bilqis 1
|
|
|
- Deddy Indra Tanuwidjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 bilqis
2 PERTEMUAN bilqis
3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Mengetahui definisi Sistem Persamaan Linier Dapat membentuk matriks yang merepresentasikan Sistem Persamaan Linier Dapat menyelesaikan Sistem Persamaan Linier dengan menggunakan metode Gauss dan Gauss Jordan bilqis
4 Contoh Soal berapa nilai x, y dan Z x + y + z = 9 x + 4y z = x + 6y 5z = bilqis 4
5 Sistem Persamaan Linier bilqis 5
6 Persamaan linier : Persamaan yang semua variabelnya berpangkat atau dan tidak terjadi perkalian antar variabelnya. Contoh: () x + y + z = 9 PL () x + y = 9 PL () xy z = 9 Bukan PL Solusi PL () : berupa suatu tripel dengan masing-masing nilai sesuai urutan (nilai-x, nilai-y, nilai-z) yang memenuhi persamaan tersebut. Himpunan solusi untuk persamaan () di atas: { (,, 4), (,, 4), (4, 5, ),. } Himpunan solusi juga disebut Ruang Solusi (solution space) bilqis 6
7 bilqis 7 Misal : atau atau terserah variable mana yang akan diumpamakan, rumus berbeda, tapi hasil akhir untuk x, y, dan z tetap sama t s x s y t z 5 4 s y t x 9 s t z t s y s z t x
8 Sistem Persamaan Linier: Suatu sistem dengan beberapa ( atau lebih) persamaan linier. Contoh: x + y = x 5y = Ruang Solusi: berupa semua ordered-pair (nilai-x, nilai-y) yang harus memenuhi semua persamaan linier dalam sistem tersebut; untuk sistem ini ruang solusinya { (, ) } bilqis 8
9 PENYIMPANGAN PADA PENYELESAIAN SUATU SPL Pada beberapa SPL tertentu terdapat penyimpangan penyimpangan dalam penyelesaiannya, misal : Diberikan SPL sebagai berikut : x + /x + /x = /x + /x + /4x = /x + /4x + /5x = Didapat penyelesaian x = 9, x = -6, dan x = Jika SPL tersebut dituliskan dalam bentuk dua desimal : x +,5x +,x =,5x +,x +,5x =,x +,5x +,x = Didapat penyelesaian x 55,55; x -77,778; dan x 55,556 bilqis 9
10 Interpretasi Geometrik: Sistem menggambarkan garis lurus pada sebuah bidang datar. g : x + y = g : x 5y = Solusi: g dan g berpotongan di (, ) Kemungkinan: X+y = 5 X+y = 7 Var => sama Konst => tidak X+y = 5 Kelipatan X+y = berpotongan di titik tidak berpotongan berimpit bilqis
11 Solusi Sistem Persamaan Linier a. Cara Biasa Seperti SMA b. Eliminasi Gauss c. Eliminasi Gauss - Jordan a. Cara Biasa (untuk mengingat kembali): I. x + y = x + y = 9 x 5y = x 5y = 8y = 8 y = x 5 = x = 6 x = II. y = x x 5( x) = atau x 5 + 5x = 8x = 6 x = y = x y = bilqis
12 b. Eliminasi Gauss (ringkasan): Sistem Persamaan Matriks Eliminasi Substitusi Linier Augmented Gauss Balik OBE bilqis
13 Penyelesaian Sistem Persamaan Linier b. Eliminasi Gauss (lihat contoh, halaman 5) x + y + z = 9 ditulis 9 dalam x + 4y z = 4 - bentuk matriks augmented x + 6y 5z = 6-5 lalu diusahakan berbentuk 9??? dengan proses Operasi Baris Elementer (OBE) (Elementary Row Operation - ERO) bilqis
14 Matriks Augmented : (Matriks yang diperbesar) Matriks yang entri-entrinya dibentuk dari koefisien-koefisien Sistem Persamaan Linier Contoh : x + y + z = 9 x + 4y z = x + 6y 5z = Matriks Augmented-nya : bilqis 4
15 O.B.E sebuah baris dengan kostanta sebuah baris dengan konstanta kemudian pada baris lain Menukar dua buah baris Ciri-ciri eliminasi Gauss (Eselon Baris) Jika suatu baris tidak semua nol, maka bilangan pertama yang tidak nol adalah ( utama) Baris nol terletak paling bawah utama baris berikutnya berada di kanan utama baris di atasnya. Dibawah utama harus bilqis 5
16 bilqis 6 Contoh : Ciri-ciri eliminasi Gauss Jordan (Eselon Baris Tereduksi) Jika suatu baris tidak semua nol, maka bilangan pertama yang tidak nol adalah ( utama) Baris nol terletak paling bawah utama baris berikutnya berada di kanan utama baris diatasnya.. Tiap kolom yang mengandung utama mempunyai nol di tempat lain Contoh :
17 bilqis 7 Eliminasi Gauss menggunakan O.B.E : * + = * + = * + = Substitusi Balik [baris -] + baris [baris -] + baris baris * / / / 7/ 7/ 9 [baris -] + baris 7 / 7 / 7 / / baris z = 7/ 7/ () 7/ 7 y y z y 9 () 9 x x z y x,, z y x
18 x y z 9 Substitusi Balik: ½ - / - / z = - / z = y 7z = - 7 -½ - z / y = 7 y = 9 x + y + z = y x = x = -½ - / z bilqis 8
19 Bentuk eselon baris:. Entri-entri dalam sebuah baris tidak semuanya nol, maka entri pertama yang tidak nol harus (disebut -utama / leading-). Baris-baris yang semua entrinya, dikelompokkan di bagian bawah matriks. Posisi -utama dari baris yang lebih bawah harus lebih ke kanan d/p -utama baris yang lebih atas Bentuk eselon baris tereduksi:,,, ditambah 4. Semua entri (yang lain) dari kolom yang berisi -utama harus di--kan bilqis 9
20 Operasi Baris Elementer (OBE) (Elementary Row Operation - ERO) Perhatikan bahwa tiap baris dari matriks merepresentasikan persamaan linier. Mengalikan suatu baris dengan bilangan nyata k. Menukar posisi dua baris. Menambah baris-i dengan k kali baris-j bilqis
21 c. Eliminasi Gauss-Jordan (ringkasan): Sistem Persamaan Matriks Eliminasi Solusi Linier Augmented Gauss-Jordan (langsung) OBE bilqis
22 Eliminasi Gauss-Jordan (contoh yang sama) x + y + z = 9 9 x + 4y z = 4 - x + 6y 5z = 6-5 dan diusahakan berbentuk??? dengan proses Operasi Baris Elementer (OBE) (Elementary Row Operation - ERO) bilqis
23 Gauss-Jordan MatLab bilqis
24 bilqis 4 Eliminasi Gauss-Jordan menggunakan O.B.E idem Gauss disambung dengan : * + = * + = * + = 7/ 7/ 9 baris 7 + baris 7 / 7 / 7 / 7 / 7 / 7 / 9 baris - + baris 9 baris - + baris z y x
25 Suatu SPL mempunyai kemungkinan jawaban, yaitu : Contoh :. Mempunyai jawaban tunggal. Mempunyai banyak jawaban. Tidak mempunyai jawaban Tentukan nilai a agar SPL berikut: i. Mempunyai jawaban tunggal ii. iii. x y + z = x y + 9z = 4 x y + (a - 4)z = + a Mempunyai banyak jawaban Tidak mempunyai jawaban bilqis 5
26 Penyelesaian : Matriks Eselon SPL di atas adalah : 4 a a i. Mempunyai jawaban tunggal a 4 a - dan a ii. Mempunyai banyak jawaban a 4 = dan a + = a = - iii. Tidak mempunyai jawaban a 4 = dan a + a = bilqis 6
27 Lihat contoh di halaman 5 dan 6 Lihat contoh di halaman dan bilqis 7
28 Halaman 5 Example. In the left column below we solve a system of equations by operating on the equations in the system, and in the right column we solve the same system by operating on the rows of the augmented matrix. x + y + z = 9 x + 4y z = x + 6y -5z = Add - times the first equation to the second to obtain x + y + z = 9 y 7z = -7 x + 6y -5z = Add - times the first equation to the third to obtain x + y + z = 9 y 7z = -7 y -z = Add - times the first row to the second to obtain Add - times the first row to the third to obtain bilqis 8
29 bilqis 9 Multiply the second equation by ½ to obtain Multiply the second row by ½ to obtain z y z y z y x Add - times the second equation to the third to obtain Add - times the second row to the third to obtain z z y z y x Multiply the third equation by - to obtain Multiply the third row by - to obtain z z y z y x 7 7 9
30 bilqis Add - times the second equation to the first to obtain Add - times the second row to the first to obtain z z y z x Add -/ times the third equation to the first and 7/ times the third equation to the second to obtain Add -/ times the third row to the first and 7/ times the third row to the second to obtain z y x The solution : x =, y =, z =
31 bilqis Halaman Step. Locate the leftmost column that does not consist entirely of zeros. Step. Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step Leftmost nonzero column The first and second rows in the preceding matrix were interchanged
32 Step if the entry that is now at the top of the coloumn found in step is a, multiply the first row by /a in order to introduce a leading The first row of the preceding matrix was multiplied by ½ step 4 add suitable multiples of the top row to the rows below so that all entries below the leading to zeros times the first row of the preceding matrix was added to the third row step 5 Now cover the top row in the matrix and begin again with step applied to the submatrix that remains. Continue in this way until the entire matrix is in row-echelon form left most nonzero coloumn in the submatrix bilqis
33 , The first row in the submatrix was multiplied by -/ to introduce a leading , times the first row of the submatirx was added to the second row of the submatrix to introduce a zero below the leading ,5-6.5 The top row in the submatrix was covered, and we returned again to the step leftmost non zero coloumn in the new submatrix ,5-6 The first(and only) row in the submatrix was multiplied by to introduce a leading The entire matrix is now in row-echelonform. To find the reduce row-echelon form we need the following additional step bilqis
34 Step 6 Begining with the last nonzero row and working upward, add suitable multiplies of each row to the rows above to introduce zeros above the leading s / times the third row of the preceding matrix was added to the second row -5-6 times the third row was added to the first row 7 5 times the second row was added to the first row The last matrix is in reduced row echelon form bilqis 4
35 Sistem Persamaan Linier Homogen :. Sistem Persamaan Linier dikatakan homogen jika semua suku di kanan tanda = adalah.. Solusi Sistem Persamaan Linier Homogen: Solusi Trivial ( semua x i = ; i =.. n ): pasti ada Solusi Non-trivial ( solusi trivial, plus solusi di mana ada x i ) Contoh: lihat contoh 6 halaman 8 dan verifikasi proses penyelesaiannya bilqis 5
36 Contoh: lihat contoh 6 halaman 8 dan verifikasi proses penyelesaiannya Brs- (/) -/ / Brs- + brs- Brs- brs- -/ / / - / -/ -/ bilqis 6
37 -/ / / - / -/ -/ Brs- (/) Brs- ( /) -/ / - Brs- brs- Brs-4 brs- -/ / - bilqis 7
38 -/ / - Brs- (/) Brs-4 (/) -/ / - Brs-4 brs- -/ / - bilqis 8
39 -/ / - -/ / baris- + (/) baris- bilqis 9
40 x + x + x 5 = x + x 5 = x 4 = x 5 = s x + x 5 = x = x 5 x = t x + x + x 5 = x = x x 5 Ruang solusinya = { (-t-s, t, -s,, s ) } Catt => yang diumpamakan dahulu adalah index terbesar bilqis 4
41 Teorema: Sistem Persamaan Linier Homogen dengan variabel lebih banyak d/p. persamaan mempunyai tak berhingga banyak pemecahan. Ditinjau dari matriksnya: Sistem Persamaan Linier Homogen dengan kolom lebih banyak d/p. baris mempunyai tak berhingga banyak pemecahan. bilqis 4
42 Contoh menggunakan Matlab Soal x + y + z = 9 x + 4y z = x + 6y 5z = Buat matrix pada Matlab bilqis 4
43 Matlab Mengenol-kan baris ke-, kolom Baris = Baris * - + baris bilqis 4
44 Matlab Mengenol-kan baris ke-, kolom Baris = Baris * - + baris bilqis 44
45 Matlab Membuat nilai pada kolom dan baris Baris = Baris * / bilqis 45
46 PR Contoh pada slide, coba tukar antara baris pertama dengan baris, apakah hasilnya tetap sama? Jawab dengan menggunakan Gauss-Jordan (dgn tangan) x + y + z = 9 x + 4y z = x + 6y 5z = x + 4y z = bilqis 46
47 PR Contoh pada slide 8, coba kerjakan SPL yang seharusnya jawabannya sama, tapi kenapa berbeda? Jawab dengan menggunakan Gauss-Jordan (dengan tangan) x + /x + /x = /x + /x + /4x = /x + /4x + /5x = x +,5x +,x =,5x +,x +,5x =,x +,5x +,x = bilqis 47
48 PR kerjakan saja..b, 4.c, 5.d,. 6.b, 7.c, 8.a,.b, 4.c, 5.b, 7, bilqis 48
Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung
Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan
ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3
ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
Adri Priadana. ilkomadri.com
Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
SOLUSI SISTEM PERSAMAAN LINEAR
SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,
Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:
SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan
dimana a 1, a 2,, a n dan b adalah konstantakonstanta
Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan
Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN
Pertemuan 1 Sistem Persamaan Linier dan Matriks
Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks
Pertemuan 14. persamaan linier NON HOMOGEN
Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
Sistem Persamaan Linier dan Matriks
Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti
ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi
04-Ruang Vektor dan Subruang
04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
SISTEM PERSAMAAN LINIER
SISTEM PESAMAAN LINIE PESAMAAN LINIE Sebuah garis dalam bidang dan y secara umum dapat ditulis dalam bentuk a + a y = b Secara lebih umum didefinisikan sebuah persamaan linier dengan n buah variabel a
BAB X SISTEM PERSAMAAN LINIER
BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan
Pertemuan 13 persamaan linier NON HOMOGEN
Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara
MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)
MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks
MODUL IV SISTEM PERSAMAAN LINEAR
MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan
Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik
Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Bervianto Leo P - 13514047 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4
Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan
Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan Edwin Julius Solaiman Fakultas Teknologi Informasi, Universitas Advent Indonesia Abstrak
JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA
CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER
ALJABAR LINEAR [LATIHAN!]
Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang
COURSE NOTE : Sistem Persamaan Liniear
COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan
II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3
11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan
Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:
Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:
5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi
Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta
Persamaan linear adalah persamaan dimana peubahnyatidakmemuateksponensial, trigonometri(sepertisin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan linear
Sistem Persamaan Linier FTI-UY
BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear
Solusi Sistem Persamaan Linear Ax = b
Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali
6 Sistem Persamaan Linear
6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus
ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS
ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam
Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity
Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A
RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR
7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia
Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia Nugroho Satriyanto 1351038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
Aljabar Matriks. Aljabar Matriks
Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :
Sistem Persamaan Linier (SPL)
Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements
Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher
Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Nursyahrina - 13513060 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Aljabar Linear Elementer MUG1E3 3 SKS
// ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab
1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.
Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 1 Matriks dan Operasinya MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks Jenis-jenis Matriks Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan)
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
SATUAN PERKULIAHAN. 10 menit -apersepsi -motivasi Diberikan dalam bahasa Inggris 100% 2 Kegiatan inti:
I. IDENTITAS MATA KULIAH II. SATUAN PERKULIAHAN b. Materi pokok : Pengenalan Bentuk SPL dengan variabel d. Pertemuan ke : e. Waktu : menit STANDAR KOMPETENSI DAN INDIKATOR Mahasiswa memiliki keterampilan
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar
Sistem Persamaan linier
Sistem Persamaan linier 5.1 Sistem Persamaan Linier Dua Peubah (Variabel) Bentuk Umum: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Dimana a 1, b 1, c 1, a 2, b 2, c 2 R. Himpunan pasangan berurutan (x, y)
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga
ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10. Andi Rusdi Jurusan Pendidikan Matematika PPs UNM
ALTERNATIF PENYELESAIAN SISTEM PERSAMAAN LINEAR SECARA NUMERIK DENGAN MAPLE 10 Andi Rusdi Jurusan Pendidikan Matematika PPs UNM Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan
BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk
BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan
KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN
KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas
PERSAMAAN & PERTIDAKSAMAAN
PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak
Pembagi Bersama Terbesar Matriks Polinomial
Vol. 11, No. 1, 63-70, Juli 2014 Pembagi Bersama Terbesar Matriks Polinomial Indramayanti Syam 1,*, Nur Erawaty 2, Muhammad Zakir 3 ABSTRAK Teori bilangan adalah cabang ilmu Matematika yang mempelajari
SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,
ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM
KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN
KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,
Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2
Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung
Metode Simpleks (Simplex Method) Materi Bahasan
Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks
ALJABAR LINEAR ELEMENTER
BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.
BAB III SISTEM PERSAMAAN LINEAR. Kata kunci: matriks diperbesar, eliminasi gauss, crammer, invers matriks, addrow, mulrow, gausselim, gaussjord.
BAB III SISTEM PERSAMAAN LINEAR Abstrak: Matriks menjadi suatu alternatif dalam penyelesaian sistem persamaan linear, matriks diperbesar adalah salah satu cara untuk meringkas suatu sistem persamaan linear,
MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU)
Jurnal Matematika, Statistika,& Komputasi 1 Vol.... No... 21... MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Fachrul Islam 1, Jeffry
Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1
Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab
BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:
BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang
Eliminasi Gauss-Jordan dengan Macro Add-in Matrix
Eliminasi Gauss-Jordan dengan Macro Add-in Matrix Junaidi Junaidi A. Pengantar Tahapan dalam eliminasi Gauss adalah dengan mengubah persamaan linear ke dalam matriks teraugmentasi (augmented matrix). Selanjutnya,
BAB II DASAR DASAR TEORI
BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian
Lampiran 1 Pembuktian Teorema 2.3
LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)
1-x. dimana dan dihubungkan oleh teorema Pythagoras.
`2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat
Aljabar Linier Elementer. Kuliah 1 dan 2
Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut
Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan
Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan Fitri Aryani 1, Rahmadani 2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau e-mail: khodijah_fitri@uin-suskaacid Abstrak
Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia
Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia Chalvin 13514032 1 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1
Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w
Sistem-sistem Persamaan (Linear dan Non Linear)
Sistem-sistem Persamaan (Linear dan Non Linear) Pendekatan Menu Restoran Oleh: Drs. Turmudi, M.Ed., M.Sc., Ph.D. 27 Bab 3 Sistem-Sistem Persamaan A. Pengantar Di dalam Aljabar representasi suatu besaran
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI DOOLITTLE
Jurnal Sains, Teknologi Industri, Vol. 11, No. 2, Juni 2014, pp. 166-174 ISSN 1693-2390 print/issn 2407-0939 online PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI DOOLITTLE
PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN
309 Jurnal KIP Vol II No. 3, Nopember 2013 Februari 2014 PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN Abraham Salusu [email protected] Program Studi
Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR
Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers
Penerapan Operasi Matriks dalam Kriptografi
Penerapan Operasi Matriks dalam Kriptografi Muhammad Farhan Kemal 13513085 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
