TURBIN AIR A. TURBIN IMPULS. Roda Pelton

Ukuran: px
Mulai penontonan dengan halaman:

Download "TURBIN AIR A. TURBIN IMPULS. Roda Pelton"

Transkripsi

1 6 TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme penarah dan akhirnya melewati nosel. Pada proses tersebut eneri yan tersedia dikonversikan ke eneri kinetik, denan melewatkannya pada nosel, yan dekat sekali denan runner. Air memasuki roda yan bererak dalam bentuk semburan yan menumbuk mankok, yan terpasan pada linkaran luar roda turbin. Semburan air menumbuk mankok denan kecepatan tini, dan setelah menalir pada sudu (vane), keluar denan kecepatan rendah. Tekanan air pada sisi masuk dan keluar adalah tekanan atmosfir. Contoh turbin impuls yan palin umum adalah Roda Pelton yan akan dibicarakan berikut ini. Roda Pelton Turbin/Roda Pelton adalah turbin impuls yan diunakan untuk tekanan head yan tini dari air. Komponen-komponen utamanya adalah : 1. Nosel.. Runner dan mankok. 3. Semburan penerem. Nosel Adalah mekanisme penarah linkaran, yan menarahkan air supaya menalir ke arah yan diininkan, dan jua untuk menatur aliran air. Air ini dalam bentuk semburan akan menumbuk mankok (bucket). Jarum konis atau tombak (spear) bekerja di dalam nosel dalam arah aksial. Tujuan utama jarum ini adalah untuk menatur jumlah air yan menalir pada nosel seperti yan terlihat pada ambar 1.

2 100 Mesin Konversi Eneri Gambar 1. Komponen-komponen Roda Pelton Jika jarum didoron ke depan, akan menurani luas semburan. Akibatnya, jumlah air yan menalir pada semburan jua akan berkuran. Demikian jua, jika jarum bererak ke belakan akan memperbesar jumlah air ke semburan. Nosel dibuat sedemikian dekat denan mankok, untuk meminimalkan keruian karena anin. Runner dan Mankok Runner pada roda Pelton pada prinsipnya terdiri dari prinan berbentuk linkaran yan dipasan pada poros horisontal. Pada linkaran luar runner dipasan mankok secara merata. Gambar runner bisa dilihat pada ambar. Permukaan mankok dibuat sanat halus. Untuk head rendah, mankok dibuat dari besi tuan, Untuk head tini, mankok dibuat dari perunu, baja tahan karat atau paduan lainnya. Jika air secara kimia tidak murni, mankok dibuat dari paduan khusus. Mankok umumnya dibaut ke runner, tetapi kadan-kadan mankok dan pirinan dibuat dalam bentuk tunal Rumah Turbin (casin) Rumah roda Pelton tidak mempunyai funsi hidrolik. Tetapi diperlukan untuk melinduni runner dari kecelakaan, dan jua menceah cipratan air serta menarahkan air ke pembuanan.

3 Turbin Air 101 Semburan Penerem Gambar. Runner roda Pelton. Ketika turbin inin dihentikan, nosel ditutup. Namun runner tidak lansun berhenti melainkan akan berputar beberapa waktu karena penaruh kelembaman. Supaya runner berhenti dalam waktu sesinkatnya, nosel kecil dipasan sedemikian sehina akan menyemburkan air pada sisi belakan mankok. Semburan ini berfunsi sebaai penerem yan akan menurani kecepatan runner. Kerja Pada Turbin Impuls Semburan air yan keluar dari nosel, menabrak mankok pada baian pemecahnya (splitter). Pemecah kemudian membai aliran menjadi dua baian, Satu semburan akan menalir dipermukaan dalam baian sudu pertama dan keluar pada sisi ekstrimnya. Baian yan lain akan menalir di baian sudu yan kedua dan keluar pada sisi ekstrim sudu tersebut seperti terlihat pada ambar 3.

4 10 Mesin Konversi Eneri Gambar 3. Seitia Kecepatan. Dari ambar terlihat, bahwa titik tenah mankok, dimana semburan menabrak pemecah dan terbai dua, terdiri dari satu sisi masuk dan dua sisi keluar sehina semburan terbai menjadi dua. Seitia Kecepatan Pertama-tama ambarlah seitia kecepatan pada pemecah (yan hanya berupa aris lurus) dan pada salah satu sisi ujun keluar seperti diperlihatkan ambar 3, dimana: V kecepatan absolut air masuk V r kecepatan relatif air dan mankok pada sisi masuk V f Kecepatan aliran pada sisi masuk V w kecepatan pusar pada sisi masuk v kecepatan tanensial sudu V 1, V r1, V f1 notasi yan sama untuk sisi keluar D diameter roda d diameter nosel N putaran roda, rpm φ sudut ujun sudu pada sisi keluar H head total air Karena seitia kecepatan pada sisi masuk berupa aris lurus, sehina kecepatan pusar pada sisi masuk:

5 Turbin Air 103 V w V dan V r V v Roda pelton mempunyai aliran aksial, sehina : v v 1 atau V r1 V r V v Dari seitia sisi keluar, kita dapatkan kecepatan pusar: V w1 V r1 cos φ-v (V - v) cos φ-v Gaya per k air: 1 ( V w V w1 ) Pada kondisi ini V w1 adalah neatif karena arahnya berlawanan denan V w. Karena itu aya per k air menjadi: 1 ( V w + V w1 ) Dan kerja yan dilakukan per k air: 1 ( Vwv + V v Vwv + Vwv + v { V v ( V + V cosφ vcosφ v) v w ( V [ V (1 + Efisiensi hidrolik: Vw 1v r1 w1 1 ) cosφ v) v + [( V v)cosφ v]} cosφ ) v(1 + v( V v)(1 + cosφ ) cosφ )]

6 104 Mesin Konversi Eneri η h v( V v)(1 + cosφ ) V v( V v)(1 + V cosφ ) Untuk efisiensi maksimum bisa dicari denan mendiferensialkan persamaan diatas terhadap v dan menyamakannya denan nol, maka didapatkan efisiensi maksimum didapatkan pada kondisi: v V Kerja maksimum/k air menjadi: V (1 + 4 cosφ ) Efisiensi hidrolik maksimum: η hmax V (1 + cosφ ) 4 V (1 + cosφ ) Catatan : 1. Perlu dicatat bahwa efisiensi maksimum pada hara cos φ 1 yaitu φ 180 o. Tetapi pada kondisi nyata, semburan dibelokkan hanya pada sudut 160 o hina 165 o. Sebab, jika semburan dibuat pada sudut 180 o, air keluar dari satu mankok akan menhasilkan impak pada mankok didepannya.. Pada kondisi nyata, efisiensi maksimum terjadi jika kecepatan roda 0,46 kali kecepatan semburan. Daya Yan Dihasilkan Turbin Impuls wqh P hp 75

7 Turbin Air 105 Dalam SI: P 9,81 QH kw Dimana : H head air Efisiensi Keseluruhan η o P wqh 75 Contoh soal Sebuah roda Pelton menhasilkan daya 000 kw pada head 100 meter dan efisiensi keseluruhan 85%. Carilah diameter nosel, jika koefisien kecepatan nosel 0,98. Jawab Diketahui: P 000 kw H 100 m η o 85% 0,85 C v 0,98 Kecepatan jet: V C v H 0,98 9, ,3 m/s Efisiensi keseluruhan, η o : 0,85 P wqh 000 9,81.Q.100,04 Q Q,04 / 0,85,4 m 3 /s Debit total harus sama denan debit yan melalui jet, maka: QV d 4

8 106 Mesin Konversi Eneri,443,3 4 d 34,1d Contoh soal d,4/34,1 0,0704 atau d 0,65 m 65 mm Sebuah roda Pelton bekerja pada head 500 m, menhasilkan daya kw pada 430 rpm. Jika efisiensi roda 85%, carilah (a) Debit turbin, (b) diameter roda, dan (c) diameter nozel. Asumsikan data-data yan diperlukan. Jawab Diketahui: H 500 m; P kw; N 430 rpm dan η o 85% 0,85 (a) Debit turbin, o P wqh ,81 Q 500,65 Q Q,65 / 0,85 3,1 m 3 /s (b) Diameter roda, Diasumsikan koefisien kecepatan, C v 0,98 dan kecepatan tanensial roda, v 0,46V (V adalah kecepatan jet). V C v H0,98 9, ,1 m/s v 0,46 V 0,46 x 97,1 44,7 m/s Kecepatan tanensial roda (v): (c) diameter nosel: v DN 60 D 430,5 D 60 D 44,7 /,5,0 m QV 4 d 3,197,1 4 d 76,3 d

9 Turbin Air 107 d 3,1 / 76,3 0,041 atau d 0, m 00 mm B. TURBIN REAKSI Komponen-komponen Utama 1. Rumah turbin spiral.. Mekanisme penarah. 3. Runner turbin 4. Draft tube. Rumah Turbin Spiral Air dari saluran pipa didistribusikan di sekelilin cincin rumah turbin. Rumah turbin didesain sedemikian sehina luas penampan melintannya berkuran secara seraam. Luas penampan melintannya maksimum pada sisi masuk dan minimum pada ujun seperti diperlihatkan ambar 4. Karenanya bentuk rumah turbin seperti spiral sehina disebut rumah turbin spiral atau rumah scroll. Gambar 4. Rumah turbin reaksi. Material rumah turbin terantun pada head air : - Konkrit : hina 30 m - Pelat baja rol dilas : hina 100 m

10 108 Mesin Konversi Eneri - Baja cor : lebih dari 100 m Mekanisme Penarah Sudu penarah (uide vane) terpasan tetap diantara dua cincin dalam bentuk roda. Roda ini dipasan tetap pada rumah turbin spiral. Sudu penarah didesain untuk: 1. Supaya air masuk ke runner tanpa kejut.. Supaya air menalir tanpa membentuk arus Eddy. 3. Supaya sejumlah air bisa memasuki turbin. Sudu penarah bisa dibuka dan ditutup denan memutar poros penatur, sehina jumlah air bisa diatur sesuai keperluan. Poros penatur dioperasikan denan menunakan overnor, yan funsinya menatur turbin (yaitu menjaa kecepatan turbin konstan pada beban yan bervariasi). Runner Turbin Runner terdiri dari sudu yan terpasan tetap pada poros atau cincin. Sudu didesain supaya air masuk dan meninalkan turbin tanpa kejut. Gambar 5. Runner Turbin Reaksi. Runner terpasan pada poros. Jika porosnya vertikal, disebut turbin vertikal, dan jika poros horisontal maka disebut turbin horisontal. Untuk head rendah, runner bisa dibuat dari besi tuan, tetapi untuk head tini, runner dibuat dari baja atau paduan. Jika air secara kimia tidak murni, runner dibuat dari paduan spesial.

11 Turbin Air 109 Draft Tube Air setelah melewati runner, menalir turun melalui pipa yan disebut draft tube. Draft tube mempunyai funsi antara lain: 1. Meninkatkan head air sebesar tini runner dari permukaan air.. Meninkatkan efisiensi turbin. Perbedaan Antara Turbin Impuls Dan Turbin Reaksi Berikut ini beberapa hal tentan perbandinan antara turbin impuls dan turbin reaksi. No. Turbin Impuls Turbin Reaksi Eneri air yan tersedia pertamatama dirubah ke eneri kinetik. Air menalir melalui nosel dan menumbuk sudu bererak yan terpasan tetap pada sisi linkaran luar roda. Air menumbuk mankok denan eneri kinetik. Tekanan air yan menalir tetap, dan sama denan tekanan atmosfir. Tidaklah terlalu pentin roda berputar penuh. Lebih jauh, harus ada akses bebas udara antara sudu dan roda. Air boleh menalir dikeseluruhan atau hanya disebaian atau di keseluruhan linkaran roda. Memunkinkan menatrur aliran tanpa adanya keruian. Kerja yan dilakukan hanya oleh perubahan eneri kinetik semburan. Eneri air yan tersedia tidak dirubah dari satu bentuk ke bentuk lainnya. Air diarahkan oleh sudu penarah untuk menalir pada sudu bererak. Air meluncur pada sudu bererak denan eneri tekanan. Tekanan air berubah setelah melalui sudu. Adalah pentin roda selalu berputar penuh, dan penuh denanair. Air mesti menalir di keseluruhan roda. Tidak munkin menatur aliran tanpa adanya keruian. Kerja yan dilakukan sebaian karena perubahan head kecepatan, tetapi hampir sebaian besar karena perubahan head tekanan.

12 110 Mesin Konversi Eneri Klasifikasi Turbin Reaksi Turbin reaksi bisa diklasifikasikan kedalam tia jenis, terantun pada arah aliran air melewati roda: 1. Turbin aliran radial.. Turbin aliran aksial. 3. Turbin aliran campuran. Turbin Aliran Radial Pada turbin ini, aliran air adalah radial (yaitu sepanjan jari-jari roda). Turbin aliran radial lebih jauh bisa dibai atas dua kelas: 1. Turbin aliran ke dalam (inward) : Pada turbin ini, air memasuki roda pada linkaran luar dan menalir ke dalam (yaitu menuju pusat roda).. Turbin aliran keluar (outward) : Pada turbin ini, air masuk pada pusat roda, dan kemudian menalir ke arah luar (yaitu menuju linkaran luar roda). Turbin Aliran Aksial Pada turbin ini, air menalir paralel terhadap sumbu roda. Turbin ini disebut jua turbin aliran paralel. Turbin Aliran Campuran Pada turbin ini, sebaian aliran adalah radial dan sebaian lainnya adalah aksial. Turbin Reaksi Aliran Ke Dalam Gambar 6. Turbin reaksi aliran ke dalam.

13 Turbin Air 111 Turbin reaksi aliran ke dalam (inward), adalah turbin reaksi dimana air memasuki roda pada baian linkaran luar dan menalir menuju kedalam melalui sudu (yaitu menuju pusat roda) seperti yan ditunjukkan oleh ambar 6. Turbin reaksi ini terdiri dari sudu penarah tetap, yan menarahkan air ke roda bererak denan sudut yan benar. Air ketika menalir pada sudu/vane, menhasilkan aya ke roda. Gaya ini menyebabkan roda berputar. Perlu dicatat bahwa ketika beban turbin turun, akan menyebabkan poros akan berputar lebih cepat. Gaya sentrifual akan meninkat karena putaran yan lebih tini, dan akan menurunkan jumlah air yan menalir pada sudu, sehina kecepatan air pada sisi masuk jua menurun. Pada akhirnya daya turbin akan berkuran. Ini adalah keuntunan turbin reaksi aliran inward, dimana akan menatur sendiri sesuai denan beban yan diperlukan. Efisiensi palin tini diperoleh ketika kecepatan air keluar sekecil munkin. Gambar 7. Seitia kecepatan untuk turbin reaksi aliran ke dalam. Gambar 7 menambarkan seitia kecepatan air pada sisi masuk dan keluar dimana: D diameter luar roda N jumlah putaran roda per menit V Kecepatan absolut uap memasuki sudu

14 11 Mesin Konversi Eneri v kecepatan tanensial roda pada sisi masuk D N 60 m/s V r Kecepatan relatif air terhadap roda pada sisi masuk V f Kecepatan aliran memasuki sudu bererak V w Kecepatan pusar pada sisi masuk sudu bererak α Sudut air memasuki roda (disebut jua sudut sudu penarah) β sudut air meninalkan roda θ Sudut masuk sudu φ Sudut sudu pada sisi keluar V 1, D 1, v 1, V r1, V f1 Besaran yan sama untuk sisi keluar sudu. H head total air W berat air yan memasuki roda, k/s Dari seitia kecepatan pada sisi masuk, diperoleh: V w V cos α Dan V f V sin α Dan dari seitia kecepatan sisi keluar diperoleh: V w1 V 1 cos α Dan V f1 V 1 sin α Gaya per k air: 1 ( V w + V w1 ) dalam hal ini V w1 adalah neatif Kerja per k air:

15 Turbin Air ( Vw. v V w1. v ) 1 Vw. v V v w1 1 Catatan : 1. Jika tidak ada keruian eneri maka: Vw. v Vw1. v H v1. Jika pembuanan air radial maka: β 90 o ; V w1 0 dan V 1 V f1 kerja yan dilakukan per k air : dan : V w.v Vw. v H v1 H V f 1 3. Jika sudu adalah radial pada sisi masuk, sisi keluar atau keduaduanya, kemudian kecepatan pusar pada ujun dusu adalah nol. Contoh soal Sebuah turbin reaksi aliran ke dalam, mempunyai diameter eksternal sebesar 1,5 meter dan bekerja pada 400 rpm. Kecepatan aliran pada sisi masuk adalah 10 m/s. Jika sudut sudu penarah 15 0, carilah (a) kecepatan absolut air, (b) kecepatan pusar pada sisi masuk, (c) sudut sudu sisi masuk runner, dan (d) kecepatan relatif pada sisi masuk. Jawab Diketahui: D 1,5 m; N 400 rpm; V f 10 m/s; dan α 15 0 (a) Kecepatan absolut air:

16 114 Mesin Konversi Eneri Dari seitia kecepatan, diperoleh kecepatan absolut air: V f 10 V 0 38,64 m/s sin 15 0,588 (b) kecepatan pusar pada sisi masuk: Dari seitia kecepatan, diperoleh kecepatan pusar sisi masuk: V w V cos ,64 x 0, ,3 m/s (c) Sudut sudu runner sisi masuk: v DN 60 x 1,5 x ,4 m/s 60 tan V f V w v 10 1,695 atau θ 59,50 37,3 31,4 (d) Kecepatan relatif pada sisi masuk: Dari seitia kecepatan, bisa dicari kecepatan relatif pada sisi masuk: V f 10 V r 0 11,61 m/s sin 59,5 0,8616 Contoh soal Sebuah turbin reaksi aliran ke dalam mendapat suplai air denan laju 600 lt/s denan kecepatan aliran 6 m/s. Kecepatan kelilin dan kecepatan pusar pada sisi masuk masin-masin adalah 4 m/s dan 18 m/s. Diasumsikan sisi keluar aliran adalah radial, dan kecepatan aliran konstan, carilah: (1) sudut sudu sisi masuk

17 Turbin Air 115 () head air pada turbin Jawab Diketahui: Q 600 lt/s 0,6 m 3 /s; V f 6 m/s; v 4 m/s; V w 18 m/s dan V f1 V f (1) Sudut sudu sisi masuk: tan V f v V w , θ 45 0 atau θ () Head air pada turbin: V w.v H V ,81 H V f1 44,0H V f H 6 H 1,8 9,81 H ,8 45,8 m

18 116 Mesin Konversi Eneri Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tenah roda dan kemudian menalir ke arah luar melalui sudu (ambar 8). Gambar 8. Turbin reaksi aliran ke luar. Turbin reaksi aliran ke luar terdiri dari sudu penarah tetap, yan menarahkan air ke roda berputar denan sudut tertentu tanpa menimbulkan kejut. Air ketika menelindin pada sudu akan menhasilkan aya pada roda sehina membuat roda berputar. Perbedaan antara turbin aliran ke dalam dan aliran ke luar adalah : pada aliran ke dalam, roda yan berputar berada di dalam sudu penarah tetap, sedankan pada turbin aliran ke luar, roda berada di luar sudu penarah tetap. Perlu dicatat bahwa ketika beban turbin turun, akan menyebabkan poros akan berputar lebih cepat. Gaya sentrifual akan meninkat karena putaran yan lebih tini, dan akan menaikkan jumlah air yan menalir pada sudu, sehina roda akan berputar makin cepat dan makin cepat. Ini adalah keruian yan dipunyai oleh rubin reaksi aliran keluar. Karena itu turbin ini harus diatur denan menunakan overnor turbin. Semua notasi pada turbin aliran keluar sama denan turbin reaksi aliran ke dalam. Diameter dalam roda dilambankan denan D (diameter pada sisi masuk) dan diameter luar dinyatakan denan D 1 (diameter pada sisi ke luar). Efisiensi atau daya yan dihasilkan turbin bisa dicari denan menambar seitia kecepatan sisi masuk dan sisi keluar seperti yan ditunjukkan oleh ambar 9.

BAB VI TURBIN AIR A. TURBIN IMPULS

BAB VI TURBIN AIR A. TURBIN IMPULS BAB I TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

p da p da Gambar 2.1 Gaya tekan pada permukaan elemen benda yang ter benam aliran fluida (Mike Cross, 1987)

p da p da Gambar 2.1 Gaya tekan pada permukaan elemen benda yang ter benam aliran fluida (Mike Cross, 1987) 6.3 Gaya Hambat Udara Ketika udara melewati suatu titik tankap baik itu udara denan kecepatan konstan ( steady ) maupun denan kecepatan yan berubah berdasarkan waktu (unsteady ), kecenderunan alat tersebut

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut:

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut: BAB IV TURBIN UAP Turbin uap adalah penggerak mula dimana gerak putar diperoleh dengan perubahan gradual dari momentum uap. Pada turbin uap, gaya dibangkitkan pada sudu (blade) karena kecepatan uap. Ini

Lebih terperinci

1. Tekanan pada Plat Diam

1. Tekanan pada Plat Diam MESIN-MESIN FLUIDA Mech. En. Depth. Gadjah Mada University 1 Mesin-Mesin Fluida : Pendahuluan an Mesin yan diperunakan untuk menubah eneri mekanik menjadi eneri aliran atau sebaliknya. Contohnya : E. Mekanik

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 Posisi, kecepatan, dan percepatan Posisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

Jadi F = k ρ v 2 A. Jika rapat udara turun menjadi 0.5ρ maka untuk mempertahankan gaya yang sama dibutuhkan

Jadi F = k ρ v 2 A. Jika rapat udara turun menjadi 0.5ρ maka untuk mempertahankan gaya yang sama dibutuhkan Kumpulan soal-soal level seleksi Kabupaten: 1. Sebuah pesawat denan massa M terban pada ketinian tertentu denan laju v. Kerapatan udara di ketinian itu adalah ρ. Diketahui bahwa aya ankat udara pada pesawat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

DESAIN BENTUK SUDUT SUDUT ARAH RADIAL PADA POMPA SENTRIFUGAL

DESAIN BENTUK SUDUT SUDUT ARAH RADIAL PADA POMPA SENTRIFUGAL DESAIN BENTUK SUDUT SUDUT ARA RADIAL PADA POMPA SENTRIFUGAL Kennie A. Lempoy Abstrak Permasalahan pada ketidakpuasan konsumen pada penunaan pompa air khususnya yan diunakan di rumah tana, pada saat ini

Lebih terperinci

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian. MESIN-MESIN FLUIDA TURBIN AIR TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi

Lebih terperinci

SMA JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN XI (SEBELAS) FISIKA GERAK HARMONIK

SMA JENJANG KELAS MATA PELAJARAN TOPIK BAHASAN XI (SEBELAS) FISIKA GERAK HARMONIK JENJANG KELAS MAA PELAJARAN OPIK BAHASAN SMA XI (SEBELAS) FISIKA GERAK HARMONIK Benda yan melakukan erak lurus berubah beraturan, mempunyai percepatan yan tetap, Ini berarti pada benda senantiasa bekerja

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2

2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2 SOLUSI. A. Waktu bola untuk jatuh diberikan oleh : t A= H B. Jarak d yan dibutuhkan adalah d=v 0 t A =v H 0 i. Karena bola tidak slip sama sekali dan tumbukan lentin sempurna maka eneri mekanik sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II TINJUN USTK ompa adalah suatu alat yan diunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain denan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut diunakan

Lebih terperinci

SOLUSI. m θ T 1. atau T =1,25 mg. c) Gunakan persaman pertama didapat. 1,25 mg 0,75mg =0,6 m 2 l. atau. 10 g 3l. atau

SOLUSI. m θ T 1. atau T =1,25 mg. c) Gunakan persaman pertama didapat. 1,25 mg 0,75mg =0,6 m 2 l. atau. 10 g 3l. atau SOLUSI. a) Gambar diaram aya diberikan pada ambar di sampin. b) Anap teanan tali yan membentuk sudut θ adalah terhadap horizontal adalah T. Anap teanan tali yan mendatar adalah T. Gaya yan bekerja pada

Lebih terperinci

MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP

MATA KULIAH : FISIKA DASAR (4 sks) GERAK BENDA DALAM BIDANG DATAR DENGAN PERCEPATAN TETAP MODUL PERTEMUAN KE 4 MATA KULIAH : (4 sks) MATERI KULIAH: Gerak Peluru (Proyektil); Gerak Melinkar Beraturan, Gerak Melinkar Berubah Beraturan, Besaran Anular dan Besaran Tanensial. POKOK BAHASAN: GERAK

Lebih terperinci

1 Posisi, kecepatan, dan percepatan

1 Posisi, kecepatan, dan percepatan 1 osisi, kecepatan, dan percepatan osisi suatu benda pada suatu waktu t tertentu kita tulis sebaai r(t). Jika saat t = t 1 benda berada pada posisi r 1 r(t 1 ) dan saat t = t 2 > t 1 benda berada pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

! 2 H g. &= 1 2 m 2 SOLUSI OSN A. Waktu bola untuk jatuh diberikan oleh : t A= Jarak d yang dibutuhkan adalah d =v 0 g

! 2 H g. &= 1 2 m 2 SOLUSI OSN A. Waktu bola untuk jatuh diberikan oleh : t A= Jarak d yang dibutuhkan adalah d =v 0 g SOLUSI OSN 009. A. Waktu bola untuk jatuh diberikan oleh : t A=! H B.! Jarak d yan dibutuhkan adalah d =v 0 t A =v H 0 i. Karena bola tidak slip sama sekali dan tumbukan lentin sempurna maka eneri mekanik

Lebih terperinci

a. Tentukan bentuk akhir dari tiga persamaan di atas yang menampilkan secara eksplisit

a. Tentukan bentuk akhir dari tiga persamaan di atas yang menampilkan secara eksplisit Contact Person : 0896-5985-681 OSK Fisika 018 Number 1 BESARAN PLANCK Pada tahun 1899 Max Planck memperkenalkan suatu sistem satuan iniversal sehina besaran-besaran fisika dapat dinyatakan dalam tia satuan

Lebih terperinci

Karena massa katrol diabaikan maka 2T 1. -nya arah ke bawah. a 1. = a + a 0. a 2. = m m ) m 4 mm

Karena massa katrol diabaikan maka 2T 1. -nya arah ke bawah. a 1. = a + a 0. a 2. = m m ) m 4 mm m 0 139 Pada sistem dibawah ini hitun percepatan benda m 1 nap benda m bererak ke bawah Jawab: T 1 T 1 m 1 T m 0 a 0 T T 1 m 1 m 1 m T 1 m a m Karena massa katrol diabaikan maka T 1 T m k a k 0 atau T

Lebih terperinci

h maks = tinggi maksimum X maks = Jauh maksimum

h maks = tinggi maksimum X maks = Jauh maksimum GEK PELUU eori Sinkat : Y y 0 y o sin α o maks α x o cos α maks Gerak parabola terdiri dari dua komponen erak yaitu :. Gerak orisontal berupa GL. Gerak vertikal berupa GL.Gerak orisontal (seara sumbu-x)

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

Penghitungan panjang fetch efektif ini dilakukan dengan menggunakan bantuan peta

Penghitungan panjang fetch efektif ini dilakukan dengan menggunakan bantuan peta Bab II Teori Dasar Gambar. 7 Grafik Rasio Kecepatan nin di atas Laut denan di Daratan. 5. Koreksi Koefisien Seret Setelah data kecepatan anin melalui koreksi-koreksi di atas, maka data tersebut dikonversi

Lebih terperinci

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif

Gerak Dua Dimensi Gerak dua dimensi merupakan gerak dalam bidang datar Contoh gerak dua dimensi : Gerak peluru Gerak melingkar Gerak relatif Gerak Dua Dimensi Gerak dua dimensi merupakan erak dalam bidan datar Contoh erak dua dimensi : Gerak peluru Gerak melinkar Gerak relatif Posisi, Kecepatan, Percepatan r i = vektor posisi partikel di A

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1.

Dengan substitusi persamaan (1.2) ke dalam persamaan (1.3) maka kedudukan x partikel sebagai fungsi waktu dapat diperoleh melalui integral pers (1. GERAK PADA BIDANG DATAR 1. Gerak denan Percepatan Tetap C Gb. 1 Grafik kecepatan-waktu untuk erak lurus denan percepatan tetap Pada ambar 1, kemirinan tali busur antara titik A dan B sama denan kemirinan

Lebih terperinci

UM UGM 2016 Fisika. Soal. Petunjuk berikut dipergunakan untuk mengerjakan soal nomor 01 sampai dengan nomor 20.

UM UGM 2016 Fisika. Soal. Petunjuk berikut dipergunakan untuk mengerjakan soal nomor 01 sampai dengan nomor 20. UM UGM 016 Fisika Soal Doc. Name: UMUGM016FIS999 Version: 017-0 Halaman 1 Petunjuk berikut diperunakan untuk menerjakan soal nomor 01 sampai denan nomor 0. = 9,8 m/s (kecuali diberitahukan lain) µ o =

Lebih terperinci

GERAK PELURU PENGERTIAN PERSAMAAN GERAK PELURU. Kecepatan awal pada sumbu x. v 0x = v 0 cos α. Kecepatan awal pada sumbu y.

GERAK PELURU PENGERTIAN PERSAMAAN GERAK PELURU. Kecepatan awal pada sumbu x. v 0x = v 0 cos α. Kecepatan awal pada sumbu y. GERAK PELURU PENGERTIAN Gerak parabola adalah erak abunan dari GLB pada sumbu horizontal (x) dan GJB pada sumbu vertikal (y) secara terpisah serta tidak salin mempenaruhi. PERSAMAAN GERAK PELURU Kecepatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

Sekolah Olimpiade Fisika davitsipayung.com

Sekolah Olimpiade Fisika davitsipayung.com SOLUSI SELEKSI OSN TINGKAT PROVINSI 06 Bidan Fisika Waktu : Jam Sekolah Olimpiade Fisika davitsipaun.com DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT SEKOLAH

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

FIsika KTSP & K-13 MOMENTUM DAN IMPULS. K e l a s A. PENGERTIAN GERAK PARABOLA

FIsika KTSP & K-13 MOMENTUM DAN IMPULS. K e l a s A. PENGERTIAN GERAK PARABOLA KTSP & K-13 FIsika K e l a s XI MOMENTUM DAN IMPULS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mampu memahami konsep erak parabola dan mampu menaplikasikannya dalam pemecahan masalah.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

FISIKA GERAK PARABOLA

FISIKA GERAK PARABOLA KTSP K-13 Kelas X FISIKA GERAK PARABOLA TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan. 1. Memahami konsep erak parabola.. Menaplikasikannya dalam pemecahan masalah.

Lebih terperinci

Jawaban OSK v ~ F (m/l) v = F a m b l c (nilai 2) [L][T] -1 = [M] a [L] a [T] -2a [M] b [L] c. Dari dimensi M: 0 = a + b a = -b

Jawaban OSK v ~ F (m/l) v = F a m b l c (nilai 2) [L][T] -1 = [M] a [L] a [T] -2a [M] b [L] c. Dari dimensi M: 0 = a + b a = -b Jawaban OSK 01 Fisika B 1- (nilai 6) Jawaban menunakan konsep dimensi v ~ F (m/l) v = F a m b l c (nilai ) [L][T] -1 = [M] a [L] a [T] -a [M] b [L] c Dari dimensi M: 0 = a + b a = -b Dari dimensi L: 1

Lebih terperinci

melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan. Air meninggalkan sudu dengan kecepatan relatif yang besar

melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan. Air meninggalkan sudu dengan kecepatan relatif yang besar Mesin-Mesin fluida TURBIN AIR REAKSI Pendahuluan Pada turbin reaksi kiair masuk ke impeller dengan tekanan dan mengalir melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan.

Lebih terperinci

POMPA. Pompa Dinamik. Pompa Perpindahan A. POMPA SENTRIGUGAL

POMPA. Pompa Dinamik. Pompa Perpindahan A. POMPA SENTRIGUGAL 8 POMPA Pompa bisa diklasifikasikan dengan berbagai cara. Jika pompa diklasifikasikan berdasarkan cara energi dipindahkan maka pompa bisa dikelompokkan sebagai berikut:: 1. Pompa dinamik (Dynamic) 2. Pompa

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu 23 BAB II TINJAUAN PUSTAKA Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Tenaga Uap Pada mesin uap dan turbin uap, air sebagai benda kerja mengalami deretan peubahan keadaan. Untuk merubah air menjadi uap digunakan suatu alat dinamakan boiler

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

HIDRODINAMIKA & APLIKASINYA

HIDRODINAMIKA & APLIKASINYA HIDRODINAMIKA & APLIKASINYA Oleh: Tito Hadji Aun S, ST, MT Ir Sudarja, MT, PhD (Candidate) Matrikulasi Jurusan Teknik Mesin Uniersitas Muhammadiyah Yoyakarta 017 Mekanika Fluida Fluida : Zat Alir (zat

Lebih terperinci

PERTEMUAN X PERSAMAAN MOMENTUM

PERTEMUAN X PERSAMAAN MOMENTUM PERTEMUAN X PERSAMAAN MOMENTUM Zat cair yang bergerak dapat menimbulkan gaya. Gaya yang ditimbulkan oleh zat cair dapat dimanfaatkan untuk : - analisis perencanaan turbin - mesin-mesin hidraulis - saluran

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

SOAL TRY OUT FISIKA 2

SOAL TRY OUT FISIKA 2 SOAL TRY OUT FISIKA 2 1. Dua benda bermassa m 1 dan m 2 berjarak r satu sama lain. Bila jarak r diubah-ubah maka grafik yang menyatakan hubungan gaya interaksi kedua benda adalah A. B. C. D. E. 2. Sebuah

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

1. OVERSHOT WATER WHEEL

1. OVERSHOT WATER WHEEL MESIN-MESIN FLUIDA KINCIR AIR 1 PENDAHULUAN Sejarah kincir air Roda air radial dengan mekanisme, pertama kali ditemukan oleh ilmuwan Prancis Burdin pada 1824. kemudian Fourneyron mengembangkan desain tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Energi listrik yang disediakan oleh perusahaan listrik Negara (PLN), masih belum dirasakan secara menyeluruh oleh masyarakat terutama masyarakat pedesaan yang

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

BAB VIII POMPA. 1. Pompa dinamik (Dynamic) 2. Pompa perpindahan (Displacement) Pompa Dinamik

BAB VIII POMPA. 1. Pompa dinamik (Dynamic) 2. Pompa perpindahan (Displacement) Pompa Dinamik BAB VIII POMPA Pompa bisa diklasifikasikan dengan berbagai cara. Jika pompa diklasifikasikan berdasarkan cara energi dipindahkan maka pompa bisa dikelompokkan sebagai berikut:: 1. Pompa dinamik (Dynamic)

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

Mulai. Studi Literatur. Gambar Sketsa. Perhitungan. Gambar 2D dan 3D. Pembelian Komponen Dan Peralatan. Proses Pembuatan.

Mulai. Studi Literatur. Gambar Sketsa. Perhitungan. Gambar 2D dan 3D. Pembelian Komponen Dan Peralatan. Proses Pembuatan. BAB III PERANCANGAN DAN GAMBAR 3.1 Diagram Alur Proses Perancangan Proses perancangan mesin pemipil jagung seperti terlihat pada Gambar 3.1 seperti berikut: Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

Gambar II.1. Skema Sistem Produksi

Gambar II.1. Skema Sistem Produksi Bab II Tinjauan Pustaka II.1 Sistem Produksi Sistem produksi minyak merupakan jarinan pipa yan berunsi untuk menalirkan luida (minyak) dari reservoir ke separator. Reservoir terletak di bawah permukaan

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

GERAK MELINGKAR. = S R radian

GERAK MELINGKAR. = S R radian GERAK MELINGKAR. Jika sebuah benda bergerak dengan kelajuan konstan pada suatu lingkaran (disekeliling lingkaran ), maka dikatakan bahwa benda tersebut melakukan gerak melingkar beraturan. Kecepatan pada

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

Xpedia Fisika. Mekanika 02

Xpedia Fisika. Mekanika 02 Xpedia Fisika Mekanika 02 Doc. Nae: XPFIS0102 Version: 2012-07 halaan 1 01. Gaya yan dibutuhkan untuk enerakan bola hoki berassa 0,1 k konstan pada kecepatan 5 /s di atas perukaan licin adalah... (A) Nol

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

Bidang Fisika yg mempelajari tentang gerak tanpa mengindahkan penyebab munculnya gerak dinamakan Kinematika.

Bidang Fisika yg mempelajari tentang gerak tanpa mengindahkan penyebab munculnya gerak dinamakan Kinematika. idan isika y epelajari tentan erak tanpa enindahkan penyebab unculnya erak dinaakan Kineatika. idan isika y epelajari tentan erak beserta penyebab unculnya erak dinaakan Dinaika. Huku Newton tentan Gerak

Lebih terperinci

pengukuran karakteristik I-V transistor. Kemudian dilanjutkan dengan penyesuaian (fitting) hasil tersebut menggunakan model TOM.

pengukuran karakteristik I-V transistor. Kemudian dilanjutkan dengan penyesuaian (fitting) hasil tersebut menggunakan model TOM. BAB III HASIL DAN DISKUSI Bab ini berisi hasil dan diskusi. Pekerjaan penelitian dimulai denan melakukan penukuran karakteristik I-V transistor. Kemudian dilanjutkan denan penyesuaian (fittin hasil tersebut

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls 1. TURBIN AIR Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP SKRIPSI Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan M Tharin No. 96 Medan Kota - 01 T: (+661)46 81 METODIST- EDUCATION EXPO 016 Loba Sains Plus Antar Pelajar Tinkat SMA se-suatera Utara NASKA SOAL FISIKA - Petunjuk Soal

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI B.10. Kaji eksperimental kinerja turbin crossflow... (Sahid) KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI Sahid Program Studi

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penggunaan atau penerapan persamaan momentum untuk aliran saluran terbuka.

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penggunaan atau penerapan persamaan momentum untuk aliran saluran terbuka. Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami penunaan atau penerapan persamaan momentum untuk aliran saluran terbuka. Tujuan Pembelajaran Khusus Setelah membaca modul dan menelesaikan

Lebih terperinci

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE)

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) Oleh : NASRUL SAIYIDIN 2107030045 Dosen Pembimbing : Dr. Ir. HERU MIRMANTO,

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan

BAB II DASAR TEORI. Kenaikan tekanan cairan tersebut digunakan untuk mengatasi hambatan-hambatan BAB II DASAR TEORI 2.1. DASAR TEORI POMPA 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci