MAKALAH OLEH KELOMPOK II
|
|
|
- Dewi Yanti Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 MKLH OLEH KELOMOK II NM : 1. MRIS ( ) 2. NOV LUKIT ( ). SYMSURI ( ) 4. SUDRYNTI ( ) 5. CMELLI ( ) ROGRM STUDI : ENDIDIKN MTEMTIK MT KULIH : GEOMETRI TRNSFORMSI DOSEN ENGMU : FDLI, S.Si.,M.d. SEKOLH TINGGI KEGURUN DN ILMU ENDIDIKN ERSTUN GURU REULIK INDONESI (STKI-GRI) LUUKLINGGU THUN 2009/2010 1
2 1. ISOMETRI Isometri Transformasi U merupakan Isometri jika dan anya jika untuk setiap pasan titik dan Q dipenui Q = Q denan U( ) Q = U Q. = dan ( ) Denan perkataan lain isometri adala suatu transformasi yan mempertaankan jarak (panjan suatu ruas aris). Teorema : Isometri adala kolineasi Sebua isometri bersifat : a. memetakan aris menjadi aris b. Isometri mempertaankan besar sudut. c. Isometri menawetkan kesejajaran. ukti : a. ndaikan sebua aris dan T suatu isometri Kita akan membuktikan bawa T() = adala suatu aris jua. Gambar mbil dan maka = T ( ) = T ( ) : melalui dan ada satu aris, misalnya : kan kita buktikan =.untuk ini akan dibuktikan dan. ukti mbil ( X ) artinya maka ada X seina erarti bawa X ole karena bidan kita adala bidan Euclides kita andaikan X + X =. karena itu T suatu isometri, jadi suatu transformasi T ( X ) = X, maka X =, X = X, jadi X + X =. X. searis pada, berarti lai bawa X = T ( X ). 2
3 ukti Maka ada Y seina T Y ) = Y (, denan Y misalnya ( ) Y rtinya Y dan Y + Y =, karena T sebua isometri maka Y = Y. Y = Y. =., seina Y + Y =, berarti.. Y. searis yan melalui dan maka ukti serupa berlaku untuk keadaan (Y) atau (Y ). Seina sebua aris maka = T ( ) adala sebua aris. Y arusla =, jika mbil sebua C C C ndaikan = T( ). = T( ). C = T ( C) Menurut (a) maka dan adala aris lurus. Ole karena C = C maka C = C sedankan =. C = C. C = C, seina C dan C Seina suatu isometri menawetkan besarnya sebua sudut.. jadi C = C a b a b Kita arus memperliatkan bawa a // b. andaikan a memoton b disebua titik jadi p ε a dan pε b. ole karena T sebua transformasi maka ada p seina T ( ) = denan ε a dan ε. ini berarti bawa a memoton b di ; jadi p
4 bertentanan denan yan diketaui bawa a // b. maka penandaian bawa memoton b sala jadi arusla a // b a Conto : { } Diketaui aris = ( x, y) dan aris ( x y) {, y = 2 } refleksi pada aris tentukanla persamaan aris = M ( )? enyelesaian : Ole karena adala sebua = x apabila M adala M sebua refleksi pada jadi suatu isometri maka menurut teorema aris y Q 0 x R(1,-1) (0, -) = {( x, y) } ( x y) {, y = 2 } = x y = 2x x = 0 y = 0 x = 0 y = x = 1 y = 1 y = 2x 0 = 2x 2x = x = 2, dimana y = 0 Garis akan melalui titik poton antara dan misalnya R sebab 4 M ( R) = R
5 Jelas bawa R = ( 1, 1) : akan pula melalui Q = M (Q) Ole karena Q = ( 2,0) maka Q = ( 0, 2) x = y y = 2x x = 2y x + 2y + = 0 x 2y = 0 Denan demikian persamaan adala : {( x, y) x 2 = 0} = y SOL ( ) ( ) 1. Jika = ( x, y) y = x dan = ( x, y) y = x tentukan persamaan aris = M ( ) enyelesaian : = (( x, y) y x) = ( x y) = (, y = x) 2 y = x y = 2x x = 0 y = 0 x = 0 y = x = 1 y = 1? y = 2x 0 = 2x 2x = x = / 2, dimana y = 0 y (0, ) R(1,1) 0 x Garis akan melalui titik poton antara dan 5
6 Jelas bawa R = (1,1 ) y = x y = 2x x = 2y x + 2y = 0 Maka denan demikian persamaan ( ) {( x, y) x + 2 = 0} = y adala : ( ) 2. Jika = ( x, y) dan = ( x, y) 2y = x + selidikila apaka titik ( 2, 4) pada aris = M ( ) enyelesaian :? = (( x, y) ) ( x y) x = 0 y = 0 x = 1 y = 1 y (, 2y = + ) = x x = 0 y = 0 x = 1 y = 2 terletak (1,2) 0 (1,-1) x (-2,-4) 2y = x + x = y,jadi ( x, y) { 2x + = 0} = y Substitusikan nilai x dan y : jadi Jadi titik ( 2, 4) terletak pada = M ( ) 2x = y + 2x + y = 0 2x y + = 0 ISOMETRI LNSUNG DN ISOMETRI LWN 6
7 Suatu transformasi dari seitia C pada seitia 11C1 yan di cerminkan pada aris. Liat ambar (a) C C 1 C 2 2 C Gambar (a) 0 Gambar (a) Tampak bawa seitia C urutan kelilin adala C adala berlawanan ara denan putaran jarum jam, maka pada petanya yaitu seitia 1 1C1 urutan kelilin C adala sesuai denan putaran jarum jam. ada ambar (a) diatas ada jua suatu isometri yaitu suatu rotasi yan menelilini sebua titik O. ada seitia C urutan C adala berlawanan ara denan putaran jarum jam maka petanya pada yaitu pada seitia 2 2 C 2 urutan kelilin 2 2 C2 tetap berlawanan denan putaran jarum jam. KONSE ORIENTSI TIG TITIK YNG TK SEGRIS. ndaikan (. ) 1 2. anda titik yan tak searis. Maka melalui ada tepat satu linkaran l kita dapat menelilini l misalnya pada p1 kemudian sampaidi. 2 dan akirnya kembali ke 1. apabila ara kelilin ini sesuai denan putaran jarum jam, maka dikatakan bawa anda lima titik (. ) memiliki orientasi yan sesuai denan putaran jarum jam 1 2. (atau orientasi yan neative). pabila ara kelilin itu berlawanan denan ara putaran jarum jam, maka dikatakan bawa anda tia titik (. ) memiliki orientasi yan berlawanan 1 2. denan putaran ara jarum jam.( orientasi yan positif ).
8 Jadi pada ambar (a) ( C ) memiliki orientasi positif sedankan ( ) memiliki 1 1C1 orientasi neatif. ada ambar (b) orientasi ( C ) adala positif dan orientasi ( ) tetap 2 2C2 positif. Jadi pencerminan pada ambar (a) menuba orientasi sedankan putaran pada ambar (b) menawetkan orientasi. Definisi : Suatu transformasi dinamakan lansun apabila transformasi itu menawetkan orientasi: suatu transformasi dinamakan transformasi lawan apabila transformasi itu menuba orientasi. Sala satu yan pentin dalam eometri transformasi kita. 2.. Hasil Kali Transformasi Definisi : Misalkan F dan G dua transformasi denan F : V V dan G : V V maka komposisi dari F dan G ditulis sebaai ( G F )( ) = G( F( ) ), V o. Fo G yan didefinisikan ndaikan T 1, T2, T transformasi transformasi. Kita dapat menyusun terlebi daulu asil kali T2ο T1 kemudian dikalikan denan T. untuk asil kali transformasi ini kita tulis sebaai T ( T2. T1 ) Jadi andaikan = T ( ). = T ( ). = T ( ) Maka [ T T. T )]( ) = T [ T T ( )] ( = T = T [ T ( 1 (1)) ] 2 T [ T ( )] 2 = T ( = " ) Kita jua dapat menalikan sebaai berikut : 8
9 ( ( TT ) T )( ) = ( T T [ T ( )]) 2 1 = ( TT )( ) = T [ T ( )] 2 = T ( = " ) " Jika asil kali bersifat asosiatif, kita dapat jua menatakan bawa T = (T2T 1) = (TT2 )T1 TT2 T1 9
ISOMETRI DAN HASIL KALI TRANSFORMASI
ISOETRI DN HSIL KLI TRNSFORSI DI SUSUN OLEH : KELOPOK II. ri neraini 4007 ). Elftria 40070 ). aryana 400744 ) 4. Sudar si 400705 ) 5. Ibnu Harlis Firmansa 40070 ) 4. Samini 40076 ) PROGR STUDY PENDIDIKN
GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar.
GESERN TRNSLSI Ketentuan dan Sifat-sifat Dalam Bab setena putaran, bawa setena putaran dapat ditulis sebaai asil kali dua pencerminan, aitu kalau sebua titik an diketaui dan dan dua aris an teak lurus
Sumber gambar: https://kartopo.weebly.com/blog/kursi-kantor-dan-caramerawatnya
Modul darin 4.4.3. Setena Putaran Istila setena putaran serin kita denar, denan unkapan yan sedikit berbeda. Misalkan berputar setena saja, berputar setena, setena berputar. Na, berputar serin jua diunkapan
HASIL KALI TRANSFORMASI
Definisi : Andaikan F dan G dua transformasi, denan F : V V G : V V HASIL KALI TRANSFORMASI Maka komposisi dari F dan G yan ditulis sebaai Go F didefinisikan sebaai: (Go F) (P) = G[F(P)], P V Teorema :
PROGRAM STUDI : PENDIDIKAN MATEMATIKA
MAKALAH OLEH KELOMPOK DUA NAMA : GIYATNI ( 40077 ) SEPTI PRATIWI ( 400796 ) 3HARI YADI (400763 ) PROGRAM STUDI : PENDIDIKAN MATEMATIKA MATA KULIAH : GEOMETRI TRANSFORMASI DOSEN PENGAMPU : PADLI MPd SEKOLAH
MAKALAH GEOMETRI TRANSFORMASI
KLH GEOETRI TRNFORI TERI ETENGH UTRN IUUN OLEH : Nama : Listiana aputri Rini uji stuti Ridu Novriansya ewi usiana uprayitno rsi roram tudi : end atematia osen enampu : Fadli, i,d EKOLH TINGGI KEGURUN N
GEOMETRI DALAM RUANG DIMENSI TIGA
OMI LM UN IMNSI I (l. rismanto, M.Sc.) I. UUN II, IS, N IN. II, IS N IN itik merupakan unsur ruan yan palin sederana, tidak didefinisikan, tetapi setiap pembaca diarapkan dapat memaaminya. Yan dimaksud
( A) RUAS GARIS BERARAH
RUS GRIS ERRH Definisi Ruas Garis erarah Definisi 1 Suatu ruas atau garis berarah adalah sebuah ruas garis yang salah satu ujungnya dinamakan titik pangkal dan ujung yang lain dinamakan titik akhir. ontoh:
MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI)
MAKALAH EOMETRI TRANSFORMASI TENTAN ESERAN (TRANSLASI) I SUSUN OLEH : KELOMPOK VI (ENAM) 1. IIN MARLINA Npm. 4006082 2. SITI RUSNAWATI Npm. 4006082 3. ARYENTI Npm. 4006087 4. IWA SUSILA Npm. 40066119 5.
4. TURUNAN. MA1114 Kalkulus I 1
4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Sinun Kemirinan tali busur PQ adala : m PQ Jika à, maka tali busur PQ akan beruba menjadi
BUKU AJAR MATAKULIAH GEOMETRI TRANSFORMASI TINJAUAN MATAKULIAH
BUKU JR TKULIH GOTRI TRNFORI TINJUN TKULIH. Desripsi inat ata Kulia ata ulia ini membaas tentan eometri dari sudut pandan rup transformasi onsep-onsep rup sebaai unsur dari strutur aljabar diterapan melalui
h maks = tinggi maksimum X maks = Jauh maksimum
GEK PELUU eori Sinkat : Y y 0 y o sin α o maks α x o cos α maks Gerak parabola terdiri dari dua komponen erak yaitu :. Gerak orisontal berupa GL. Gerak vertikal berupa GL.Gerak orisontal (seara sumbu-x)
Transformasi Balikan
Tranformai Balikan Suatu tranformai pada uatu bidan adala uatu funi an bijektif denan daera aal dan daera ailna jua Jika ebua ari dan refleki pada ari maka Kita tuli jua Jadi adala uatu tranformai an memetakan
MATERI : RUAS GARIS BERARAH (KELOMPOK V / VI.D) SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU
MTERI : RUS GRIS ERRH (KELOMOK V / VI.) isusun Oleh: 1. MEILI 2. MEII 3. ROHELI 4. RUI HR 5. TRI YULITIK 6. SILM JR SEKOLH TINGGI KEGURUN N ILMUENIIKN ERSTUN GURU REULIK INONESI STKI GRI LUUKLINGGU RUS
ISOMETRI & HASIL KALI TRANSFORMASI
ISOMETRI & HASIL KALI TRANSFORMASI MATA KULIAH : GEOMETRI TRANNSFORMMASI DISUSUN OLEH : 1. ASMERI : 4007118 2. NITA FITRIA.N : 4007501 SEMESTER / KELAS : VI (ENAM). C PRODI : PEND. MATEMATIKA DOSEN PEMBIMBING
BAB IV ISOMETRI. i. Jika p g maka T =p. ii.
IV ISOMETRI Defenisi 1 Misalkan T suatu transformasi,transformasi T ini disebut isometric jika dan hanya jika jika untuk setiap pasangan titik P dan Q anggota dari bidang Euclid V berlaku = di mana =T
GEOMETRI RUANG 1 11/21/2015. C. Menggambar dan Menghitung Sudut. C. Menggambar dan Menghitung Sudut. Peta Konsep. Nomor W5201
Jurnal Materi Umum eometri Ruan Peta Konsep Peta Konsep aftar adir Materi OMTRI RUN 1 Kelas X, Semester 2 Kedudukan titik, aris dan bidan dalam ruan. Menambar dan Menhitun Sudut Menambar dan Menhitun Jarak
TUGAS MATA KULIAH GEOMETRI TRANSFORMASI
TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH
TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah
TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.
B. A . A . P GEOMETRI RUANG 1 11/14/2015. A. Kedudukan Titik, Garis dan bidang dalam Ruang. A. Kedudukan Titik, Garis dan Bidang dalam Ruang
Jurnal Materi Umum eometri Ruan Peta Konsep Peta Konsep aftar air Materi OMTRI RUN 1 Kelas X, Semester 2 Keuukan titik, aris an bian alam ruan. Keuukan Titik, aris an ian alam Ruan Menambar an Menitun
TURUNAN (DIFERENSIAL) Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains & Teknologi AKPRIND Yogyakarta
TURUNAN DIFERENSIAL Ole: Mega Inayati Ri a, S.T., M.Sc. Institut Sains & Teknologi AKPRIND Yogyakarta TURUNAN Turunan suatu ungsi berkaitan dengan perubaan ungsi yang disebabkan adanya perubaan kecil dari
4. TURUNAN. MA1114 Kalkulus I 1
4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba
BAB 6 RANGKAIAN KUTUB EMPAT
BAB 6 ANGKAAN KUTUB EMPAT 6. Pendauluan Sepasan terminal an dilalui ole arus (menuju atau meninalkan terminal disebut sebaai rankaian kutub dua (misalna pada resistor, induktor dan kapasitor). Gambar 6.
Setelah mempelajari materi ini, mahasiswa diharapkan mampu:
Operasi Geometri () Kartika Firdaus UAD [email protected] blog.uad.ac.id/kartikaf Setela mempelajari materi ini, maasisa diarapkan mampu: menerapkan aplikasi pada operasi geometri aitu: pencerminan
1 Posisi, kecepatan, dan percepatan
1 Posisi, kecepatan, dan percepatan Posisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada
SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI Suciati
Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi
8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala
GEOMETRI TRANSFORMASI SETENGAH PUTARAN
GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini
Oleh: Tjandra Satria Gunawan
Soal dan Solusi (S 2 ) untuk: Olimpiade Sains Nasional Bidan Matematika SMA/MA Seleksi Tinkat Kota/Kabupaten Tahun 2010 Tanal: 14-29 April 2010 Oleh: Tjandra Satria Gunawan 1. Diketahui bahwa ada yepat
TURBIN AIR A. TURBIN IMPULS. Roda Pelton
6 TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme
Tentang. Isometri dan Refleksi
TUGS II GEOMETRI TRNSFORMSI Tentang Isometri dan Refleksi Oleh : EVI MEG PUTRI : 42. 35I Dosen Pembimbing : NDI SUSNTO S. Si M.Sc TDRIS MTEMTIK FKULTS TRBIYH INSTITUT GM ISLM NEGERI (IIN) IMM BONJOLPDNG
Membangun Kode Golay (24, 12, 8) dengan Matriks Generator dan Menggunakan Aturan Kontruksi. Ikhsan Rizki K 1 dan Bambang Irawanto 2
Membanun Kode olay (2, 2, 8) denan Matriks enerator Menunakan Aturan Kontruksi Iksan Rizki K Bamban Irawanto 2, 2 Jurusan Matematika FMIPA UNDIP Jln Prof H Soedarto, SH, Tembalan, Semaran Abstract : Te
B. A . A . P GEOMETRI RUANG 1 7/3/2015. A. Kedudukan Titik, Garis dan. bidang dalam Ruang. A. Kedudukan Titik, Garis dan. Bidang dalam Ruang
Jurnal Peta Konsep aftar air Materi Soal LKS Materi 9a OMTRI RUN 1 Kelas X, Semester 2. Keuukan Titik, aris an bian alam Ruan (1) Keuukan Titik an titik Titik berimpit enan titik. SoalLatian. Keuukan Titik,
19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b
PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang
BAB VI TURBIN AIR A. TURBIN IMPULS
BAB I TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme
4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )
4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Ruan Linkup Ruan linkup keiatan dalam penulisan tuas akhir ini adalah PT. Tembaa Mulia Semanan Tbk. (Divisi Aluminium) yan berlokasi di Jalan Daan Moot KM. 16, Semanan,
BAB II FUNGSI DAN GRAFIK FUNGSI
BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola
ROTASI (PUTARAN) Diajukan untuk memenuhi tugas mata kuliah GEOMETRI TRANSFORMASI yang diampuh oleh Ekasatya Aldila A., M.Sc.
ROTSI (UTRN) Diajukan unuk memenuhi ugas maa kuliah GEOMETRI TRNSFORMSI yang diampuh oleh Ekasaya ldila., M.Sc. Di susun oleh: NIM: SEKOLH TINGGI KEGURUN DN ILMU ENDIDIKN (STKI) GRUTJl. ahlawan No. 32
A. Penggunaan Konsep dan Aturan Turunan
A. Penggunaan Konsep dan Aturan Turunan. Turunan Fungsi Aljabar a. Mengitung Limit Fungsi yang Mengara ke Konsep Turunan Dari grafik di bawa ini, diketaui fungsi y f() pada interval k < < k +, seingga
PENDAHULUAN TINJAUAN PUSTAKA
Latar Belakan PENDAHULUAN Sistem penenalan biometrik menunakan karakteristik fisiolois yan dimiliki manusia sebaai dasar dari penenalannya. arakteristik fisiolois manusia yan diunakan sebaai dasar penenalan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA101 MATEMATIKA A Hendra Gunawan Semester II 016/017 4 Maret 017 Kulia ang Lalu 1.1 Fungsi dua atau lebi peuba 1. Turunan Parsial 1.3 Limit dan Kekontinuan 1.4 Turunan ungsi dua peuba 1.5 Turunan berara
Komposisi Transformasi
Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun
KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG
KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG 1. Penertian Titik, Garis Dan Bidan Tia unsur dasar dalam eometri, yaitu titik, aris, dan bidan. Ketia unsur tersebut, dapat jua disebut sebaai tia unsur
MAKALAH GEOMETRI TRANSFORMASI MEMBAHAS TENTANG GESERAN (TRANSLASI) Kelompok VI (Enam)
KLH EOETRI TRNSFORSI EHS TENTN ESERN (TRNSLSI) ENN ERSONIL : Kelopo VI (Ea) YEN RVH N : ( ) FIRN N : ( ) 3 I JEN N : ( ) 4 RIK RIYNI N : ( ) 5 SE RIZON N : ( ) 6 TRI HELENZ N : ( ) SEKOLH TINI KEURUN N
TRANSFORMASI GEOMETRI
TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah
Matematika ITB Tahun 1975
Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y
Beberapa Permasalahan pada Teori Gelombang Linier. Syawaluddin Hutahean 1) Hang Tuah 2) Widiadnyana Merati 2) Leo Wiryanto 2)
Hutaean, Vol. No. dkk. Januari 005 urnal EKNIK SIPIL Beberapa Permasalaan pada eori Gelomban Linier Syawaluddin Hutaean ) Han ua ) Widiadnyana Merati ) Leo Wiryanto ) Abstrak Makala ini meninatkan kembali
STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR
STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks
KB. 2 INTERAKSI PARTIKEL DENGAN MEDAN LISTRIK
KB. INTERAKSI PARTIKEL DENGAN MEDAN LISTRIK.1 Efek Stark. Jika sebua atom yang berelektorn satu ditempatkan di dalam sebua medan listrik (+ sebesar 1. volt/cm) maka kita akan mengamati terjadinya pemisaan
DESAIN BENTUK SUDUT SUDUT ARAH RADIAL PADA POMPA SENTRIFUGAL
DESAIN BENTUK SUDUT SUDUT ARA RADIAL PADA POMPA SENTRIFUGAL Kennie A. Lempoy Abstrak Permasalahan pada ketidakpuasan konsumen pada penunaan pompa air khususnya yan diunakan di rumah tana, pada saat ini
STATISTICS WEEK 8. By : Hanung N. Prasetyo POLTECH TELKOM/HANUNG NP
STATISTICS WEEK 8 By : Hanung N. Prasetyo BAHASAN Pengertian Hypotesisdan Hypotesis Testing Tipe Kesalaan dalam Pengujian Hipotesis Lima Langka Pengujian Hipotesis Pengujian: Dua Sisi dan Satu Sisi Uji
DIKTAT MATEMATIKA II
DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah
PENGUAT DAYA (POWER AMPLIFIER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY
PEGUAT DAYA (POWE AMPIFIE) Ole : Sumarna, Jurdik Fisika, FMIPA, UY E-mail : [email protected] Dalam praktek, sistem penguat selalu terdiri dari sejumla tingkat yang menguatkan sinyal lema ingga cukup kuat
MODEL ATOM MEKANIKA KUANTUM UNTUK ATOM BERELEKTRON BANYAK
MODE ATOM MEKANIKA KUANTUM UNTUK ATOM BEREEKTRON BANYAK Pada materi Struktur Atom Hidrogen suda kita pelajari tentang Teori Atom Bor, dimana lintasan elektron pada atom Hidrogen berbentuk lingkaran. Namun
Jadi F = k ρ v 2 A. Jika rapat udara turun menjadi 0.5ρ maka untuk mempertahankan gaya yang sama dibutuhkan
Kumpulan soal-soal level seleksi Kabupaten: 1. Sebuah pesawat denan massa M terban pada ketinian tertentu denan laju v. Kerapatan udara di ketinian itu adalah ρ. Diketahui bahwa aya ankat udara pada pesawat
SMA JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN XI (SEBELAS) FISIKA GERAK HARMONIK
JENJANG KELAS MAA PELAJARAN OPIK BAHASAN SMA XI (SEBELAS) FISIKA GERAK HARMONIK Benda yan melakukan erak lurus berubah beraturan, mempunyai percepatan yan tetap, Ini berarti pada benda senantiasa bekerja
TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing :
TUGAS GEOMETRI TRANSFORMASI Tentang Isometri dan Sifat-sifat Isometri Oleh : EVI MEGA PUTRI : 412. 35I Dosen Pembimbing : ANDI SUSANTO, S. Si, M.Sc TADRIS MATEMATIKA A FAKULTAS TARBIYAH INSTITUT AGAMA
Differensiasi Numerik
Dierensiasi Numerik Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik DIFFERENSIASI NUMERIK Mengapa perlu Metode Numerik? Dierensiasi dg MetNum Metode Selisi Maju Metode Selisi Tengaan
Seri : Modul Diskusi Fakultas Ilmu Komputer. FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR
Seri : Modul Diskusi Fakultas Ilmu Komputer FAKULTAS ILMU KOMPUTER Sistem Komputer & Sistem Informasi HANDOUT : KALKULUS DASAR Ole : Tony Hartono Bagio 00 KALKULUS DASAR Tony Hartono Bagio KATA PENGANTAR
MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY
MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY PROGRAM STUDI MATA KULIAH DOSEN PENGAMPU : PENDIDIKAN MATEMATIKA : GEOMETRI TRANSFORMASI : FADLI,
1. Persamaan Energi Total
. Persamaan Eneri Total Eneri total adala jmla eneri karena ketinian elevasi (potential enery), eneri tekanan (pressre enery), dan eneri kecepatan (velocity ead). Prinsip eneri kekal ini lebi dikenal denan
KOMPRESI CITRA MENGGUNAKAN TRANSFORMASI WAVELET. Jurusan Teknik Informatika ( ) 2) Dosen Jurusan Teknik Komputer 3)
KOMPRESI CITRA MENGGUNAKAN TRANSFORMASI WAVELET Yuyun Wayuni Abasi, Yeffry Handoko Putra, Mira Kania Sabaria ) Jurusan Teknik Informatika (999) ) Dosen Jurusan Teknik Komputer ) Dosen Jurusan Teknik Informatika
BAB III STRATIFIED CLUSTER SAMPLING
BAB III STRATIFIED CUSTER SAMPING 3.1 Pengertian Stratified Cluster Sampling Proses memprediksi asil quick count sangat dipengarui ole pemilian sampel yang dilakukan dengan metode sampling tertentu. Sampel
SILABUS MATA KULIAH. Kompetensi Dasar Indikator Pengalaman Belajar Materi Pokok Alokasi Waktu Sumber/alat Penilaian Portofolio. geometri.
SILABUS MATA KULIAH Program Studi : Pendidikan Matematika Kode Mata Kuliah : 603203 Mata kuliah : Bobot : 2 SKS Semester : VI Mata Kuliah Prasyarat : Bidang dan Analit Datar Deskripsi Mata Kuliah : Mata
B. Hubungan Dua Lingkaran
/8/05 Peta onsep Jurnal Peta onsep Daftar Hair aterib ateri IPA LIGAA elas XI, Semester 3 Berpusat i O(0, 0) Linkaran Berpusat i P(a, b) B Hubunan Dua Linkaran euukan Titik an Garis paa Linkaran Hubunan
BAB V. SIFAT GELOMBANG DARI PARTIKEL
BAB V. SIFAT GELOMBANG DARI PARTIKEL Bangsa Perancis Louis Victor prince de Broglie (189-1987) menyampaikan ipotesisnya bawa materi memiliki sifat gelombang di samping sifat partikel. Prinsip ini yang
1 Posisi, kecepatan, dan percepatan
1 osisi, kecepatan, dan percepatan osisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada
BAB 1. FUNGSI DUA PEUBAH
BAB. FUNGSI DUA PEUBAH. PENDAHUUAN Pada baian ini akan dibahas perluasan konsep pada unsi satu peubah ke unsi dua peubah atau lebih. Setelah mempelajari bab ini anda seharusna dapat: - Menentukan domain
Variasi Kuat Medan Gravitasi
Vaiasi Kuat edan avitasi By Anawa Kuat medan avitasi bumi sanat dipenaui ole bebeapa al, antaa lain:. KETINIAN Vaiasi kuat medan avitasi akibat penau ketinian maksudnya, bawa besanya aya yan dialami ole
RINGKASAN MATERI PENCERMINAN
RINGKSN MTERI PENCERMINN Definisi: Suatu encerminan (reflei) ada sebuah garis s adalah suatu fungsi M s ang didefinisikan untuk setia titik ada bidang V sebagai berikut: a. jika P s maka M s (P) = P b.
( ) terdapat sedemikian sehingga
LATIHAN.. Misalan A R, : A R, c R adala titi cluster dari A (c, ). Maa pernyataan beriut equivalen : a. lim b. Barisan ( ) yan onveren e c seina dan >., maa barisan ( ) onveren e. Buti : lim ( ) Berarti
Relasi, Fungsi, dan Transformasi
Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian
R E S U M E TRANSFORMASI
R E S U M E TRNSFORMSI Transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan arah asalnya V dan daerah nilainya V juga Fungsi yang bijektif adalah sebuah fungsi yang : 1 Surjektif 2
BAB 5 DIFFERENSIASI NUMERIK
BAB 5 DIFFERENSIASI NUMERIK 5.1. Permasalaan Differensiasi Numerik Sala satu peritungan kalkulus yang banyak digunakan adala differensial, dimana differensial ini banyak digunakan untuk keperluan peritungan
BAB II DASAR TEORI. Gambar dapat direpresentasikan ke dalam dua macam bentuk yaitu bentuk
BAB II DASAR TEORI 2.1 Definisi Gambar Digital Gambar dapat direpresentasikan ke dalam dua macam bentuk yaitu bentuk kontinu dan bentuk digital. Dengan menggunakan definisi gambar dalam representasikan
BAB FISIKA ATOM I. SOAL PILIHAN GANDA
FISIK TOM I. SOL PILIHN GND 0. Pernyataan berikut yang termasuk teori atom menurut Dalton adala... agian terkecil suatu atom adala elektron. lektron dari suatu unsur sama dengan elektron dari unsure lain.
p da p da Gambar 2.1 Gaya tekan pada permukaan elemen benda yang ter benam aliran fluida (Mike Cross, 1987)
6.3 Gaya Hambat Udara Ketika udara melewati suatu titik tankap baik itu udara denan kecepatan konstan ( steady ) maupun denan kecepatan yan berubah berdasarkan waktu (unsteady ), kecenderunan alat tersebut
MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP
MODUL PERTEMUAN KE 4 MATA KULIAH : (4 sks) MATERI KULIAH: Gerak Peluru (Proyektil); Gerak Melinkar Beraturan, Gerak Melinkar Berubah Beraturan, Besaran Anular dan Besaran Tanensial. POKOK BAHASAN: GERAK
pengukuran karakteristik I-V transistor. Kemudian dilanjutkan dengan penyesuaian (fitting) hasil tersebut menggunakan model TOM.
BAB III HASIL DAN DISKUSI Bab ini berisi hasil dan diskusi. Pekerjaan penelitian dimulai denan melakukan penukuran karakteristik I-V transistor. Kemudian dilanjutkan denan penyesuaian (fittin hasil tersebut
Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri
7 Limit Fungsi Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Mengitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri Cobala kamu mengambil kembang gula-kembang gula dalam
TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.
1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1.
KINEMATIKA PARTIKEL. Sulistyo Budhi FiAsTe (Fisika Astronomi Team) SMA N 1 Sidareja
KINEMATIKA ARTIKEL Sulist Budhi FiAsTe (Fisika Astrnmi Team) SMA N Sidareja www.fiastesmansasi.wrdpress.cm ersiapan OSK Fisika 04 Definisi Kinematika dan artikel Kinematika adalah caban mekanika an mempelajari
PERTEMUAN IX PERSAMAAN BERNOULLI
PERTEMUAN IX PERSAMAAN BERNOULLI Anaan-anaan untuk Menurunkan Persamaan Bernoulli. Zat cair adala ideal, tidak unya kekentalan. Zat cair adala omoen & tidak termamatkan 3. Aliran adala kontinyu & seanjan
PEMBEKALAN KETERAMPILAN LABORATORIUM UNTUK MENINGKATKAN KEMAMPUAN GENERIK SAINS CALON GURU PADA BIDANG ASTRONOMI
Prosidin Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Neeri Yoyakarta, 14 Mei 2011 PEMBEKALAN KETERAMPILAN LABORATORIUM UNTUK MENINGKATKAN KEMAMPUAN GENERIK SAINS
Solusi Analitik Model Perubahan Garis Pantai Menggunakan Transformasi Laplace
Jurnal Gradien Vol. No.2 Juli 24 : 5-3 Solusi Analitik Model Perubaan Garis Pantai Menggunakan Transformasi Laplace Syarifa Meura Yuni, Icsan Setiawan 2, dan Okvita Maufiza Jurusan Matematika FMIPA Universitas
King s Learning Be Smart Without Limits
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri
BAB III METODE STRATIFIED RANDOM SAMPLING
BAB III METODE STRATIFIED RADOM SAMPIG 3.1 Pengertian Stratified Random Sampling Dalam bukunya Elementary Sampling Teory, Taro Yamane menuliskan Te process of breaking down te population into rata, selecting
Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya
. Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk
BAB III INTEGRASI NUMERIK
Bab BAB III INTEGRASI NUMERIK Integrasi numerik mengambil peranan penting dalam masala sains dan teknik. Hal ini menginat di dalam bidang sains sering ditemukan ungkapan-ungkapam integral matematis yang
RENCANA MUTU PEMBELAJARAN. I. Standar Kompetensi : Dapat mengaplikasikan transformasi untuk memecahkan masalah geometri
RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 603203 Nama Mata Kuliah : Geometri Transformasi Jumlah sks : 2 sks Semester : VI Alokasi
65 Soal dengan Pembahasan, 315 Soal Latihan
Galeri Soal Soal dengan Pembaasan, Soal Latian Dirangkum Ole: Anang Wibowo, SPd April MatikZone s Series Email : matikzone@gmailcom Blog : HP : 8 8 8 Hak Cipta Dilindungi Undang-undang Dilarang mengkutip
HADIANI NURAZIZAH M, 2015 Penerapan Model Pembelajaran Inquiry Based Science Plus Reading untuk Meningkatkan Hasil Belajar pada Ranah Kognitif
SOL Tekanan 1. Di bawa ini yang meruakan ernyataan yang benar mengenai konse tekanan a. Semakin besar gaya yang diberikan, semakin besar b. Semakin kecil gaya yang diberikan, makate kanan yang diderita
TURUNAN FUNGSI. 1. Turunan Fungsi
TURUNAN FUNGSI. Turunan Fungsi Turunan fungsi f disembarang titik dilambangkan dengan f () dengan definisi f ( ) f ( ) f (). Proses mencari f dari f disebut penurunan; dikatakan bawa f diturunkan untuk
ANALISIS BIPLOT UNTUK MENGIDENTIFIKASI EKSPOR KOMODITI UTAMA PADA SUBSEKTOR HASIL INDUSTRI INDONESIA KE NEGARA TUJUAN UTAMA EKSPOR
E-ISSN 2527-9378 Jurnal Statistika Industri dan Komputasi Volume 2, No. 1, Januari 2017, pp. 22-30 ANALISIS BIPLOT UNTUK MENGIDENTIFIKASI EKSPOR KOMODITI UTAMA PADA SUBSEKTOR HASIL INDUSTRI INDONESIA KE
III. METODE PENELITIAN. Subjek penelitian ini adalah siswa kelas VII B MTs Al Hikmah Bandar
26 III. METODE PENELITIAN A. Subjek Penelitian Subjek penelitian ini adala siswa kelas VII B MTs Al Hikma Bandar Lampung semester genap taun pelajaran 2010/2011 pada pokok baasan Gerak Lurus. Dengan jumla
BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.
TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri
B C D E... 2h g. =v 2h g T AB. B, y. = 2 v' =2e v 2h T BC
1. Gerak benda di antara tubukan erupakan erak parabola. Sebut posisi ula-ula benda adalah titik A, posisi terjadinya tubukan pertaa kali adalah titik B, posisi terjadi tubukan kedua kalinya adalah titik
untuk i = 0, 1, 2,..., n
RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi
TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA
TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Mohammad Yusuf Guntari 4111410044
