dengan menggunakan Teorema 25 diperoleh Oleh karena itu untuk semua

21 24 Teorema 26 isalkan G grup aksi terhingga pada himpunan X isalkan N menyatakan jumlah orbit X yang berbeda dibawah aksi G aka ukti erdasarkan Lemma 3 ingat bahwa isalkan aka untuk semua menyatakan orbit-orbit X yang berbeda dibawah aksi G Contoh 25 Lihat kembali Contoh 23 aka banyaknya pewarnaan yang berbeda adalah Lemma 4 Cauchy-Frobenius-urnside s Lemma isalkan G suatu grup aksi terhingga pada himpunan X isalkan N menyatakan jumlah orbit X yang berbeda dibawah aksi G aka ukti Pertimbangkan himpunan { : } menggunakan dua metode etode pertama misalkan ditetapkan Hitung aka

22 25 untuk setiap memenuhi tetap Gx menghasilkan koleksi elemen-elemen G yang Jadi etode kedua misalkan ditetapkan aka untuk setiap menghasilkan koleksi elemen-elemen X yang memenuhi konfigurasi yang berbeda adalah 8 6 Jadi Karenanya dengan menggunakan Teorema 24 Contoh 26 enggunakan Contoh tetap Fg Sehingga dengan menggunakan dua metode tersebut diperoleh diperoleh 8 Sehingga 4 banyaknya

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

III. METODE PENELITIAN. Beberapa hasil penelitian yang telah dilakukan oleh beberapa peneliti

III. METODE PENELITIAN. Beberapa hasil penelitian yang telah dilakukan oleh beberapa peneliti III. METODE PENELITIAN 3.1 Penelitian Relevan yang Telah Dilakukan Beberapa hasil penelitian yang telah dilakukan oleh beberapa peneliti sebelumnya antara lain : a. Rosalianti dkk (2013) mencari banyaknya

Lebih terperinci

Grup Permutasi dan Grup Siklis. Winita Sulandari

Grup Permutasi dan Grup Siklis. Winita Sulandari Grup Permutasi dan Grup Siklis Winita Sulandari Grup Permutasi Suatu Permutasi dari suatu himpunan berhingga S yang tidak kosong, dinyatakan sebagai suatu pemetaan bijektif dari himpunan S pada dirinya

Lebih terperinci

STRUKTUR ALJABAR 1. Kristiana Wijaya

STRUKTUR ALJABAR 1. Kristiana Wijaya STRUKTUR ALJABAR 1 Kristiana Wijaya i ii Daftar Isi Judul Daftar Isi i iii 1 Himpunan 1 2 Partisi dan Relasi Ekuivalen 3 3 Grup 6 4 Koset Dan Teorema Lagrange, Homomorphisma Grup Dan Grup Faktor 11 Indeks

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas)

I PENDAHULUAN II LANDASAN TEORI. Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas) I PENDAHULUAN Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas) di sehingga., maka disebut grup periodik dan disebut periode dari. Serta fakta bahwa

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

ENUMERASI DIGRAF TIDAK ISOMORFIK

ENUMERASI DIGRAF TIDAK ISOMORFIK Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 ENUMERASI DIGRAF TIDAK ISOMORFIK Mulyono Jurusan Matematika FMIPA UNNES Email:

Lebih terperinci

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif);

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif); II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi Grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

STRUKTUR ALJABAR: GRUP

STRUKTUR ALJABAR: GRUP STRUKTUR ALJABAR: GRUP BAHAN AJAR Oleh: Rippi Maya Program Studi Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI Bandung 2016 1 A. Pendahuluan Ilustrasi 1.1: Perhatikan

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan 1. GRUP Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan pasangan elemen ( ab, ) pada G, yang memenuhi dua kondisi berikut: 1. Setiap pasangan elemen

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A Fakultas : FMIPA Program Studi : Pendidikan Matematika Mata Kuliah/Kode : Aljabar Abstrak I, MAT 309 Jumlah SKS : Teori=3 sks; Praktek= Semester : Genap Mata Kuliah Prasyarat/kode : Teori Bilangan, MAT

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini akan disajikan beberapa teori dasar yang digunakan sebagai

II. TINJAUAN PUSTAKA. Pada bagian ini akan disajikan beberapa teori dasar yang digunakan sebagai II. TINJAUAN PUSTAKA Pada bagian ini akan disajikan beberapa teori dasar yang digunakan sebagai landasan teori penelitian ini yaitu teori grup dan teori graf. Pada bagian pertama akan dibahas tentang teori

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

GRUP PERMUTASI. Bambang Priyo Darminto Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. Abstrak

GRUP PERMUTASI. Bambang Priyo Darminto Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo. Abstrak GRUP PERMUTSI ambang Priyo Darminto Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo bstrak Simetri dari sebuah bangun geometri dapat diartikan sebagai penempatan kembali bangun tersebut

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

I. PENDAHULUAN. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis

I. PENDAHULUAN. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis 1 I. PENDAHULUAN 1.2 Latar Belakang dan Masalah Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu, dengan batas waktu sekitar tahun

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang PENGANTAR GRUP Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 18, 2013 1 Daftar Isi 1 Tujuan 3 2 Pengantar Grup 3 3 Sifat-sifat Grup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Menghitung Jumlah Graf Sederhana dengan Teorema Polya

Menghitung Jumlah Graf Sederhana dengan Teorema Polya Menghitung Jumlah Graf Sederhana dengan Teorema Polya Hafni Syaeful Sulun NIM : 13505058 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesha

Lebih terperinci

Jurusan Pendidikan Matematika

Jurusan Pendidikan Matematika DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I KODE MK : MT 400 Mata kuliah ini dimaksudkan agar mahasiswa memahami konsep-konsep struktur aljabar (aljabar modern). Materinya mencakup: aljabar himpunan, pemetaan

Lebih terperinci

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2011 0 KATA PENGANTAR Aljabar abstrak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana M. Faisal Baehaki Jurusan Teknik Informatika Institut Teknologi Bandung, Bandung 40135 e-mail: faisal.baihaki@comlabs.itb.ac.id Intisari Metode untuk

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati Suryoto Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 ABSTRAK -aljabar adalah suatu struktur aljabar yang dibangun atas suatu grup sehingga sifat-sifat yang berlaku

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I

DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I (MAA523/3 SKS) Mata kuliah ini dimaksudkan agar mahasiswa memahami konsep-konsep struktur aljabar (aljabar modern). Materinya mencakup: aljabar himpunan, pemetaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang akan digunakan pada bagian pembahasan dari skripsi ini. Tinjauan yang dilakukan dengan memaparkan definisi mengenai himpunan fuzzy, struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT

GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT TRY AZISAH NURMAN Jurusan Matematik Fakultas Sains Teknologi, UINAM chicha_chirwan@yahoo.com Info: Jurnal MSA Vol. No. Edisi: Januari Juni 0 Artikel No.: Halaman:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis sebagai landasan teori dalam penelitian ini yaitu teori bilangan, bilangan bulat modulo?, struktur aljabar dan masalah logaritma

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

TEOREMA GOURSAT Konstruksi subgrup dari grup darab langsung. M.V.Any Herawati,S.Si.,M.Si. Program Studi Matematika Universitas Sanata Dharma.

TEOREMA GOURSAT Konstruksi subgrup dari grup darab langsung. M.V.Any Herawati,S.Si.,M.Si. Program Studi Matematika Universitas Sanata Dharma. PROSIDING ISBN : 978 979 65 TEOREMA GORSAT Konstruksi subgrup dari grup darab langsung A MVAny erawati,ssi,msi Program Studi Matematika niversitas Sanata Dharma Abstrak Darab langsung G dari grup G dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 6 RING (GELANGGANG) Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat suatu Ring, Integral Domain dan Field Tujuan Instruksional

Lebih terperinci

TUGAS GEOMETRI TRANSFORMASI GRUP

TUGAS GEOMETRI TRANSFORMASI GRUP TUGAS GEOMETRI TRANSFORMASI GRUP KELOMPOK 8 1. I WAYAN AGUS PUTRAWAN (2008.V.1.0093) 2. I KADEK DWIJAYAPUTRA (2008.V.1.0094) 3. I KETUT DIARTA (2008.V.1.0123) 4. AGUS EKA SURYA KENCANA (2008.V.1.0043)

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily Rencana Perkuliahan Jurusan : Matematika Mata Kuliah : Struktur Aljabar Semester : IV (empat) Kelas : A, B, C, D. SKS/JS : 3/3 Pengajar : Yus Mochamad Cholily 1. Pendahuluan. Struktur Aljabar atau dikenal

Lebih terperinci

PENGERTIAN RING. A. Pendahuluan

PENGERTIAN RING. A. Pendahuluan Pertemuan 13 PENGERTIAN RING A. Pendahuluan Target yang diharapkan dalam pertemuan ke 13 ini (pertemuan pertama tentang teori ring) adalah mahasiswa dapat : a. membedakan suatu struktur aljabar merupakan

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING

DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING Dr. Adi Setiawan, M.Sc G R A F I K A Penerbit Tisara Grafika SALATIGA 2014 Katalog Dalam Terbitan 512.24 ADI Adi Setiawan d Dasar-dasar aljabar modern:

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

GRUP AUTOMORFISME GRAF KIPAS DAN GRAF KIPAS GANDA

GRUP AUTOMORFISME GRAF KIPAS DAN GRAF KIPAS GANDA GRUP AUTOMORFISME GRAF KIPAS DAN GRAF KIPAS GANDA Siti Rohmawati 1, Dr.Agung Lukito, M.S. 2 1 Matematika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya Jalan Ketintang Gedung

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

RANK DARI GRUP DIHEDRAL TIGA (D 3 ) YANG BERAKSI

RANK DARI GRUP DIHEDRAL TIGA (D 3 ) YANG BERAKSI RANK DARI GRUP DIHEDRAL TIGA (D 3 ) YANG BERAKSI ATAS X (1) Teuis Siti Nurlaela 1,a), Esih Sukaesih 1) 1 UIN Sunan Gunung Djati, Jl. A.H. Nasution No. 105 Bandung a) email: teuis.siti@gmail.com Abstrak

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci

KLASIFIKASI NEAR-RING Classifications of Near Ring

KLASIFIKASI NEAR-RING Classifications of Near Ring Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor BAB 5 GRUP FAKTOR Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut BAB 3 ALJABAR MAX-PLUS Sebelum membahas Aljabar Max-Plus, akan diuraikan terlebih dahulu beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut dipenuhi oleh suatu Aljabar Max-Plus.

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI

ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI βeta p-issn: 2085-5893 e-issn: 2541-0458 Vol. 4 No. 2 (Nopember) 2011, Hal. 151-161 βeta2011 ANALISIS PENYELESAIAN RUBIK 2X2 MENGGUNAKAN GRUP PERMUTASI Abdurahim 1, Mamika Ujianita Romdhini 2, I Gede Adhitya

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian. II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

K-ALJABAR. Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati 1 Suryoto 2 1,2 Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 Abstract K-algebra is an algebra structure built on a group so that characters of a group will apply

Lebih terperinci

KOSET. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

KOSET. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang KOSET Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com April 21, 2013 1 Daftar Isi 1 Tujuan 3 2 Koset 3 3 Sifat-sifat Koset 4 4 Latihan 5 2 1

Lebih terperinci

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2

GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2 Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 GRUP HOMOLOGI DARI RUANG TOPOLOGI Denik Agustito 1, Sriwahyuni 2 Mahasiswa

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 6 (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm STRUKTUR DAN SIFAT-SIFAT K-ALJABAR Deni Nugroho, Rahayu Budhiati Veronica, dan Mashuri Jurusan Matematika, FMIPA,

Lebih terperinci

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT Paridjo Pendidikan Matematika FKIP Universitas Pancasakti Tegal muhparidjo@gmail.com Abstrak Himpunan bilangan bulat dilambangkan dengan sistem bilangan Real

Lebih terperinci

SOAL DAN PENYELESAIAN RING

SOAL DAN PENYELESAIAN RING SOAL DAN PENYELESAIAN RING 1. Misalkan P himpunan bilangan bulat kelipatan 3. Tunjukan bahwa dengan operasi penjumlahan dan perkalian pada himpunan bilangan bulat, P membentuk ring komutatif. Jawaban:

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

GRAF. skripsi. Program. Oleh JURUSAN MATEMATIKA UNIVERSITAS 2010

GRAF. skripsi. Program. Oleh JURUSAN MATEMATIKA UNIVERSITAS 2010 ` PENGGUNAAN TEOREMA POLYA DALAM ENUMERASI GRAF skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sain Program Studi Matematika Oleh Wendy Lestyo Purnomo 4150406029 JURUSAN MATEMATIKA

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

GRAF PANGKAT PADA SEMIGRUP. Nur Hidayatul Ilmiah. Dr. Agung Lukito, M.S.

GRAF PANGKAT PADA SEMIGRUP. Nur Hidayatul Ilmiah. Dr. Agung Lukito, M.S. GRAF PANGKAT PADA SEMIGRUP Nur Hidayatul Ilmiah Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya. mia_ilmiah99@yahoo.com Dr. Agung Lukito, M.S. Jurusan Matematika,

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

MODUL STRUKTUR ALJABAR 1. Disusun oleh : Isah Aisah, Dra., MSi NIP

MODUL STRUKTUR ALJABAR 1. Disusun oleh : Isah Aisah, Dra., MSi NIP MODUL STRUKTUR ALJABAR 1 Disusun oleh : Isah Aisah, Dra., MSi NIP 196612021999012001 Program Studi S-1 Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Padjadjaran Januari 2017 DAFTAR

Lebih terperinci

STRUKTUR ALJABAR 1 (TEORI GRUP)

STRUKTUR ALJABAR 1 (TEORI GRUP) Diktat Kuliah STRUKTUR ALJABAR 1 (TEORI GRUP) Oleh : HENDRIJANTO, M.Pd FAKULTAS PENDIDIKAN MIPA IKIP PGRI MADIUN M A D I U N 2011 BAB I Pendahuluan Dasar-dasar teori berikut ini sangat penting dalam pembahasan

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Relasi dan Fungsi Jurusan Informatika FMIPA Unsyiah March 10, 2014 Suatu fungsi f : A B disebut pada (onto) atau surjektif (surjective) jika f(a) = B, yaitu jika untuk semua b B ada sekurang-kurangnya

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN

SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN 1. Mata Kuliah / Kode : Struktur Aljabar/PMK 719 2. Jumlah SKS : 4 SKS 3. Jurusan / Program Studi : TMIPA / Tadris Matematika 4. Tujuan

Lebih terperinci