MATERI PERKULIAHAN. Gambar 1. Potensial tangga
|
|
|
- Sudirman Budiono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya nol sedangkan pada daerah, potensialnya konstan yaitu. = = Gambar 1. Potensial tangga Bagaimana bentuk fungsi gelombang partikel tersebut? Jawaban dari pertanyaan ini memiliki dua kemungkinan, pertama jika energi partikel kurang dari atau sama dengan potensial, <, dan yang kedua energi partikel lebih dari potensial >. a. Jika < Oleh karena ada dua daerah dengan potensial yang berbeda maka persamaan Schrödinger memiliki bentuk yang berbeda-beda pada masing-masing daerah tersebut. Pada daerah <, persamaan Schrödinger dengan = adalah ħ 2 = (1) = 2 ħ = (2) dengan k adalah konstanta real positif
2 2 ħ (3) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan sehingga solusinya adalah = +! (4) Bentuk solusi bergantung waktunya adalah Ψ (,%)= &(%) dengan &(%)= '(/ħ Ψ (,%)=* +! + '(/ħ Ψ (,%)= (,'(/ħ) +! ('(/ħ) (5) Suku pertama dari persamaan (5), yaitu (,'(/ħ) adalah bentuk gelombang yang merambat dari kanan ke kiri, sehingga ditafsirkan sebagai gelombang pantul dengan perambatan dari = menuju =. Sementara itu, suku kedua dari persamaan (5), yaitu! ('(/ħ) adalah bentuk gelombang yang merambat dari kiri ke kanan, sehingga ditafsirkan sebagai gelombang datang dengan perambatan dari = menuju =. Pada daerah, Persamaan Schrödinger dengan potensial = adalah ħ 2 += ħ 2 = + ħ 2 = ( ) = 2 ( ) (6) ħ Jika didefinisikan suatu konstanta real positif baru, 1 2 ħ 3 ( )
3 maka persamaan (6) menjadi = (7) Perhatikan persamaan (6)! Persamaan ini adalah persamaan diferensial orde dua, mirip dengan persamaan (2), namun dengan akar-akar real berlainan, solusinya adalah = (8) Salah satu syarat fungsi gelombang agar memenuhi persamaan Schrödinger adalah fungsi gelombang harus bernilai berhingga saat menuju tak hingga. Oleh karena pada daerah fungsi gelombangnya adalah maka ( )=5 : +7 : ( )=+ Tampak bahwa fungsi gelombang bernilai tak hingga pada saat menuju tak hingga. supaya ( ) berhingga maka haruslah 7= dengan demikian, persamaan (8) menjadi =5 6 (9) Dengan demikian, solusi persamaan Schrödinger pada masing-masing daerah telah diperoleh, persamaan (4) untuk daerah <, dan persamaan (9) untuk daerah. = +!, untuk < =5 6, untuk Untuk menentukan konstanta,!,dan 5 maka kita terapkan syarat kontinuitas fungsi gelombang dan turunannya pada batas kedua daerah, yaitu pada =. Syarat kontinuitas fungsi gelombang pada = ()= ()
4 C C B +! B =5 B +!=5 (1) Syarat kontinuitas turunan pertama fungsi gelombang pada = DEB = C DEB * +! +DEB = C (56 )DEB C* F +F! +G EB = C 5 6 EB F+F!= 5 F F!=5 (11) F F!=5 5= F F! (12) Dengan mensubstitusikan persamaan (1) ke persamaan (11) maka diperoleh F F!=(+!) F F!=(+!)!+F!=F!= (F ) F+ (13) Untuk mendapatkan konstanta C, yaitu dengan mensubstitusikan persamaan (13) ke persamaan (1), diperoleh 5=+ (F ) F+ 5= 2F F+ (14)
5 Dengan demikian, solusi persamaan Schrödinger pada masing-masing daerah adalah = + (F ) F+,Iuntuk < (15) = 2F F+ 6,muntuk (16) Gambar 2 menampilkan grafik fungsi gelombang dan. Pada daerah fungsi gelombang meluruh secara eksponensial menuju nol = Gambar 2. Fungsi gelombang pada potensial tangga dengan < Berbeda dengan permasalahan partikel dalam sumur potensial tak hingga dan osilator harmonik, pada permasalahan ini, tidak diperoleh keadaan dengan energi yang berbeda-beda. Namun demikian, dari tinjauan secara kuantum, partikel yang bergerak dengan energi yang lebih kecil dari potensial, masih dapat menembus daerah dengan potensial yang lebih tinggi dari energinya sedangkan secara klasik tidak. b. Jika K Jika partikel berenergi, Persamaan Schrödinger pada daerah < sama dengan kasus a di atas karena potensial pada daerah tersebut nol. Dengan demikian, solusinya juga sama, yaitu = +! (17) Sementara pada daerah persamaan Schrödingernya adalah
6 ħ 2 += ħ 2 =( ) = 2 ( ) (18) ħ Jika 2 ( ) (19) ħ maka persamaan (18) menjadi = (2) dengan adalah konstanta real positif. Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan. Solusi persamaan (2) adalah = (21) Mirip dengan kondisi pada persamaan (5), suku 5 6 merepresentasikan gelombang yang merambat dari kanan ke kiri sedangkan suku 7 6 merepresentasikan gelombang yang merambat dari kiri ke kanan. Oleh karena gelombang merambat dari kiri ke kanan, maka pada daerah tidak ada gelombang pantul, jadi suku 5 6 tidak menunjukkan keadaan fisis sehingga konstanta 5=. Dengan demikian, persamaan (21) menjadi =7 6 (22) Konstanta,!,dan 7 ditentukan dengan menerapkan syarat kontinuitas fungsi gelombang beserta turunannya pada =, sama seperti pada kasus (a) sebelumnya. Syarat kontinuitas fungsi gelombang pada daerah batas, yaitu pada = ()= ()
7 C C B +! B =7 B 7=+! (23) Syarat kontinuitas turunan pertama fungsi gelombang pada daerah batas, yaitu pada = DEB = C DEB * +! +DEB = C *76 +DEB C* F +F! +G EB = C F7 6 EB F+F!=F7 7=! (24) dengan mensubstitusikan persamaan (23) ke persamaan (24), diperoleh +!=! +!=!!= ( ) + (25) Kemudian untuk memperoleh konstanta 7, yaitu dengan mensubstitusikan persamaan (25) ke persamaan (23), didapatkan 7=+ ( ) + 7= 2 + (26) Dengan demikian, fungsi gelombang pada masing-masing daerah adalah = + ( ) + (27)
8 = (28) Gambar 3 menampilkan grafik fungsi gelombang dan. Pada daerah fungsi gelombang berupa sinusoidal dengan amplitudo yang lebih kecil dan panjang gelombang yang lebih panjang dibanding fungsi gelombang pada daerah. = Gambar 3. Fungsi gelombang pada potensial tangga dengan
= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)
2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.
1 BAB 4 ANALISIS DAN BAHASAN
1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan
PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D
PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan
FUNGSI GELOMBANG. Persamaan Schrödinger
Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,
PARTIKEL DALAM SUATU KOTAK SATU DIMENSI
PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya
BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK
BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Persamaan Schrödinger Persamaan Schrödinger merupakan fungsi gelombang yang digunakan untuk memberikan informasi tentang perilaku gelombang dari partikel. Suatu persamaan differensial
PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0
1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial
HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI
HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI Disusun untuk memenuhi tugas mata kuliah Fisika Kuantum Dosen Pengampu: Drs. Ngurah Made Darma Putra, M.Si., PhD Disusun oleh kelompok 8:.
Fisika Dasar I (FI-321)
Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran
III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3
8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.
Pengertian limit secara intuisi
Pengertian it secara intuisi Perhatikan fungsi f ( ) = Fungsi diatas tidak terdefinisi di =, karena di titik tersebut f() berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f() jika mendekati Dengan
MEKANIKA KUANTUM DALAM TIGA DIMENSI
MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Metode Beda Hingga Metode perbedaan beda hingga adalah metode yang sangat popular. Pada intinya metode ini mengubah masalah Persamaan Differensial Biasa (PDB) nilai batas dari
matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA
K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan
BAB 2 TINJAUAN PUSTAKA
BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang
LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:
LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:
PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron
PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul
Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon
F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat
BAB IV OSILATOR HARMONIS
Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =
LAMPIRAN A OSILATOR HARMONIK
46 LAMPIRAN A OSILATOR HARMONIK Persamaan Schrodinger untuk Osilator Harmonik dapat dinyatakan sebagai berikut: dd 2 ΨΨ dddd 2 + (α y2 )Ψ = 0 (A.1) Dengan y = ( 1 ħ kkkk)1/2 dimana v = 1 2ππ kk mm α =
FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON
FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa
III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan
6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing
BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya
1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku
DERET FOURIER DAN APLIKASINYA DALAM FISIKA
Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER
Refleksi dan Transmisi
Pertemuan 4 1 Refleksi dan Transmisi Bgmn jk gel merambat dan kemudian menemui perubahan dlm medium perambatannya (misalnya dari medium udara kemudian masuk ke medium air)? Ada 2 kejadian yg mungkin: 1.
Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi
Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut
matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran
Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar
BAB III PERSAMAAN DIFERENSIAL LINIER
BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka
POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM
POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika
BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan
4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan
DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.
BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR
A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar
TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan
TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar
Metode Beda Hingga pada Persamaan Gelombang
Metode Beda Hingga pada Persamaan Gelombang Tulisan ini diadaptasi dari buku PDP yang disusun oleh Dr. Sri Redeki Pudaprasetia M. Jamhuri UIN Malang July 2, 2013 M. Jamhuri UIN Malang Metode Beda Hingga
SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN. 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa
SIFAT GELOMBANG PARTIKEL DAN PRINSIP KETIDAKPASTIAN 39. Elektron, proton, dan elektron mempunyai sifat gelombang yang bisa diobservasi analog dengan foton. Panjang gelombang khas dari kebanyakan partikel
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.
1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah
POSITRON, Vol. VI, No. 2 (2016), Hal ISSN :
Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo Nurul Wahdah a, Yudha Arman a *,Boni Pahlanop Lapanporo a a JurusanFisika FMIPA Universitas Tanjungpura,
Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak
Kajian Metode Analisa Data Goal Seek (Microsoft Excel) untuk Penyelesaian Persamaan Schrödinger Dalam Menentukan Kuantisasi ergi Dibawah Pengaruh Potensial Lennard-Jones Wahyu Kurniawan 1,, Suryasatriya
II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.
2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran
SASARAN PEMBELAJARAN
OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan
BAB I PENDAHULUAN (1-1)
BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang
Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO
Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.
Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai
Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Pada bab ini sistem persamaan (3.3.9-10) akan diselesaikan secara numerik dengan menggunakan metoda beda hingga. Kemudian simulasi numerik
PENDAHULUAN Anda harus dapat
PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,
BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan
BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,
II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.
2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;
Bab 2 TEORI DASAR. 2.1 Model Aliran Panas
Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi
MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri
MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Dalam bab ini akan dikemukakan teori-teori yang mendukung pembahasan penyelesaian persamaan diferensial linier tak homogen dengan menggunakan metode fungsi green antara lain: persamaan
Bab II Fungsi Kompleks
Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel
PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA
PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding
Osilasi Harmonis Sederhana: Beban Massa pada Pegas
OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.
BAB II PERAMBATAN GELOMBANG SEISMIK
BAB II PERAMBATAN GELOMBANG SEISMIK.1 Teori Perambatan Gelombang Seismik Metode seismik adalah sebuah metode yang memanfaatkan perambatan gelombang elastik dengan bumi sebagai medium rambatnya. Perambatan
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.
BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik
Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (
Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
RESONANSI BRAGG PADA ALIRAN AIR AKIBAT DINDING SINUSOIDAL DI SEKITAR MUARA SUNGAI
RESONANSI BRAGG PADA ALIRAN AIR AKIBAT DINDING SINUSOIDAL DI SEKITAR MUARA SUNGAI Viska Noviantri Jurusan Matematika dan Statistik, Fakultas Sains dan Teknologi, Universitas Bina Nusantara Jln. K.H. Syahdan
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi
BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik
BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud
PERCOBAAN MELDE TUJUAN PERCOBAAN II. LANDASAN TEORI
1 PERCOBAAN MELDE I. TUJUAN PERCOBAAN a. Menunjukkan gelombang transversal stasioner pada tali. b. Menentukan cepat rambat gelombang pada tali. c. Mengetahui hubungan antara cepat rambat gelombang (v)
GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana
GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap
2. Deskripsi Statistik Sistem Partikel
. Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum
Persamaan SWE Linier untuk Dasar Sinusoidal
Bab 3 Persamaan SWE Linier untuk Dasar Sinusoidal Pada bab ini akan dijelaskan mengenai penggunaan persamaan SWE linier untuk masalah gelombang air dengan dasar sinusoidal. Dalam menyelesaikan masalah
BAB II PROSES-PROSES PELURUHAN RADIOAKTIF
BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan
BAB II PERSAMAAN DIFERENSIAL BIASA
BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan
Teori Atom Mekanika Klasik
Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum
Jurnal MIPA 39 (1)(2016): Jurnal MIPA.
Jurnal MIPA 39 (1)(16): 34-39 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm KAJIAN METODE ANALISA DATA GOAL SEEK (MICROSOFT EXCEL) UNTUK PENYELESAIAN PERSAMAAN SCHRÖDINGER DALAM MENENTUKAN KUANTISASI
Bab 2. Teori Gelombang Elastik. sumber getar ke segala arah dengan sumber getar sebagai pusat, sehingga
Bab Teori Gelombang Elastik Metode seismik secara refleksi didasarkan pada perambatan gelombang seismik dari sumber getar ke dalam lapisan-lapisan bumi kemudian menerima kembali pantulan atau refleksi
BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.
BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti
REKAYASA GEMPA GETARAN BEBAS SDOF. Oleh Resmi Bestari Muin
MODUL KULIAH REKAYASA GEMPA Minggu ke 3 : GETARAN BEBAS SDOF Oleh Resmi Bestari Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dan PERENCANAAN UNIVERSITAS MERCU BUANA 010 DAFTAR ISI DAFTAR ISI i III GERAK
PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK
PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI
Tinjauan Mata Kuliah
i M Tinjauan Mata Kuliah ata kuliah Kalkulus 1 diperuntukkan bagi mahasiswa yang mempelajari matematika baik untuk mengajar bidang matematika di tingkat Sekolah Lanjutan Tingkat Pertama (SLTP), Sekolah
BAB 3 DINAMIKA STRUKTUR
BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel
GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER
GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER Lukman Hakim ) dan Ari Kusumastuti 2) ) Mahasiswa Pascasarjana Jurusan Matematika Universitas Brawijaya Malang 2) Jurusan
I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.
I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
Powered By Upload By - Vj Afive -
Gelombang TRANSVERSAL Ber dasar kan Ar ah Get ar = Gelombang yang arah getarnya tegak lurus terhadap arah rambatnya Gelombang LONGI TUDI NAL = Gelombang yang arah getarnya sejajar dengan arah rambatnya
BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara
BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode
COBA PERHATIKAN GAMBAR GRAFIK BERIKUT
GELOMBANG STASIONER COBA PERHATIKAN GAMBAR GRAFIK BERIKUT POLA GELOMBANG APAKAH YANG DIHASILKAN APABILA PERTEMUAN GELOMBANG DATANG DARI TITIK A DAN YANG SATUNYA LAGI DIPANTULKAN DARI TITIK B SEPERTI YANG
GETARAN DAN GELOMBANG
GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran
LIMIT KED. Perhatikan fungsi di bawah ini:
LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat
BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah
BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb
a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2
SOUSI UJIAN TENGAH SEMESTER E-32 MATERIA TEKNIK EEKTRO Semester I 23/24, Selasa 2 Nopember 22 Waktu : 7: 9: (2menit)- Closed Book SEKOAH TEKNIK EEKTRO DAN INFORMATIKA - INSTITUT TEKNOOGI BANDUNG Dosen
ANALISIS DINAMIKA KUANTUM PARTIKEL MENGGUNAKAN MATRIKS TRANSFER
ANALISIS DINAMIKA KUANTUM PARTIKEL MENGGUNAKAN MATRIKS TRANSFER Irene Devi Damayanti 1, Tasrief Surungan 1, Eko Juarlin 1 1 Jurusan Fisika FMIPA Universitas Hasanuddin, Makassar 95, Indonesia Abstrak Dinamika
BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak
BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.
Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu
Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Kunlestiowati H *. Nani Yuningsih **, Sardjito *** * Staf Pengajar Polban, [email protected] ** Staf Pengajar Polban, [email protected]
TUJUAN INSTRUKSIONAL KHUSUS
PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep
Agus Suroso. Pekan Kuliah. Mekanika. Semester 1,
Agus Suroso 14 Pekan Kuliah B Mekanika ( C a t a t a n K u l i a h F I 2 1 0 4 M e k a n i k a B ) Semester 1, 2017-2018 Sistem Partikel (2) 10 10 1 Gerak relatif pada sistem dua partikel 10 2 Tumbukan
Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi
Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari
Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga
JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan
