Sistem Persamaan Linier FTI-UY
|
|
|
- Sugiarto Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB V Sistem Persamaan Linier
2 Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear Sistem n persamaan linear dengan n variabel dapat dinatakan sebagai berikut: Dimana 1, 2,..., n variabel tak diketahui, a ij, b i, i 1, 2,..., m; j 1, 2,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. ibl
3 PENYAJIAN SPL DALAM MATRIKS SPL BENTUK MATRIKS STRATEGI MENYELESAIKAN SPL: mengganti SPL lama menjadi SPL baru ang mempunai penelesaian sama (ekuivalen) )tetapi t idalam bentuk ang lebih sederhana.
4 Contoh : Selesaikan SPL berikut Penelesaian permasalah di atas : Substitusi Eliminasi Grafik Determinan
5 TIGA OPERASI STANDAR PENYELESAIAN SPL 1. Mengalikan suatu persamaan Mengalikan suatu baris dengan konstanta tak nol. dengan konstanta tak nol. 2. Menukar posisi dua persamaan sebarang. 3. Menambahkan kelipatan suatu persamaan ke persamaan lainna. Menukar posisi dua baris sebarang. Menambahkan kelipatan suatu baris ke baris lainna. Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE) SPL atau bentuk matriksna diolah menjadi bentuk sederhana sehingga tercapai 1 elemen tak nol pada suatu baris
6 CONTOH DIKETAHUI (i) (ii) (iii) kalikan pers (i) dengan (-2) 2), kemu- dian tambahkan ke pers (ii). kalikan baris (i) dengan (-2), lalu tambahkan ke baris (ii). kalikan pers (i) dengan (-3), kemudian tambahkan ke pers (iii). kalikan baris (i) dengan (-3), lalu tambahkan ke baris (iii). kalikan pers (ii) kalikan baris (ii) dengan (1/2). dengan (1/2).
7 kalikan pers (ii) dengan (1/2). kalikan baris (ii) dengan (1/2). kalikan pers (ii) dengan (-3), lalu tambahkan ke pers (iii). kalikan brs (ii) dengan (-3), lalu tambahkan ke brs (iii). kalikan pers (iii) dengan (-2). kalikan brs (iii) dengan (-2). kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1) 1), lalu tambahkan ke brs (i).
8 kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i). kalikan pers (iii) dengan (-11/2), lalu tambahkan ke pers (i) dan kalikan pers (ii) dg (7/2), lalu tambahkan ke pers (ii) kalikan brs (iii) dengan (-11/2), lalu tambahkan ke brs (i) dan kalikan brs (ii) dg (7/2), lalu tambahkan ke brs (ii) Diperoleh 1, 2, 3. Terdapat kaitan menarik antara bentuk SPL dan representasi matriksna. Metoda ini disebut dengan METODA ELIMINASI GAUSS.
9 Eliminasi gauss Prosedur penelesaian dari metoda ini i adalah mengurangi sistem persamaan ke dalam bentuk segitiga g sedemikian sehingga salah satu dari persamaan-persamaan tersebut hana mengandung satu bilangan tak diketahui, dan setiap persamaan berikutna hana terdiri dari satu tambahan bilangan tak diketahui baru
10 Metode Gauss Jordan Metode Gauss jordan adalah pengembangan dari eliminasi gauss Matriks di rubah menjadi segitiga bawah dan atas (matriks identitas) Variabel persamaan bisa langsung dibaca
11 Contoh : Selesaikan sistem persamaan berikut ini: Dalam bentuk bentuk matriks :
12 ,668 2, ,4188 2,
13 ,7932 1, ,
14 Metode Gauss Seidel Metode ini menerapkan terkaan-terkaan awal dan kemudian diiterasi untuk memperoleh taksiran-taksiran ang diperhalus dari penelesaianna Contoh : Selesaikan sistem persamaan berikut ini:
15 prosedur : Nilai ang belum diketahui dianggap nol Hasil dari perhitungan digunakan untuk perhitungan selanjutna. Iterasi i pertama Dengan menganggap bahwa dan adalah nol, maka dapat dihitung: 7,85,1,2 3 7,85 3 2,61667
16 Nilai ini dengan anggapan nilai adalah nol dan adalah hasil ang barus saja dididapat, kemudian disubtitusikan ke persamaan berikut : 19,3,1 7,3 19,3,1(2,61667) 7 2,7945 Nilai dan nilai, disubtitusikan untuk mencari nilai 71,4,3,2 71,4,3(2,61667) 1 1 7,56,2(2,7945)
17 Iterasi ke Iterasi ke-2 3,2(7,56) 2,7945),1( 7,85 3,2,1,85 7 2,9956,3(7,56),1(2,9956) 19,3,3,1,3 19 2, ) ( ) ( 7 1 2,49962),2(,3(2,9956) 71,4 1,2,3,4 71 7,29 1 1
18 Iterasi ke Iterasi ke-3 3,2(7,29) 2,49963),1( 7,85 3,2,1,85 7 3,32,3(7,29),1(3,32) 19,3,3,1,3 19 2, ,3(7,29),1(3,32) 19,3 7,3,1 19,3 1 2,49999),2(,3(3,32) 71,4 1,2,3,4 71 6,
19 Iterasi ke Iterasi ke-4 3,2(6,99999) 2,499999),1( 7,85 3,2,1,85 7 3,3(6,99999),1(3) 19,3,3,1,3 19 2,5 7,3(6,99999),1(3) 19,3 7,3,1 19,3 1 2,5),2(,3(3) 71,4 1,2,3,
20
21 Subtitusi Mundur dan Subtitusi Maju Pandang SPL dengan matriks koefisisen berupa matriks segitiga atas berikut : a111 a a1nn b1 a a2nn b2... annn Algoritma Subtitusi Mundur n b n / a nn Untuk k n 1,... 1 bn k n b a k j k 1 a kk kj j
22 Jika kita menelesaikanna secara maju, algoritma ang berhubungan disebut subtitusi maju SPL na berbentuk a 1n n b 1 a 2n-1 n-1 a 2n n b 2 a n1 1 a n a nn n b n Algoritma Subtitusi Maju n b 1 / a 11 Untuk k 23 2, 3,... n k b k k 1 j 1 a kk a kj j
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
Solusi Sistem Persamaan Linear Ax = b
Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem
MATEMATIKA BISNIS BAB 2 FUNGSI LINIER
MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
BAB III : SISTEM PERSAMAAN LINIER
3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
SOLUSI SISTEM PERSAMAAN LINEAR
SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,
Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2
Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung
Pertemuan 14. persamaan linier NON HOMOGEN
Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat
Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:
SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk
BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh
Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa
Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung
Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.
Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
SISTEM PERSAMAAN LINIER
SISTEM PESAMAAN LINIE PESAMAAN LINIE Sebuah garis dalam bidang dan y secara umum dapat ditulis dalam bentuk a + a y = b Secara lebih umum didefinisikan sebuah persamaan linier dengan n buah variabel a
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
ALJABAR LINEAR [LATIHAN!]
Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan
Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan
Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta
Pertemuan 1 Sistem Persamaan Linier dan Matriks
Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan
6 Sistem Persamaan Linear
6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus
SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) ABSTRACT
SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) Miftakhul Rohmah 1, Sri Gemawati 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu
JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA
CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER
PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN
PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM. Edisi/Revisi A/ Tanggal 7 Juli 7 Halaman dari 8 RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:
Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM
BAB X SISTEM PERSAMAAN LINIER
BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan
Pertemuan 13 persamaan linier NON HOMOGEN
Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara
BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear
BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
BAB 2 LANDASAN TEORI
6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66
MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan
II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3
11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan
MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)
MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks
Aljabar Linier & Matriks. Tatap Muka 2
Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks
Adri Priadana. ilkomadri.com
Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
Aljabar Linear Elementer MUG1E3 3 SKS
// ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab
Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi
Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung
Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)
SATUAN ACARA PERKULIAHAN
1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan
1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.
Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain
ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti
ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi
Materi VI. Matik memiliki notasi yang berbeda dengan determinan. Garis pembatas sedikit disikukan Contoh. matrik ini memiliki ordo (3x4)
Materi VI Tujuan :. Mahasiswa dapat mengenali matrik.. Mahasiswa dapat mengunakan operasi penjumlahan, pengurangan, dan perkalian matrik. Mahasiswa dapat merubah persamaan linier menjadi persamaan matrik..
Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher
Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Nursyahrina - 13513060 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan
6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1
6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli
Solusi Numerik Sistem Persamaan Linear
Solusi Numerik Sistem Persamaan Linear Modul #2 Praktikum AS2205 Astronomi Komputasi Oleh Dr. Muhamad Irfan Hakim Program Studi Astronomi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi
a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE
a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab II ini menjelaskan tentang teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu sistem persamaan linear sistem persamaan linear kompleks dekomposisi Doolittle
Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4
Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks
COURSE NOTE : Sistem Persamaan Liniear
COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
MAT. 03 Persamaan dan Ketidaksamaan
MAT. 0 Persamaan dan Ketidaksamaan i Kode MAT. 0 Persamaan dan Ketidaksamaan + = - 5 6 - - + = BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
Aljabar Matriks. Aljabar Matriks
Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
dimana a 1, a 2,, a n dan b adalah konstantakonstanta
Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU
BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan
PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN
PEMERINTAH PROVINSI JAWA ARAT DINAS PENDIDIKAN SMK NEGERI ALONGAN RENCANA PELAKSANAAN PEMELAJARAN Kode. Dok PM.0 Edisi/Revisi A/0 Tanggal 7 Juli 07 Halaman dari 9 RENCANA PELAKSANAAN PEMELAJARAN (RPP)
ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3
ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1
Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1
Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 1 Matriks dan Operasinya MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks Jenis-jenis Matriks Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan)
Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift
Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,
Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik
Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Bervianto Leo P - 13514047 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi
Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear
a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.
a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo
SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS
Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia
Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia Nugroho Satriyanto 1351038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
METODE SIMPLEKS KASUS MEMAKSIMUMKAN
TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS
KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih
KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :
KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha
Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik
Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Ahmad Fa iq Rahman 13514081 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
ALJABAR LINEAR ELEMENTER
BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.
Matriks Dan Aljabar Linear
MODUL PERKULIAHAN Matriks Dan Aljabar Linear Bentuk Umum Sistem Persamaan Linear Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Fakultas Ilmu Teknik Informatika MK5009 Komputer 0 Abstract Modul
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks
S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto
081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-
8 MATRIKS DAN DETERMINAN
8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk
