VEKTOR. Oleh : Musayyanah, S.ST, MT
|
|
|
- Hendra Yuwono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 VEKTOR Oleh : Musayyanah, S.ST, MT 1
2 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu, suhu, volume, laju, energi Catatan : skalar tidak tergantung sistem koordinat esaran Vektor esaran yang dicirikan oleh besar dan arah. z Contoh : kecepatan, percepatan, gaya Catatan : vektor tergantung sistem koordinat y x 2
3 2.2 PENGGMRN DN PENULISN (NOTSI) VEKTOR Gambar : Titik P Titik Q Tanda panah P Q : Titik pangkal vektor : Ujung vektor : rah vektor Panjang PQ = PQ : esarnya (panjang) vektor Notasi Vektor Huruf tebal Pakai tanda panah di atas Huruf miring esar vektor = = (pakai tanda mutlak) Catatan : Untuk selanjutnya notasi vektor yang digunakan huruf tebal 3
4 Catatan : a. Dua vektor sama jika arah dan besarnya sama = b. Dua vektor dikatakan tidak sama jika : 1. esar sama, arah berbeda 2. esar tidak sama, arah sama 3. esar dan arahnya berbeda 4
5 2.3 OPERSI MTEMTIK VEKTOR 1. Operasi jumlah dan selisih vektor 2. Operasi kali JUMLH DN SELISIH VEKTOR Metode: 1. Jajaran Genjang 2. Segitiga 3. Poligon 4. Uraian 1. Jajaran Genjang + = R = + esarnya vektor R = R = cos esarnya vektor + = R = R = esarnya vektor - = S = S = cosθ cosθ 2 5
6 Jika vektor dan searah θ = 0 o : R = + Jika vektor dan berlawanan arah θ = 180 o : R = - Jika vektor dan Saling tegak lurus θ = 90 o : R = 0 Catatan : Untuk Selisih (-) arah Vektor di balik 2. Segitiga + = 3. Poligon (Segi anyak) = D ++C+D D C 6
7 Sifat-Sifat Vector sosiatif (+) + C = + (+C) Distributif (a+b). = a. + b. Penjumlahan dengan Nol + 0 = 0+ = Komutatif + = + Penjumlahn dengan inversnya + (-) = 0 = (-) + 7
8 Norma Vector Jika diketahui : u = (u 1, u 2 ) dan v = (v 1, v 2, v 3 ) Dimensi dua : u = u u 2 2 Dimensi tiga : v = v v v 3 2 8
9 Contoh Soal = (2,4, -5), = (1,2,6), dan C = (3,5)? C? - C?,, dan C 9
10 4. Uraian Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) Y y y = x.i + y.j ; = x.i + y.j x = cos θ ; x = cos θ y = sin θ ; y = sin θ x x X esar vektor + = + = R R x = x + x R y = y + y R = + = R 2 2 x R y rah Vektor R (terhadap sb.x positif) = tg θ = θ = R R y x arc tg R R y x 10
11 2.3.2 PERKLIN VEKTOR 1. Perkalian Skalar dengan Vektor 2. Perkalian vektor dengan Vektor a. Perkalian Titik (Dot Product) b. Perkalian Silang (Cross Product) 1. Perkalian Skalar dengan Vektor Hasilnya vektor C = k k : Skalar : Vektor Vektor C merupakan hasil perkalian antara skalar k dengan vektor Catatan : Jika k positif arah C searah dengan Jika k negatif arah C berlawanan dengan k = 3, C = 3 11
12 2. Perkalian Vektor dengan Vektor a. Perkalian Titik (Dot Product) Hasilnya skalar = C C = skalar esarnya : C = Cos θ = = besar vektor = = besar vektor θ= sudut antara vektor dan θ cos θ θ [0, 180 ] > 0, jika 0 θ 90 = 0, jika θ = 90 < 0, jika 90 θ
13 Sifat-sifat Perkalian Titik (Dot Product) 1. Komutatif : = 2. Distributif : (+C) = ( ) + ( C) Catatan : 1. Jika dan saling tegak lurus = 0 2. Jika dan searah = 3. Jika dan berlawanan arah = - 13
14 Contoh Soal Jika diketahui vector-vector sebagai berikut, maka tentukan (4, -4, -2), (8,-8,4) dan θ = 60 (3, 2, 1) dan (2,3,4) (4, -4, -2), (8,-8,4) dan θ = 90 14
15 b. Perkalian Silang (Cross Product) C = x θ Hasilnya vektor θ C = x Catatan : rah vektor C sesuai aturan tangan kanan esarnya vektor C = x = sin θ Sifat-sifat : 1. Tidak komunikatif x = x 2. Jika dan saling tegak lurus x = x 3. Jika dan searah atau berlawan arah x = 0 15
16 2.4 VEKTOR STUN Vektor yang besarnya satu satuan ˆ Notasi 1 ˆ ˆ esar Vektor Dalam koordinat Cartesian (koordinat tegak) Z i X k j Y rah sumbu x : rah sumbu y : rah sumbu z : î ĵ kˆ iˆ x y ˆj kˆ z 16
17 Sifat-sifat Perkalian Titik (Dot Product) Vektor Satuan i i = j j = k k = 1 i j = j k = k i = 0 Sifat-sifat Perkalian silang (Cross Product) Vektor Satuan i x i = j x j = k x k = 0 i x j = k k j x k = i i k x i = j j 17
18 Contoh Soal 1. Lima buah vektor digambarkan sebagai berikut : X C D Y E esar dan arah vektor pada gambar di samping : Vektor esar (m) rah ( o ) C D E Hitung : esar dan arah vektor resultan. Jawab : Vektor esar (m) rah( 0 ) Komponen X(m) Komponen Y (m) C D E R X = 8.5 R Y = -5.1 R esar vektor R : R 2 + = R 2 = = X y + ( - 5.1) = 9.67 m rah vektor R terhadap sumbu x positif : tg = = - 0,6 8.5 = (terhadap x berlawanan arah jarum jam ) 18
19 2. Diketahui koordinat titik adalah (2, -3, 4). Tuliskan dalam bentuk vektor dan berapa besar vektornya? Jawab : Vektor = 2i 3j + 4k = = (-3) = 29 satuan 3. Tentukanlah hasil perkalian titik dan perkalian silang dari dua buah vektor berikut ini : = 2i 2j + 4k = i 3j + 2k Jawab : Perkalian titik :. = (-2)(-3) = 16 Perkalian silang : x = i j 2 3 k 4 2 = { (-2).2 4.(-3)} i { } j + {2.(-3) (-2).1} k = (-4+12) i (4-4) j + (-6+4) k = 8i 0j 2j = 8i 2k 19
20 Proyeksi Orthogonal v 2 u v 1 a proj a u = u. a a 2 a Komp a u = u proj a u = u u. a a 2 a 20
21 Contoh Soal Diketahui u = (4,-2,3) dan a = (4,-2,2). Tentukan. projeksi orthogonal dari u pada a. komponen vector u yang orthogonal terhadap a 21
22 Penyelesaian u.a = 26 a 2 = 24 Projeksi orthogonal dari u pada a proj a u = u. a a 2 a proj a u = 26 4, 2,2 = 26, 26, Komponen vector u yang orthogonal terhadap a Komp a u = u proj a u = u u.a 26 2 a = (4, 2,3 ) ( 1 3, 1 6, 5 6 a, 26, ) = 22
Rudi Susanto, M.Si VEKTOR
Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi
VEKTOR. Oleh : Musayyanah, S.ST, MT
VEKTOR Oleh : Msayyanah, S.ST, MT . ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang ckp dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satan). Contoh
9/17/2012 B E S A R A N. Besaran Fisika. massa, waktu, suhu, kecepatan, percepatan, panjang, luas, gaya, momentum, medan
Konseptual esaran Pokok : besaran yang dtetapkan dengan suatu standar ukuran esaran Fska esaran Turunan : esaran yang drumuskan dar besaran-besaran pokok esaran Skalar Matemats esaran Vektor E S R N Skalar
BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor
PERTEMUAN II VEKTOR BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu,
Vektor Ruang 2D dan 3D
Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak
BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.
.. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya
Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,
BAB II BESARAN VEKTOR
BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan
Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,
VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
BESARAN, SATUAN & DIMENSI
BESARAN, SATUAN & DIMENSI Defenisi Apakah yang dimaksud dengan besaran? Besaran : segala sesuatu yang dapat diukur dan dinyatakan dengan angka (kuantitatif). Apakah yang dimaksud dengan satuan? Satuan
BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor
BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor
DIKTAT MATEMATIKA II
DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain
VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering
A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor
. Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak
VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.
VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada
ujung vektor A bertemu dengan pangkal vektor B
. Pengertian Besaran Vektor Besaran skalar adalah besaran yang hanya memiliki besar (nilai) saja. Beberapa besaran skalar di antaranya : semua besaran pokok, jarak, laju, usaha atau energi, daya, massa
Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika
Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya
Vektor di Bidang dan di Ruang
Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen
Matematika II : Vektor. Dadang Amir Hamzah
Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang
MODUL PERTEMUAN KE 2. MATA KULIAH : FISIKA TERAPAN (2 sks) Definisi Vektor, Komponen Vektor, Penjumlahan Vektor, Perkalian Vektor.
Jurusan Teknik Sipil 15 MODUL PERTEMUN KE MT KULIH : FISIK TERPN ( sks) MTERI KULIH: Definisi Vektor, Komponen Vektor, Penjumlahan Vektor, Perkalian Vektor. POKOK BHSN: VEKTOR -1 DEFINISI VEKTOR Skalar
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor
Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :
BAB II LANDASAN TEORI. A. Tinjauan Pustaka. 1. Vektor
BAB II LANDASAN TEORI A. Tinjauan Pustaka 1. Vektor Ada beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. Ada juga besaran fisis yang tidak
BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan
fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi
BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang
Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah
a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1
1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai
KATA SAMBUTAN. Jakarta, 17 Agustus 2008 Direktur Pembinaan SMK. iii
KATA SAMBUTAN Puji syukur kami panjatkan kehadirat Allah SWT., berkat rahmat dan karunia Nya, Pemerintah, dalam hal ini, Direktorat Pembinaan Sekolah Menengah Kejuruan Direktorat Jenderal Manajemen Pendidikan
VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =
VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang
VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B
Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,
Ruang Vektor Euclid R 2 dan R 3
Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015
BESARAN VEKTOR B A B B A B
Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 4 Vektor di Bidang dan di Ruang Vektor di Bidang dan Ruang Sub Pokok Bahasan Notasi dan Operasi Vektor Perkalian titik Perkalian silang Beberapa Aplikasi Proses
BAB 2 ANALISIS VEKTOR
BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep
Bab 1 : Skalar dan Vektor
Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar
VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor
VEKTOR GAYA Perkalian dan Pembagian vektor dengan scalar Jika vektor dikalikan dengan nilai positif maka besarnya meningkat sesuai jumlah pengalinya. Perkalian dengan bilangan negatif akan mengubah besar
VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.
VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel
dengan vektor tersebut, namun nilai skalarnya satu. Artinya
1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan
Vektor di ruang dimensi 2 dan ruang dimensi 3
Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 ([email protected]) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 [email protected] Vektor
Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti
Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan
B a b 2. Vektor. Sumber:www.tallship.org
a b 2 Vektor Sumber:www.tallship.org Pada bab ini, nda akan diajak untuk dapat menerapkan konsep besaran Fisika dan pengukurannya dengan cara melakukan penjumlahan vektor. Pernahkah nda mengarungi lautan
PanGKas HaBis FISIKA. Vektor
Vektor PanGKas HaBis FISIKA Mari kita pandang sebuah perahu yang mengarungi sebuah sungai. Perahu itu, misalnya, berangkat dari dermaga menuju pangkalan bahan bakar. Jika dermaga dipakai sebagai titik
19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =
19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2012 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) massa, waktu, suhu, panjang, luas, volum Vektor memiliki besar
FISIKA UNTUK UNIVERSITAS OLEH
FISIKA UNTUK UNIVERSITAS OLEH BAB I VEKTOR Pendahuluan B esaran adalah segala sesuatu yang dapat diukur dan dinyatakan dalam bentuk angkaangka. Besaran fisika dapat dibagi menjadi besaran pokok dan besaran
Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q
Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q a) Nyatakan PQ dalam bentuk vektor kolom b) Nyatakan PQ dalam bentuk i, j (vektor satuan) c) Tentukan
Hasil Kali Titik, Hasil Kali Silang, dan Hasil Kali Tripel
BAB II HASIL KALI TITIK DAN SILANG A. HASIL KALI TITIK ATAU SKALAR Hasil kali titik atau skalar dari dua buah vektor A dan B yang dinyatakan oleh A B (dibaca A titik B ) didefinisikan sebagai hasil kali
Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY
Pengantar Teknologi dan Aplikasi Elektromagnetik Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Kelistrikan dan Kemagnetan Tanpa listrik dan magnet, maka dalam kehidupan jaman sekarang: tanpa motor
PERKALIAN DUA VEKTOR & PROYEKSI VEKTOR
PERKALIAN DUA VEKTOR & PROYEKSI VEKTOR. Identitas Mata Pelajaran : Matematika X (Peminatan). Semester : c. Kompetensi Dasar : Kompetensi Dasar. Kompetensi Dasar 4. Menjelaskan vektor, operasi vektor, panjang
Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili
4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik
2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R
. Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b
VEKTOR YUSRON SUGIARTO
VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2013 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) Vektor memiliki besar dan arah Massa Waktu Kecepatan Percepatan
ALJABAR LINEAR DAN MATRIKS
ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf
MAKALAH VEKTOR. Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L
MAKALAH VEKTOR Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L PEMERINTAHAN KABUPATEN BOGOR SMAN 1 PAMIJAHAN 017 KATA PENGANTAR Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha
BESARAN, SATUAN DAN VEKTOR
I BESARAN, SATUAN DAN VEKTOR Tujuan umum perkuliahan yang dicapai setelah mempelajari bab ini adalah pemahaman dan kemampuan menganalisis serta mengaplikasikan konsep-konsep besaran satuan dan vektor pada
VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
VEKTOR Makalah ini ditujukkan untuk Memenuhi Tugas Disusun Oleh : 1. Chrisnaldo noel (12110024) 2. Maria Luciana (12110014) 3. Rahmat Fatoni (121100) PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
VEKTOR II. Tujuan Pembelajaran
Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang
Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal
BAB I BESARAN DAN SATUAN
BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macammacam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti itu disebut dengan skalar.
BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain
BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional
9.1. Skalar dan Vektor
ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor
Aljabar Linier Elementer. Kuliah ke-9
Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor
18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:
8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a
Program Studi Pendidikan Matematika STKIP PGRI SUMBAR
VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,
a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3
a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,
Geometri pada Bidang, Vektor
Jurusan Matematika FMIPA Unsyiah September 9, 2011 Secara geometrik, vektor pada bidang dapat digambarkan sebagai ruas garis berarah (anak panah). Panjang dari anak panah merepresentasikan besaran (magnitude)
MATRIKS & TRANSFORMASI LINIER
MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced
Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT
KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar
MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab
Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;
BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,
Open Source. Not For Commercial Use. Vektor
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Vektor Vektor adalah sebuah besaran ang mempunai nilai dan arah. Secara geometri vektor biasana digambarkan sebagai anak panah berarah (lihat gambar di samping)
VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :
1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan
BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52
FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. BAB II V E K T O R Pernahkah Kamu naik pesawat terbang? Antara penumpang dan pilot dan copilot di ruang kemudi dipisah dengan sekat. Tujuannya agar pilot dapat
KINEMATIKA GERAK 1 PERSAMAAN GERAK
KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut
L mba b ng n g d a d n n n o n t o asi Ve V ktor
ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.
Perkalian Titik dan Silang
PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut
ALJABAR LINEAR DAN MATRIKS VEKTOR
ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A AB B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan
Bab 1 Vektor. A. Pendahuluan
Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang
Konsep Dasar. Modul 1 PENDAHULUAN
Modul 1 Konsep Dasar Drs. Yurizal Rahman Drs. Mulyatno, M.Si. F PENDAHULUAN isika adalah ilmu pengetahuan yang memusatkan perhatian pada fenomena-fenomena alam. Sebagai ilmu pengetahuan alam, fisika didasarkan
BESARAN, SATUAN DAN VEKTOR TEKNIK ELEKTRO S1 UNJANI MATERI KULIAH
ESRN, STUN DN VEKTOR TEKNIK ELEKTRO S1 UNJNI MTERI KULIH No Pertemuan ke Topik ahasan 1 I esaran dan Satuan 2 II Kinematika Partikel 3 III Dinamika Partikel 4 IV Gerak Harmonik 5 V Kerja dan Energi 6 VI
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) 1. Identitas Mata Kuliah Nama Mata Kuliah : Mekanika Teknik Jurusan/Prodi : Pendidikan Teknik Elektro/ Pendidikan Teknik Mekatronika Semester : 3 (tiga) Minggu ke : 3 (tiga)
BAB I ANALISIS VEKTOR
BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan
Ringkasan Kalkulus 2, Untuk dipakai di ITB 36
Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini
Aljabar Linier & Matriks
Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya
Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3
Vektor-Vektor dalam Ruang Berdimensi-2 dan Ruang Berdimensi-3 Disusun oleh: Achmad Fachrurozi Albert Martin Sulistio Iffatul Mardhiyah Rifki Kosasih Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan
Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)
Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak
DIKTAT MATEMATIKA II
DIKTAT MATEMATIKA II (PERSAMAA GARIS DA PERSAMAA BIDAG DATAR) Drs. A. ABABA PURAWA, M.T JURUSA PEDIDIKA TEKIK MESI FAKULTAS PEDIDIKA TEKOLOGI DA KEJURUA UIVERSITAS PEDIDIKA IDOESIA 004 PERSAMAA GARIS DA
Pentalogy BIOLOGI SMA
GENTA GROUP in PLAY STORE CBT UN SMA IPA Buku ini dilengkapi aplikasi CBT UN SMA IPA android yang dapat di-download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. Kode Aktivasi
BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP BESARAN DASAR FAKTOR SI SATUAN DIMENSI
BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP CONTOH SOAL CONTOH SOAL CARA ANALITIS BESARAN DASAR FAKTOR SI SATUAN DIMENSI ANGKA PENTING KEGIATAN
Geometri pada Bidang, Vektor
Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,
B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis
BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,
GESERAN atau TRANSLASI
GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor
Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus
ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor
ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran
----- Garis dan Bidang di R 2 dan R
----- Garis dan Bidang di R dan R 3 ----- Sifat Operasi Hasil Kali Titik pada Vektor Teorema: Hasil kali titik (dot product) u dan v dapat dinyatakan pula sebagai: A. Pendekatan Geometri: R u v cos ; u,
erkalian Silang, Garis & Bidang dalam Dimensi 3
erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui
Mekanika Rekayasa/Teknik I
Mekanika Rekayasa/Teknik I Norma Puspita, ST. MT. Universitas Indo Global Mandiri Mekanika??? Mekanika adalah Ilmu yang mempelajari dan meramalkan kondisi benda diam atau bergerak akibat pengaruh gaya
