Berdasarkan tabel 1 diperoleh bahwa p q = q p.
|
|
|
- Surya Yohanes Atmadjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus Proposisi (Propositional Calculus) dan suatu bentuk yang lebih lanjut yang disebut dengan Kalkulus Predikat (Predicate Calculus). Kalkulus adalah seperangkat aturan-aturan untuk mengkalkulasi dengan menggunakan simbol-simbol. Misalnya Kalkulus Diferensial, yang mempunyai aturan untuk mengkalkulasi kelandaian suatu kurva dengan memanipulasi ekspresi aljabar. Kalkulus Proposisi pun mempunyai seperangkat aturan-aturan dimana digunakan untuk menentukan benar atau salahnya suatu kombinasi-kombinasi dari proposisi-proposisi. Dengan Kalkulus diharapkan dapat mengurangi tindakan menebak, sehingga dapat menyelesaikan suatu permasalah dengan suatu jawaban yang dikerjakan dengan cara sistematis. Diutamakan proposisi-prosisi yang ada kaitannya dengan pembicaraan sehari-hari sehingga dengan pertolongan kalkulus diharapkan dapat bekerja dengan pemikiran dasar (basic reasoning). Dengan dasar kalkulus untuk cara berpikir (reasoning) maka ia (cara berpikir) dapat dijadikan program dan dilaksanakan oleh komputer, sehingga dengan alasan ini komputer dapat melakukan kemampuan berpikir, walupun secara sederhana. Jika Kalkulus ini dikembangkan menjadi Kalkulus Predikat maka akan dapat mendasari pemrogramn dengan Prolog yaitu suatu bahasa pemrograman logika. Dalam diktat ini dimulai dengan, bagaimana membentuk proposisi logis dengan menggunakan penghubung (operator) and, or, not, if-the, if-andonly-if, dan if-then-else. elanjutnya untuk penghubung and, or dan not, sesuai dengan ungkapan numerik (ilmu hitung) biasa, digunakan untuk membentuk proposisi majemuk atau kalimat dengan cara mengkombinasi kan proposisiproposisi, yang selanjutnya dapat dievaluasi atau disederhana kan, atau diselesaikan menjadi bentuk yang lebih sederhana- dengan menggu nakan Aljabar oole. Himpunan dan relasinya serta penyajiannya juga dibi carakan beserta aplikasi sederhananya. 1
2 2. Logika Proposisi Lanjut Apakah p q q? Untuk dapat menjawabnya, dibuat table kebenaran dari kedua implikasi tersebut. Jika kita perhatikan, Tabel 1 Nilai kebenaran p p q p q q q dan q erdasarkan tabel 1 diperoleh bahwa p q = q p. Contoh 1: Jika Microsoft Word maka Windows system operasinya adalah implikasi yang benar, berdasarkan implikasi di atas maka: Konversennya : jika windows system operasinya maka microsoft word aplikatifnya. Inversenya : Jika bukan Microsoft word maka buka windows system operasinya. Kontraposisipnya : Jika bukan windows system operasinya maka bukan Microsoft word aplikatifnya. Maka dapat dinotasikan sebagai berikut: Implikasi Konvers Invers : p q : q p : ~ p ~ q Kontraposisi : ~ q ~ p 2
3 Table 2: kebenaran: p Q ~p ~q p q ~q ~p q p ~p ~q etara etara Jadi dapat disimpulkan bahwa proposisi yang saling kontra positif mempunyai nilai kebanaran yang sama (ekuivalen).isa juga dinotasikan sebagai berikut: p q ~ q ~ p q p ~ p ~ q Contoh 2: ukti bahwa: Jika x 2 bilangan genap, maka x juga bilangan genap dapat ditulis : x 2 = genap x = genap Jawab : Kontraposisi dari implikasi diatas adalah : Jika x adalah bilangan genap maka x 2 juga bilangan genap. Dapat ditulis : Jika x = ganjil maka x 2 = ganjil etiap bilangan bulat bukan genap adalah ganjil, sehingga x ganjil ditulis x = 2k + 1, k bilangan bulat, akibatnya : X 2 = (2k+1) 2 karena k bilangan bulat maka : 3
4 =4k 2 +4k+1 k 2 juga bilangan bulat =2(2k 2 +2k)+1 2k juga bilangan genap 2k 2 + 2k juga bilangan genap ehingga x 2 = bilangan ganjil, karena bilngan genap ditambah 1 sama dengn bilangan ganjil. Jadi kontrapositipnya benar akibatnya implikasinya juga benar. Contoh 3 : Implikasi Konvers Invers :jika memakai microsoft word maka windows adalah system operasinya. : jika windows system operasinya maka microsoft word aplikatifnya : Jika bukan Microsoft word maka buka windows system opesarinya. Kontraposisi : Jika bukan windows system operasinya maka bukan Microsoft word aplikatifnya. iimplikasi Jika kita gabungkan dua implikasi, yaitu (p q) (q p), maka kita akan memperoleh biimplikasi dan cukup kita nyatakan sebagai p q. iimplikasi p q dibaca p jika dan hanya jika q atau p adalah syarat perlu dan syarat cukup untuk q. Jadi, jika p dan q keduanya bernilai benar atau keduanya bernilai salah, maka biimplikasinya bernilai benar. Kita cek nilai kebenaran biimplikasi pada tabel kebenaran berikut. 4
5 Tabel 3 : Nilai Kebenaran iimplikasi P q p q q p (p q) (q p) Catatan penting tentang cara menyatakan biimplikasi p q, yaitu: (1) p ekuivalen q. (2) p jika dan hanya jika q. (3) p adalah syarat perlu dan syarat cukup untuk q. (4) p mengimplikasikan q dan q mengimplikasikan p. (5) Jika p, maka q dan jika q, maka p. elanjutnya kita cek negasi dari pernyataan majemuk. eberapa hal peting yang harus diperhatikan: (1) ~ p q = (p q) = p q. (2) ~ (p q) = p q. (3) (p q) = (p q) (q p). (4) (p q) = p q. (5) p q = (p q) = p q. 5
6 6 (6) p atau q, tetapi tidak keduanya ( (p q)). (7) p tetapi tidak q (p q). (8) p kecuali jika q ( q p). Contoh Tentukan table kebenaran dari (( p q) ( q r)) Jawab. Untuk menentukan nilai kebenaran dari pernyataan majemuk, kita harus teliti dan cek nilai kebenaran dari pernyataan-pernyataan penyusunnya. Table 2.8: Nilai kebenaran (( p q) ( q r)) p q R p q p q ( q r) [( p q) ( q r)]=x X Aturan Pengurutan Ekspres-ekspresi logika yang bersifat majemuk yang memiliki banyak subekspresi akan memiliki banyak tanda kurung biasa karena berbentuk fpe (A ), sehingga memungkinkan fpe tersebut sulit dibaca. erkaitan dengan perangkai, urutan ekspresi logika yang bersifat majemuk berdasarkan hirarki tertinggi seperti berikut:
7 (1) (negasi) (2) (konjungsi) (3) (disjungsi) (4) (implikasi) (5) (biimplikasi) Contoh: (a) (~A ),harus dibaca ((~A) ), bukan (~(A )) (b) A C, harus dibaca ((A ) C), bukan ((A ( C)) (c) A C, harus dibaca (A ( C)), bukan ((A ) C) (d) A C, harus dibaca (A ( C)), bukan ((A ) C) Aturan tambahan: jika menjumpai lebih dari satu perangkai pada hirarki yang sama, maka akan dikerjakan mulai dari yang kiri. Contoh: A C Jadi, harus dibaca: (A ) C, bukan A ( C) A. Tautologi Tautologi adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya. ebuah Tautologi yang memuat pernyataan Implikasi disebut Implikasi Logis. Untuk membuktikan apakah suatu pernyataan Tautologi, maka ada dua cara yang digunakan. Cara pertama dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai (benar) maka disebut Tautologi, dan cara kedua yaitu dengan melakukan penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika. Contoh: 7
8 Lihat pada argumen berikut: Jika Tono pergi kuliah, maka Tini juga pergi kuliah. Jika iska tidur, maka Tini pergi kuliah. Dengan demikian, jika Tono pergi kuliah atau iska tidur, maka Tini pergi kulah. Diubah ke variabel proposional: A Tono pergi kuliah Tini pergi kuliah C iska tidur Diubah lagi menjadi ekspresi logika yang terdiri dari premis-premis dan kesimpilan. Ekspresi logika 1 dan 2 adalah premis-premis, sedangkan ekspresi logika 3 adalah kesimpulan. (1) A (Premis) (2) C (Premis) (3) (A V C) (Kesimpulan) Maka sekarang dapat ditulis: ((A ) ʌ (C )) ((A V C) ) A C A C (A ) ʌ (C ) A V C (A V C) Hasil akhir dari kalimat majekmuk Dari tabel kebenaran diatas menunjukkan bahwa pernyataan majemuk : ((A ) ʌ (C )) ((A V C) adalah semua benar (Tautologi)[2]. 8
9 Contoh tautologi dengan menggunakan tabel kebenaran: 1. (p ʌ ~q) p Pembahasan: P Q ~q (p ʌ ~q) (p ʌ ~q) p Ini adalah tabel kebenaran yang menunjukkan Tautologi dengan alasan yaitu semua pernyataannya bersifat benar atau True (T). maka dengan perkataan lain pernyataan majemuk (p ʌ ~q) p selalu benar. 2. [(p q) ʌ p] p q Pembahasan: P Q (p q) (p q) ʌ p [(p q) ʌ p] p q (1) (2) (3) (4) (5) erdasrkan tabel diatas pada kolom 5, nilai kebenaran pernyataan majemuk itu adalah adalah. Dengan perkataan lain, pernyataan majemuk [(p q) ʌ p] p q selalu benar 9
10 Pembuktian dengan cara kedua yaitu dengan penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum ekuivalensi logika. Contoh: a. (p ʌ q) q Penyelesaian: (p ʌ q) q ~(p ʌ q) v q ~p v ~q v q ~p v T T...(Tautologi)[3] Dari pembuktian diatas telah nampaklah bahwa pernyataan majemuk dari (p ʌ q) q adalah tautologi karena hasilnya T (true) atau benar. Pembuktian dengan menggunakan tabel kebenaran dari pernyataan majemuk (p ʌ q) q yaitu: P q (p ʌ q) (p ʌ q) q Pada tabel diatas nampaklah bahwa kalimat majemuk (p ʌ q) q merupakan Tautologi. b. q (p v q) penyelesaian: q (p v q) ~q v (p v q) ~q v (q v p) T v p T...(Tautologi) 10
11 . Kontradiksi Kontradiksi adalah kebalikan dari tautologi yaitu suatu bentuk pernyataan yang hanya mempunyai contoh substansi yang salah, atau sebuah pernyataan majemuk yang salah dalam segala hal tanpa memandang nilai kebenaran dari komponenkomponennya. Untuk membuktikan apakah suatu pernyataan tersebut kontradiksi, maka ada dua cara yang digunakan. Cara pertama dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai F atau salah maka disebut kontradiksi, dan cara kedua yaitu dengan melakukan penjabaran atau penurunan dengan menerapkan sebagian dari 12 hukum-hukum Ekuivalensi Logika.[4] Contoh dari Kontradiksi: 1. (A ʌ ~A) Pembahasan: A ~A (A ʌ ~A) Dari tabel kebenaran diatas dapatlah disimpulkan bahwa pernyataan majemuk (A ʌ ~A) selalu salah. 2. P ʌ (~p ʌ q) Pembahasan: P Q ~p (~p ʌ q) P ʌ (~p ʌ q) 11
12 12 Ini adalah tabel kebenaran yang menunjukkan kontradiksi dengan alasan yaitu semua pernyataan bernilai salah (F). C. Contingent Jikaseuanilai kebenaran mengahasilkan nilai dan maka terjadi contingent atau formula campuran (mix formulae). Contoh : ((A ʌ ) C) A Tabel kebenaran sebagai beriku: A C A ʌ (A ʌ) C ((A ʌ ) C) A Definsi: uatu ekspresi logika yang mempunyai nilai benar dan salah di dalam kebenaannya, tanpa mempedulikan nilai kebenaran dari proposisi-proposisi yang berada didalamnya, disebut kontingen.
13 13 Contoh Perhatikan ekspresi logika brikut ini: ((A ) ʌ (~ C)) (~C A) (~C A) ((A ) ʌ (~ C)) ((A ) ʌ (~ C)) (~C A) (~C A) A C ~ ~C A ~ C ~C A D. Ekuivalensi Logika Dua atau lebih pernyataan majemuk yang mempunyai nilai kebenaran sama disebut ekuivalensi logika dengan notasi dua buah pernyataan majemuk dikatakan ekuivalen, jika kedua pernyataan majemuk itu mempunyai nilai kebenaran yang sama untuk semua kemungkinan nilai kebenaran pernyataan-pernyataan komponen-komponennya. Hukum-Hukum Ekuivalensi Logika: 1. Hukum komutatif: p ʌ q = q ʌ p, p v q = q v p
14 2. Hukum asosiatif: (p ʌ q) ʌ r = p ʌ (q ʌ r) (p v q) v r = p v (q v r) 3. Hukum distributif: p ʌ (q v r) = (p ʌ q) v (p ʌ r) p v (q ʌ r) = (p v q) ʌ (p v r) 4. Hukum identitas: p ʌ = p p v = p 5. Hukum ikatan (dominasi): p v = p v = 6. Hukum negasi: p v ~p = p ʌ ~p = 7. Hukum negasi ganda (involusi): ~(~p) = p 8. Hukum idempoten: p ʌ p = p, p v p = p 9. Hukum de morgan: ~( p ʌ q) = ~p v ~q ~(p v q) = ~p ʌ ~q 10. Hukum penyerapan (absorpsi): p v (p ʌ q) = p p ʌ (p v q) = p 14
15 11. Hukum dan : ~ = ~ = 12. Hukum implikasi ke and/or: p q ~p v q Dengan adanya hukum-hukum diatas, penyelesaian soal-soal baik yang bersifat tautologi, kontradiksi dan ekuivalensi logika tidak hanya menggunakan tabel kebenaran namun juga bisa dengan menggunakan jalan penurunan yaitu dengan memanfaatkan 12 (dua belas) hukum-hukum ekuivalensi logika tersebut. Dengan menggunakan prinsip-prinsip di atas, maka kalimat-kalimat yang kompleks dapat disederhanakan, seperti contoh berikut: 1. uktikan ekuivalensi berikut: ~(p v ~q) v (~p ʌ ~q) ~p Jawab: ~(p v ~q) v (~p ʌ ~q) (~p ʌ q) v (~p ʌ ~q) ~p ʌ (q v ~q) ~p ʌ ~p...(terbukti) 2. Tunjukkan bahwa: ~(p v q) (~p ʌ ~q) Tabel kebenaran ~(p v q) dan (~p ʌ ~q) yaitu: p q ~p ~q p v q ~(p v q) (~p ʌ ~q) (1) (2) (3) (4) (5) (6) (7) 15
16 Dari tabel diatas pada kolomk (6) dan (7), jelas bahwa ~(p v q) dan (~p ʌ ~q). Jadi, ~(p v q) ʌ (~p ʌ ~q). E.Penarikan Kesimpulan Penarika kesimpulan dilakukan dari beberapa pernyataan yang diketahui nilai kebenarannya yang disebut premis. Kemudian dengan menggunakan prinsip-prinsip yang ada diperoleh pernyataan yang baru yang disebut kesimpulan/konklusi yang diturunkan dari premis yang ada. Penarikan kesimpulan seperti itu sering disebut dengan argumentasi. uatu argumentasi dikatakan sah Jika premis-premisnya benar maka konklusinya juga benar. Terdapat 3 metode dalam penarikan kesimpulan, yaitu : 1 Modus ponens premis 1 : p q premis 2 : p ( modus ponens) Kesimpulan: q Arti Modus Ponens adalah jika diketahui p q dan p, maka bisa ditarik kesimpulan q. sebagai contoh : premis 1 : Jika bapak datang maka adik akan senang premis 2 : bapak datang Kesimpulan: Adik senang 8.2 Modus Tollens premis 1 : p q 16
17 premis 2 : ~q ( modus tollens) Kesimpulan: ~p Modus Tollens berarti jika diketahu p q dan ~q, maka bisa ditarik kesimpulan ~p. sebagai contoh : premis 1 : Jika hari hujan, maka adik memakai payung premis 2 : Adik tidak memakai payung Kesimpulan : Hari tidak hujan 8.3 ilogisme premis 1 : p q premis 2 : q r ( silogisme) Kesimpulan: p r ilogisme berarti jika diketahu p q dan q r, maka bisa ditarik kesimpulan p r. sebagai contoh : Premis 1 : Jika harga M naik, maka harga bahan pokok naik. Premis 2 : Jika harga bahan pokok naik maka semua orang tidak senang. Kesimpulan: Jika harga M naik, maka semua orang tidak senang. 17
18 DAFTAR PUTAKA F.oesianto dan Djonidwijono.2003.Logika Proporsional.Yogyakarta:Andi. Marsudi.2010.Logika dan Teori Himpunan.Malang:Universitas rawijaya Press (U Press) WI 18
19 19
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA : NURHIDAYAT NIM : DBC
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA Nama : NURHIDAYAT NIM : DC 113 055 JURUAN TEKNIK INFORMATIKA FAKULTA TEKNIK UNIVERITA PALANGKA RAYA 2013 A I PENGERTIAN Logika adalah dasar dan alat berpikir
Konvers, Invers dan Kontraposisi
MODUL 5 Konvers, Invers dan Kontraposisi Represented by : Firmansyah,.Kom A. TEMA DAN TUJUAN KEGIATAN PEMELAJARAN 1. Tema Konvers, Invers dan Kontraposisi 2. Fokus Pembahasan Materi Pokok 1. Konvers, invers
Pertemuan 2. Proposisi Bersyarat
Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
PROPOSISI MATEMATIKA SISTEM INFORMASI 1
PROPOSISI MATEMATIKA SISTEM INFORMASI 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
BAB 5 TAUTOLOGI. 1. Pendahuluan. 2. Evaluasi validitas argumen
BAB 5 TAUTOLOGI 1. Pendahuluan Mengubah suatu argumen atau pernyataan-pernyataan menjadi suatu ekspresi logika, tentunya harus mengenali sub-subekspresinya. Salah satunya dengan membentuk Parse Tree yang
PERTEMUAN TAUTOLOGI, KONTRADIKSI, DAN CONTINGENT
PERTEMUAN 5 1.1 TAUTOLOGI, KONTRADIKSI, DAN CONTINGENT Tautologi adalah suatu bentuk kalimat yang selalu bernilai benar (True) tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya,
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C
MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda
LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3.
LOGIKA PROPOSISI 3.1 Proposisi Proposisi adalah suatu pernyataan yang bernilai benar atau salah, tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya.
BAB 7 PENYEDERHANAAN
BAB 7 PENYEDERHANAAN 1. Pendahuluan Bab ini membahaspenggunaan hukum-hukum logika pada operasi logika yang dinamakan penyederhaan (simplifying). Berbagai macam ekuivalensi dari berbagai ekpresi logika
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
BAB 6 EKUIVALENSI LOGIS
BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan
PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi.
PEREMUAN 2 ABEL KEBENARAN DADANG MULYANA ABEL KEBENARAN (B) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. ABEL 1 : B untuk proposisi dan negasinya p p MASALAH LOGIKA 1
LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi
LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
Pertemuan 5. Proposisi Lanjutan. Dosen Ir. Hasanuddin Sirait, MT STMIK Parna Raya Manado HP :
Pertemuan 5 Proposisi Lanjutan Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 081356633766 KESETARAAN LOGIS Dua buah pernyataan yang berbeda dikatakan setara/equivalen
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi
1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah
LOGIKA PROPOSISI. Bagian Keempat : Logika Proposisi
LOGIKA PROPOSISI Bagian Keempat : Logika Proposisi ARI FADLI, S.T. Logika Proposisi Tujuan : Mahasiswa dapat menyebutkan tentang logika proposisi, operator dan sifat proposisi Proposisi Definisi : Setiap
MATERI 1 PROPOSITIONAL LOGIC
MATERI 1 PROPOSITIONAL LOGIC 1.1 Pengantar Beberapa pernyataan (statement) dapat langsung diterima kebenarannya tanpa harus tahu kebenaran pembentuknya Ada kehidupan di Bulan atau tidak ada kehidupan di
LOGIKA MATEMATIKA. Pernyataan
LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik
- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat
LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit
DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
LOGIKA DAN PEMBUKTIAN
BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic)
Logika Proposisi Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisional Tujuan pembicaraan kali ini adalah untuk menampilkan suatu bahasa daripada kalimat abstrak
6. LOGIKA MATEMATIKA
6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
LOGIKA MATEMATIKA. Oleh : Siardizal, S.Pd., M.Kom
LOGIKA MATEMATIKA Oleh : iardizal,.pd., M.Kom elamat datang di CD berprogram Menu Utama Info Guru Diskripsi Materi Pelajaran LOGIKA MATEMATIKA Kompetensi Dasar Materi Latihan oal 2 elamat datang di CD
SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e!
OAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e! 1. Ordo dari matriks A = ( ) adalah. a. 2 x 2 d. 4 b. 2 x 3 e. 6 3 x 2 2. ila ( ) ( ), maka nilai dari
Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika
Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,
STMIK Banjarbaru EKUIVALENSI LOGIKA. 10/15/2012 H. Fitriyadi & F. Soesianto
1 EKUIVALENSI LOGIKA 2 Pada tautologi dan kontradiksi, dapat dipastikan bahwa jika dua buah ekspresi logika adalah tautologi, maka kedua buah ekspresi logika tersebut ekuivalen secara logis, demikian pula
Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi
Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)
RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran
BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan
Kalkulus Proposisi. Author-IKN. MUG2B3/ Logika Matematika
Kalkulus Proposisi Author-IKN 1 10/30/2015 Pengantar Logika Proposisional Proposisi Pernyataan yang hanya memiliki satu nilai benar atau salah. Terdiri dari proposisi atomik dan majemuk. Contoh proposisi
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang
ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena
TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8
P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
Pengantar Logika. Didin Astriani Prasetyowati, M.Stat UIGM
Pengantar Logika Didin Astriani Prasetyowati, M.Stat UIGM 1 BAB I PENGANTAR LOGIKA Konsep Logika Apakah logika itu? Seringkali Logika didefinisikan sebagai ilmu untuk berfikir dan menalar dengan benar
Bab 1 LOGIKA MATEMATIKA
LOGIKA MATEMATIKA ab 1 Dalam setiap melakukan kegiatan sering kita dituntut untuk menggunakan akal dan pikiran. Akal dan pikiran yang dibutuhkan harus mempunyai pola pikir yang tepat, akurat, rasional,
Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali
Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu
Matematika Diskrit LOGIKA
Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi
Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)
Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran.
LOGIKA Standar Kompetensi Lulusan (SKL) Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk, serta mampu menggunakan prinsip logika matematika dalam pemecahan
Dasar-dasar Logika. (Review)
Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat
Representasi Kalimat Logika ke dalam Matriks Trivia
Representasi Kalimat Logika ke dalam Matriks Trivia Rio Chandra Rajagukguk 13514082 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
PERTEMUAN KE 3 F T T F T F T F
PEREMUAN KE 3 E. DISJUNGSI EKSLUSI (Exclusive OR) Misalkan p dan q adalah proposisi. Exclusive or p dan q, dinyatakan dengan notasi, adalah proposisi yang bernilai benar bila hanya salah satu dari p dan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Proposisi adalah pernyataan yang dapat ditentukan nilai kebenarannya, bernilai benar atau salah tetapi tidak keduanya. Sedangkan, Kalkulus Proposisi (Propositional
LOGIKA & PEMBUKTIAN. Anita T. Kurniawati, MSi LOGIKA
LOGIKA & PEMBUKTIAN Anita T. Kurniawati, MSi LOGIKA Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). 1 Definisi: Kalimat deklaratif
Logika Informatika. Bambang Pujiarto
Logika Informatika Bambang Pujiarto LOGIKA mempelajari atau berkaitan dengan prinsip-prinsip dari penalaran argument yang valid studi tentang kriteria-kriteria untuk mengevaluasi argumenargumen dengan
BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi juga dapat diterapkan
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
4. LOGIKA MATEMATIKA
4. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
BAB I1 : DASAR-DASAR LOGIKA
DAFTAR ISI BAB 1 : PENDAHULUAN 1.1. Pengertian Logika 1.2. Logika dan Komputer BAB I1 : DASAR-DASAR LOGIKA 2.1 Pengertian Umum Logika 2.2 Logika dan Pernyataan 2.2.1 Logika 2.2.2 Pernyataan (Proposisi)
Argumen premis konklusi jika dan hanya jika Tautolog
INFERENSI LOGIKA Argumen adalah suatu pernyataan tegas yang diberikan oleh sekumpulan proposisi P 1, P 2,...,P n yang disebut premis (hipotesa/asumsi) dan menghasilkan proposisi Q yang lain yang disebut
LOGIKA MATEMATIKA Talisadika Maifa
22 BAB II LOGIKA MATEMATIKA Talisadika Maifa A. PENDAHULUAN Pembahasan mengenai logika sudah ada sejak lama bahkan sebelum manusia mengenal istilah logika itu sendiri. Menilik kembali kepada sejarahnya,
LOGIKA Ponco Wali Pranoto PTI FT UNY create: Ratna W.
LOGIKA Materi Perkuliahan Konsep Proposisi Majemuk Manfaat Skema Parsing Precedence Rules Tautologi, Kontradiksi dan Contingen Ekspresi Logika (1) Ekspresi Logika adalah proposisi-proposisi yang dibangun
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas : X Semester : I (SATU) KKM
KALKULUS PERNYATAAN. Totologi & Kontradiksi. Tingkat Kekuatan Operator. Tabel Kebenaran 9/30/2013. Nur Insani, M.Sc
KALKULUS PERNYATAAN Totologi & Kontradiksi Nur Insani, M.Sc Satu atau lebih proposisi dapat dikombinasikan untuk menghasilkan proposisi baru lewat penggunaan operator logika: negasi (-), dan (^), atau
PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.
Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL
BAB 1 : DASAR-DASAR LOGIKA
BAB 1 : DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)
FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI December 13, 2011 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................
IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs.
IT105 MATEMATIKA DISKRIT Ramos Somya, S.Kom., M.Cs. TUJUAN Mahasiswa Memahami dan menguasai konsep dasar logika matematika Mahasiswa mempunyai daya nalar yang semakin tajam. POKOK BAHASAN Pernyataan dan
Tingkat 2 ; Semester 3 ; Waktu 44 menit
MK Negeri 3 Jakarta tandar Kompetensi H Menerapkan Logika Matematika Dalam Pemecahan Dalam Pemecahan Masalah Yang erkaitan Dengan Pernyataan Majemuk Dan Pernyataan erkuantor. Tingkat 2 ; emester 3 ; Waktu
FONDASI MATEMATIKA. Julan HERNADI. September 9, 2012 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)
FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI September 9, 2012 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Logika Matematik 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif yang bernilai
