BAB III MODEL PERTUMBUHAN EKONOMI DUA SEKTOR
|
|
|
- Teguh Iskandar
- 9 tahun lalu
- Tontonan:
Transkripsi
1 15 BAB III MODEL PERTUMBUHA EKOOMI DUA SEKTOR 3.1 Aum dan oa Model perumbuhan dua ekor n merupakan model perumbuhan dengan dua komod yang dhalkan, yau barang modal dan barang konum. Kedua barang n dproduk dengan modal dan enaga kera. Daumkan bahwa barang modal dan barang konum merupakan komoda yang berbeda. Model dkembangkan dalam waku dkre dakan dalam uau baran perode dan dber ndek = 0, 1, 2... d mana waku 0 menunukkan dmulanya perode 0 yang mewakl perekonoman pada ua awal hnggga mengalam perumbuhan ampa akhr perode -1. Toal popula danggap eap. Rumah angga mendrbukan pendapaan mereka unuk konum dan abungan. Dalam model perumbuhan dua ekor n daumkan dan ddefnkan ebaga berku (Zhang 2007): K () = modal yang d gunakan ekor pada perode () = aa enaga kera yang dgunakan ekor dalam perode F () = oupu dar ekor pada perode p() = harga unuk barang konum pada perode Y() = pendapaan aa n pada perode r() = ngka uku bunga pada perode w() = ngka upah pada perode c() = konum komoda pada perode () = abungan pada perode. 3.2 Produk dan Akumula Modal Fung produk dberkan F( K ( ), ( )) =,, d mana ndek dan adalah noa ekor barang modal dan ekor barang konum, dan F adalah oupu dar ekor ; K () dan () adalah modal dan enaga kera yang dgunakan dalam ekor.
2 16 Dalam pembahaan, fung produk adalah fung produk Cobb-Dougla ebaga berku: α β F = A K, α, β > 0, α + β = 1, =,. (3.1) F Dengan menadkan ebaga bearan per kapa, yau f, maka dperoleh α K f = Ak ( ), d mana k, =,. (3.2) Daumkan bahwa ngka uku bunga dan ngka upah d dua ekor adalah ama. Harga barang konum dnoakan p(), ngka uku bunga r(), dan ngka upah w(). Kond marnal adalah β k β r () + δ = α Ak = p () α Ak (), α α w () = β Ak = β Apk () (). (3.3) ( Penabaran perolehan peramaan dapa dlha pada Lampran 1). Toal peredaan modal K() dalokakan pada dua ekor. Daumkan bahwa enaga kera dan peredaan modal dnyaakan oleh K + K = K(), + =, (3.4) dengan adalah popula fxed (eap), peramaan (3.4) dapa dul kembal menad n k + n k = k(), n + n = 1, (3.5) dengan K () k (), n, =,. (3.6) Pendapaan rumah angga aa n y(), dperoleh dar pembayaran bunga, r()k(), dan pembayaran upah w() dnyaakan ebagamana berku: y () = rk () () + w (). (3.7) Pendapaan yang ap dbelanakan perkapa (percapa dpoable ncome) rumah angga ddefnkan ebaga umlah dar pendapaan aa n (curren ncome) dan kekayaan yang ereda k(). y ˆ( ) = y () + k () = (1 + r ()) k () + w (). (3.8)
3 17 Pendapaan yang ap dbelanakan erebu dgunakan unuk menabung dan konum. Konumen akan mendrbukan oal keeredaan anggaran unuk menabung () dan mengkonum barang c(). Baaan anggaran dberkan oleh pc () () + () = y ˆ(). (3.9) Dengan mengaumkan bahwa ngka ula U(), yang konumen dapakan adalah erganung pada ngka konum komoda, c(), dan abungan, (). Fung ula yang dgunakan adalah ebaga berku: ξ λ U () = c(); ξ, λ > 0; ξ + λ = 1 (3.10) d mana ξ adalah kecenderungan unuk mengkonum barang, dan λ adalah kecenderungan unuk memlk modal (menabung). Fung ula erebu akan dmakmumkan dengan baaan anggaran yang dberkan. Sehngga dapa deleakan kepuaan opmal konumen ebaga berku: pc () () = ξ y ˆ(), () = λ y ˆ(). (3.11) (Penabaran perolehan olu dapa lha pada Lampran 2). Dengan menganggap bahwa perubahan modal erhadap waku adalah dkre ehngga akumula modal rumah angga dberkan: k ( + 1) = ( ) = λ y ˆ( ) (3.12) Peramaan (3.12) berar bahwa kekayaan k pada perode +1 adalah ama dengan abungan pada perode. Oupu dar ekor barang konum yang dkonum oleh rumahangga, yau, c () = F(), (3.13) Sedangkan oupu dar ekor barang modal adalah ama dengan deprea peredaan modal dan abungan berh, yakn S () K () + δ K () = F () (3.14) k d mana S () K () + δ K () adalah umlah dar abungan berh dan deprea. k
4 Sem Dnamk Model Dua Sekor Hubungan anara modal perkapa dar ekor barang modal dan ekor barang konum berdaarkan peramaan (3.3) dan berdaarkan aum ngka uku bunga dan ngka upah d kedua ekor ama akan dperoleh k = αk (3.15) d mana α βα / βα. (Penabaran peramaan dapa lha pada Lampran 3). Modal perkapa dar ekor barang konum adalah berpropor dengan ekor barang modal. Dengan k = αk() dan βf = βpfdperoleh βa α p () k α = α. (3.16) βα A (Penabaran perolehan peramaan dapa lha pada Lampran 4). Harga barangbarang konum mempunya hubungan pof dengan ngka eknolog dar ekor barang modal eap mempunya hubungan negaf dengan ekor barang konum. Berdaarkan peramaan (3.5) dan peramaan (3.15) dperoleh drbu enaga kera ebaga berku: αk k() n =, ( α 1) k ( ) k () k n =. (3.17) ( α 1) k ( ) (Penabaran perolehan peramaan dapa dlha pada Lampran 5). Berdaarkan peramaan (3.14) dan = λ yˆ, ddapakan n f + δ k() y ˆ( ) =. (3.18) λ (Penabaran perolehan peramaan dapa dlha pada Lampran 6) Dar peramaan (3.11) yau pc = ξ yˆ, era c= n f, dan ' ' yˆ n f f / ξ f p = f f ddapakan ' ' /, = dar peramaan n dan peramaan (3.18), ddapakan ' λk() n f n f δk() ξα = +. (3.19) (Penabaran perolehan peramaan dapa dlha pada Lampran 7) Subu n = 1 n dan n pada peramaan (3.17) ke dalam peramaan (3.19) menghalkan
5 19 d mana k () =Φ ( k()) k(), (3.20) 1 1+ λ0 (1 α) δ / A Φ( k ( )), A β 0 > 0, βλ A λ0. (3.21) A0 (1 + Ak ( )) α + λ0 1+ λ0 βξ (Penabaran perolehan peramaan dapa dlha pada Lampran 8) dengan peramaan (3.19) dan peramaan (3.20) era menuru defn dar A dan A 0, dapa deleakan β n( ) =Φ( k( ))( α1 α2k ( )), (3.22) d mana α1 λ0 /( α+ λ0) dan α2 αδ / A ( α + λ0). (Lha Lampran 9) Berdaarkan peramaan (3.20) dan peramaan (3.22) maukan ke dalam peramaan (3.18) ddapakan β ( α1 α2k ()) f δk ( k()) ŷ() = + Φ. (3.23) λ (Penabaran perolehan peramaan dapa dlha pada Lampran 10) Subukan peramaan (3.20) dan peramaan (3.23) ke dalam peramaan (3.12), ehngga dperoleh β Φ ( k( + 1)) k( + 1) = ( α1 α2k ( )) f( ) + δk( ) Φ( k( )). (3.24) (Penabaran perolehan peramaan dapa dlha pada Lampran 11) Perumbuhan ekonom dapa dgambarkan ebaga fung dar k yau k( + 1) k( ) f(k ()) dengan Δ =1 Δ Perumbuhan ekonom dapa dkeahu dengan akumula modal, unuk mengeahu pergerakan akumula modal erlebh dahulu mengeahu pergerakan modal pada ekor barang modal ehngga dar peramaan (3.21) dan peramaan (3.24) dapa dbua peramaan ebaga berku [( α α k ( )) f ( ) + δk( )] A ( α α k ( )) f ( ) + δk( ) k k β β 1 2 β 1 2 ( + 1) ( + 1) = 0 β β 1 + Ak ( ) 1 + Ak ( ) (Penabaran perolehan peramaan dapa dlha pada Lampran 12). (3.25) Fung modal k ( + 1) dapa dperoleh dengan menyeleakan peramaan (3.25) ecara numerk. la-nla dar emua varabel pada eap k waku dapa deleakan dengan menggunakan pendekaan ecara numerk menggunakan ala banu perangka lunak Mahemaca.
6 Kond Equlbrum Ekulbrum unuk model erenu adalah uau keadaan yang mempunya cr dak adanya kecenderungan unuk berubah. Selanunya agar em berada dalam kond ekulbrum, ka dpenuh k ( + 1) = k = * k. (3.26) Subu kond (3.26) ke peramaan (3.24), ehngga dperoleh peramaan yang memlk olu pof unk yau 1/ β * Aα 1 k =. (3.27) δk + Aα2 (Penabaran perolehan peramaan dapa dlha pada Lampran 13). la dar emua varabel pada aa ekulbrum dapa deleakan melalu pendekaan ecara numerk menggunakan ala banu perangka lunak Mahemaca.
MODEL PERTUMBUHAN EKONOMI DUA SEKTOR DALAM WAKTU DISKRET DRAJAT STIAWAN
MODEL PERTUMBUHAN EKONOMI DUA SEKTOR DALAM WAKTU DISKRET DRAJAT STIAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan n aya menyaakan bahwa
Optimasi Model Inventory Deterministik untuk Permintaan Menaik dan Biaya Pemesanan Konstan
Opma Model Invenory Deermnk unuk Permnaan Menak dan Baya Pemeanan Konan Dana Purwaar, Rully Soelaman, Fr Qona Fakula Teknolog Informa, Inu Teknolog Sepulu Nopember, Surabaya E-mal : [email protected] Abrak
Optimasi Model Inventory Deterministik untuk Permintaan Menaik dan Biaya Pemesanan Konstan
Opma Model Invenory Deermnk unuk Permnaan Menak dan Baya Pemeanan Konan Dana Purwaar, Rully Soelaman, Fr Qona Fakula Teknolog Informa, Inu Teknolog Sepulu Nopember, Surabaya E-mal : [email protected] Abrak
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU
BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas
BAB II PENYEARAH TERKENDALI. fasa thyristor. Tegangan keluaran penyearah terkendali dapat divariasikan dengan
BAB PENYEAAH TEKENDA Unuk menghalkan egangan keluaran yang erkenal gunakan pengenal faa hyror. Tegangan keluaran penyearah erkenal apa varakan engan mengonrol aau mengaur uu penyalaan hyror. Thyror nyalakan
MODEL OPTIMASI MULTI OBJECTIVE UNTUK PERENCANAAN PERSEDIAAN MULTI PRODUK DARI MULTI SUPPLIER DENGAN MEMPERHATIKAN DUE DATE
SNTI III-0 Unvera Trak ISBN : 978-979-865-4-9 MODEL OPTIMASI MULTI OBJECTIVE UNTUK PERENCANAAN PERSEDIAAN MULTI PRODUK DARI MULTI SUPPLIER DENGAN MEMPERHATIKAN DUE DATE Dna Naala Prayogo Juruan Teknk Indur,
Bab III. Menggunakan Jaringan
Bab III Pembuaan Jadwal Pelajaran Sekolah dengan Menggunakan Jaringan Pada bab ini akan dipaparkan cara memodelkan uau jaringan, ehingga dapa merepreenaikan uau jadwal pelajaran di ekolah. Tahap perama
Kajian Pemilihan Struktur Dua Rantai Pasok yang Bersaing Untuk Strategi Perbaikan Kualitas
JURNAL TEKNIK POITS Vol. 1, No. 1, (01 1-5 1 Kaan Pemlhan Struktur Dua Ranta Paok yang Berang Untuk Strateg Perbakan Kualta Ika Norma Kharmawat, Lakm Prta W, Suhud Wahyud Juruan atematka Fakulta atematka
Created by Simpo PDF Creator Pro (unregistered version)
Creaed by Smpo PDF Creaor Pro (unregsered verson) hp://www.smpopdf.com Sask Bsns : BAB 8 VIII. ANALISIS DATA DERET BERKALA (TIME SERIES) 8.1 Pendahuluan Daa Berkala (Daa Dere waku) adalah daa yang dkumpulkan
Reduksi Persamaan Dirac ke Persamaan Cauchy Nondegenerate
Jurnal San & Maemaka JSM rkel ISSN 0854-0675 enelan olume 5, Nomor, Januar 007 rkel enelan: 39-43 Reuk eramaan ra ke eramaan Cauhy Nonegenerae Sulo Haryano Juruan Maemaka FMI UNI BSRK---eramaan ra abrak
BAB 8 PERSAMAAN DIFERENSIAL BIASA
Maa kulah KOMPUTASI ELEKTRO BAB 8 PERSAMAAN DIFERENSIAL BIASA Persamaan dferensal dapa dbedakan menjad dua macam erganung pada jumlah varabel bebas. Apabla persamaan ersebu mengandung hana sau varabel
BAB I PENDAHULUAN FASILKOM-UDINUS T.SUTOJO RANGKAIAN LISTRIK HAL 1
BAB I PENDAHULUAN 1.1 Defns Rangkaan Lsrk Rangkaan Lsrk adalah sambungan dar beberapa elemen lsrk ( ressor, kapasor, ndukor, sumber arus, sumber egangan) yang membenuk mnmal sau lnasan eruup yang dapa
( ) STUDI KASUS. ò (, ) ( ) ( ) Rataan posteriornya adalah = Rataan posteriornya adalah (32)
8 Raaan poserornya adalah E m x ò (, ) f ( x) m f x m f f m ddm (32) Dalam obseras basanya dgunakan banyak daa klam. Msalkan saja erdr dar grup daa klam dengan masng-masng grup ke unuk seap, 2,..., yang
KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan
KONSEP DASAR Laar belakang Meode Numerk Ilusras masalah numerk Angka sgnfkan Akuras dan Press Pendekaan dan Kesalahan Laar Belakang Meode Numerk Tdak semua permasalahan maemas dapa dselesakan dengan mudah,
Line Transmisi. Oleh: Aris Heri Andriawan ( )
ANALISIS APLIKASI PENJADWALAN UNIT-UNIT PEMBANGKIT PADA SISTEM KELISTRIKAN JAWA-BALI DENGAN MENGGUNAKAN UNIT COMMITMENT, UNIT DECOMMITMENT DAN MODIFIED UNIT DECOMMITMENT Oleh: Ars Her Andrawan (07000)
Bab VIII Aspek Kosmologi Teori Skalar-Vektor-Tensor
Bab VIII Apek Komolog Teor Skalar-Vektor-Tenor VIII. Pendahuluan Kemungknan nvaran Lorentz dlanggar pada energ-energ tngg dalam teor 4- dmen dengan konekuen yang dapat duj (Mattngly dan Vucetch, 005 telah
(Cormen 2002) III PEMBAHASAN. yt : pendapatan rumah tangga pada periode t, dengan yt 0.
5 Vaabel s dsebu vaabel slak enambahan vaabel slak beujuan unuk mengubah peaksamaan yang mengandung anda menjad sebuah pesamaan eaksamaan () bena jka dan hanya jka pesamaan (2) dan peaksamaan (3) bena
BAB 5 ENTROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUNYI
BAB ETROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUYI Model Markov Tersembuny (Hdden Markov Model, MMT) elah banyak daplkaskan dalam berbaga bdang seper pelafalan bahasa (speeh reognon) dan klasfkas (luserng).
Penurunan Syarat Orde Metode Runge-Kutta dengan Deret Butcher
Vol., No., -9, Januar 06 Penurunan Syarat Orde Metode Runge-Kutta dengan Deret Butcer Mutar Abtrak Tulan n membaa aplka deret Butcer dalam penurunan yarat orde metode Runge- Kutta. Penurunan deret Butcer
Perancangan Sistem Kontrol dengan Tanggapan Waktu
erancangan Siem onrol dengan anggapan Waku 4 erancangan Siem onrol dengan anggapan Waku.. endahuluan ada bab ini, akan dibaha mengenai perancangan uau iem konrol ingleinpu-ingle-oupu linier ime-invarian
Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal
Hdden Markov Model Oleh : Frdanza, urul Gusran dan Akmal Dosen Jurusan Maemaka FMIPA Unversas Padjadjaran Jl. Raya Bandung Sumedang Km 2, Janangor, Jawa Bara elp. / Fax : 022 7794696 Absrak Hdden Markov
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL MESIN OKK Gll BCG1-P PADA BAGIAN DRAWING PT VONEX INDONESIA 3.1 Pedahulua Pada Bab II elah djelaska megea eor eor yag dbuuhka uuk meeuka jadwal opmum
PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1
PENDUGAAN SAISIK AREA KECIL DENGAN MEODE EMPIRICAL CONSRAINED AYES Ksmann Jurusan Penddkan Maemaka FMIPA Unversas Neger Yogyakara Absrak Meode emprcal ayes (E merupakan meode yang lebh aplkaf pada pendugaan
Lag: Waktu yang diperlukan timbulnya respons (Y) akibat suatu aksi (X)
Lag: Waku yang diperlukan imbulnya repon ( akiba uau aki ( Conoh: Pengaruh kredi erhadap produki Suplai Uang mempengaruhi ingka inflai eelah beberapa kwaral Hubungan pengeluaran R & D dengan produkifia
BAB III THREE STAGE LEAST SQUARE. Sebagaimana telah disinggung pada bab sebelumnya, salah satu metode
BAB III THREE STAGE LEAST SQUARE Sebagamana elah dsnggung pada bab sebelumnya, salah sau meode penaksran parameer pada persamaan smulan yau meode Three Sage Leas Square (3SLS. Sebelum djelaskan lebh lanju
COMPLETELY RANDOMIZED DESIGN (CRD)
COMPLETELY RANDOMIZED DESIGN (CRD) CRD Tdak ada kea pengelompokan: Lngkungan homogen Bahan homogen (pebedaan danaa expemenal un yang mempeoleh pelakuan yang ama dalam CRD debu ebaga expemenal eo) Ala homogen
Peramalan Penjualan Sepeda Motor Tiap Jenis di Wilayah Surabaya dan Blitar dengan Model ARIMA Box-Jenkins dan Vector Autoregressive (VAR)
JURNAL SAINS DAN SENI POMITS Vol. 3, No., (04) 337-350 (30-98X Prn) D-36 Peramalan Penjualan eda Moor Tap Jens d Wlayah Surabaya dan Blar dengan Model ARIMA Box-Jenkns dan Vecor Auoregressve (VAR) Ade
PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS
PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS Mra Puspasar, Snggh Sapad, Dana Puspasar Absraks PT Ulam Tba Halm merupakan salah sau ndusr mnuman serbuk d Indonesa, dmana
Penggunaan Metode Branch and Bound dan Gomory Cut dalam Menentukan Solusi Integer Linear Programming
JURNAL SAINTIFIK VOL. NO., JANUARI 0 Penggunaan Metode Branch and Bound dan Gomory Cut dalam Menentukan Solu Integer Lnear Programmng Wahyudn Nur, Nurul Mukhlah Abdal Program Stud Matematka FMIPA Unverta
IV. METODOLOGI PENELITIAN
IV. METODOLOGI PENELITIN 4.. Obek Penelan Obek penelan adalah Provns Sulawes Tengah, yang ddasarkan aas beberapa permbangan. Perama, Provns Sulawes Tengah memlk sumberdaya sekor peranan dan ndusr pengolahan
ANaLISIS - TRANSIEN. A B A B A B A B V s V s V s V s. (a) (b) (c) (d) Gambar 1. Proses pemuatan kapasitor
ANaISIS - TANSIEN. Kapasor dalam angkaan D Sebuah kapasor akan ermua bla erhubung ke sumber egangan dc seper yang dperlhakan pada Gambar. Pada Gambar (a), kapasor dak bermuaan yau pla A dan pla B mempunya
Penerapan Statistika Nonparametrik dengan Metode Brown-Mood pada Regresi Linier Berganda
Jurnal EKSPONENSIAL Volume 7, Nomor, Me 6 ISSN 85-789 Penerapan Saska Nonparamerk dengan Meode Brown-Mood pada Regres Lner Berganda Applcaon of Nonparamerc Sascs, wh Brown-Mood Mehod on Mulple Lnear Regresson
Analisis Jalur / Path Analysis
Analss Jalur / Pah Analyss Analss jalur adalah salah sau benuk model SEM yang dak mengandung varable laen. Tenu saja model n lebh sederhana dbandngkan dengan model SEM lengka. Analss jalur sebenarnya meruakan
Analisis Model dan Contoh Numerik
Bab V Analisis Model dan Conoh Numerik Bab V ini membahas analisis model dan conoh numerik. Sub bab V.1 menyajikan analisis model yang erdiri dari analisis model kerusakan produk dan model ongkos garansi.
III. METODE PENELITIAN
26 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penilaian perkembangan kinerja keuangan PT. Goodyear Indonesia Tbk dilakukan dengan maksud unuk mengeahui sejauh mana perkembangan usaha perusahan yang
III METODE PENELITIAN
III METODE PENELITIAN 3.1 Waku dan Tempa Peneliian Peneliian mengenai konribusi pengelolaan huan rakya erhadap pendapaan rumah angga dilaksanakan di Desa Babakanreuma, Kecamaan Sindangagung, Kabupaen Kuningan,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Laar Belakang Masalah Dalam sisem perekonomian suau perusahaan, ingka perumbuhan ekonomi sanga mempengaruhi kemajuan perusahaan pada masa yang akan daang. Pendapaan dan invesasi merupakan
NILAI TOTAL TAK TERATUR TOTAL DARI GABUNGAN TERPISAH GRAF RODA DAN GRAF BUKU SEGITIGA
Jurnal Ilmu Maemaka dan Terapan Desember 015 Volume 9 Nomor Hal. 97 10 NILAI TOTAL TAK TERATUR TOTAL DARI GABUNGAN TERPISAH GRAF RODA DAN GRAF BUKU SEGITIGA R. D. S. Rahangmean 1, M. I. Tlukay, F. Y. Rumlawang,
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Laar Belakang Perumbuhan ekonomi merupakan salah sau ukuran dari hasil pembangunan yang dilaksanakan khususnya dalam bidang ekonomi. Perumbuhan ersebu merupakan rangkuman laju-laju
BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF
BAB III RUNTUN WAKTU MUSIMAN MULTIPLIKATIF Pada bab ini akan dibahas mengenai sifa-sifa dari model runun waku musiman muliplikaif dan pemakaian model ersebu menggunakan meode Box- Jenkins beberapa ahap
BAB 2 LANDASAN TEORI. 2.1 Model Persediaan Model Deterministik
6 BAB LANDASAN TEORI. Model Persedaan.. Model Deermnsk Model Deermnsk adalah model yang menganggap nla-nla parameer elah dkeahu dengan pas. Model n dbedakan menjad dua: a. Deermnsk Sas. D dalam model n
BAB KINEMATIKA GERAK LURUS
BAB KINEMATIKA GERAK LURUS.Pada ekiar ahun 53, eorang ilmuwan Ialia,Taraglia,elah beruaha unuk mempelajari gerakan peluru meriam yang diembakkan. Taraglia melakukan ekperimen dengan menembakkan peluru
Transformasi Laplace Bagian 1
Modul Tranformai aplace Bagian M PENDAHUUAN Prof. S.M. Nababan, Ph.D eode maemaika adalah alah au cabang ilmu maemaika yang mempelajari berbagai meode unuk menyeleaikan maalah-maalah fii yang dimodelkan
PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2007/ 2008 UJIAN SEMESTER GANJIL
PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 27/ 28 UJIAN SEMESTER GANJIL Maa Pelajar Fiika Kela XII IPA Waku 12 meni 1. Hubungan anara jarak () dengan waku () dari
Sudaryatno Sudirham. Analisis Rangkaian Listrik Di Kawasan Waktu
Sudaryano Sudrham nalss Rangkaan Lsrk D Kawasan Waku BB 12 nalss Transen d Kawasan Waku Rangkaan Orde Perama Yang dmaksud dengan analss ransen adalah analss rangkaan yang sedang dalam keadaan peralhan
PENENTUAN EOQ TERHADAP PRODUK AVTUR DI LANUD HUSEIN SASTRANEGARA BANDUNG
INDEPT, Vol., No. 3, Okober 01 ISSN 087 945 PENENTUAN EOQ TERHADAP PRODUK AVTUR DI LANUD HUSEIN SASTRANEGARA BANDUNG Samsul Budaro, ST., MT Dosen Teap Teknk Indusr, Wakl Dekan III akulas Teknk, Unversas
7/23/2013. Kawasan Waktu. Isi Kuliah: Analisis di. Analisis di Kawasan Fasor. Analisis di Kawasan s (Transf. Laplace) di Kawasan Waktu
7// I Kulah: Sudaryano Sudrham nal angkaan Lrk d Kawaan Waku. Pendahuluan. earan Lrk dan Peubah Snyal. Model Snyal. Model Pran. Hukum-Hukum Daar 6. Kadah-Kadah angkaan 7. Teorema angkaan 8. Meoda nal 9.
Jumlah kasus penderita penyakit Demam Berdarah Dengue (DBD) di Kota Surabaya tahun
Baasan Masalah Jumlah kasus pendera penyak Demam Berdarah Dengue (DBD d Koa Surabaya ahun - Varabel Explanaory (Varabel penjelas yang dgunakan dalam penelan adalah varabel Iklm (Curah hujan, Suhu, Kelembaban
MODUL 7 APLIKASI TRANFORMASI LAPLACE
MODUL 7 APLIKASI TRAFORMASI LAPLACE Tranformai Laplace dapa digunaan unu menyeleaian bai peroalan analia maupun perancangan iem. Apliai Tranformai Laplace erebu berganung pada ifa-ifa ranformai Laplace,
UJIAN TENGAH SEMESTER EKONOMETRIKA TIME SERIES (ECEU601302) SEMESTER GASAL
Univeria Indoneia Fakula Ekonomi dan Bini UJIAN TENGAH SEMESTER EKONOMETRIKA TIME SERIES (ECEU601302) SEMESTER GASAL 2017-2018 Hari /gl : Rabu, 18 Okober 2017 Waku : 120 Meni Pengajar : Riyano Sifa : Caaan
BAB 1 PENDAHULUAN. Pertumbuhan ekonomi merupakan salah satu ukuran dari hasil pembangunan yang
BAB 1 PENDAHULUAN 1.1 Laar Belakang Perumbuhan ekonomi merupakan salah sau ukuran dari hasil pembangunan yang dilaksanakan khususnya dalam bidang ekonomi. Perumbuhan ersebu merupakan rangkuman laju perumbuhan
Bab 5 Penaksiran Fungsi Permintaan. Ekonomi Manajerial Manajemen
Bab 5 Penaksiran Fungsi Perminaan 1 Ekonomi Manajerial Manajemen Peranyaan Umum Tenang Perminaan Seberapa besar penerimaan perusahaan akan berubah seelah adanya peningkaan harga? Berapa banyak produk yang
III. METODE PENELITIAN
39 III. METODE PENELITIAN 3.1 Waku dan Meode Peneliian Pada bab sebelumnya elah dibahas bahwa cadangan adalah sejumlah uang yang harus disediakan oleh pihak perusahaan asuransi dalam waku peranggungan
3 Kondisi Fisik Dermaga A I Pelabuhan Palembang
Bab 3 3 Konds Fsk Dermaga A I Pelabuhan Palembang Penanganan Kerusakan Dermaga Sud Kasus Dermaga A I Pelabuhan Palembang 3.1 Pengolahan Daa Pasang Suru 3.1.1 Meode Leas Square Meode n menjelaskan bahwa
Ulangan Bab 3. Pembahasan : Diketahui : s = 600 m t = 2 menit = 120 sekon s. 600 m
Ulangan Bab 3 I. Peranyaan Teori. Seekor cheeah menempuh jarak 6 m dalam waku dua meni. Jika kecepaan cheeah eap, berapakah bearnya kecepaan cheeah erebu? Pembahaan : Dikeahui : = 6 m = meni = ekon 6 m
Kajian Model Markov Waktu Diskrit Untuk Penyebaran Penyakit Menular Pada Model Epidemik SIR
JURAL TEKK POT Vol, o, (0) -6 Kajan odel arkov Waku Dskr Unuk Penyebaran Penyak enular Pada odel Epdemk R Rafqaul Hasanah, Laksm Pra Wardhan, uhud Wahyud Jurusan aemaka, Fakulas PA, nsu Teknolog epuluh
III. METODE PENELITIAN. Konsep dasar dan definisi operasional merupakan pengertian dan petunjuk yang
III. METODE PENELITIAN A. Konsep Dasar dan Definisi Operasional Konsep dasar dan definisi operasional merupakan pengerian dan peunjuk yang digunakan unuk menggambarkan kejadian, keadaan, kelompok, aau
PEMERINTAH KABUPATEN PACITAN PERATURAN DAERAH KABUPATEN PACITAN : NOMOR 18 TAHUN 2001
I I PEMERINTAH KABUPATEN PACITAN PERATURAN DAERAH KABUPATEN PACITAN : NOMOR 18 TAHUN 2001 \ TENTANG PEMBERDAYAAN, PELESTARIAN DAN PENGEMBANGAN ADAT ISTIADAT DAN LEMBAGA ADAT DENGAN RAHMAT TAHUN YANG MAHA
BAB IV SISTEM TUNGGU (DELAY SYSTEM)
38 Da eayaa Traf BB IV SISTM TUGGU (DLY SYSTM) Kedaaga ae buffer erver µ Keberagaa ae Gambar 4. : model em uggu ada em uggu, aggla yag daag ada aa emua bu, aggla erebu meuggu ama ada alura/eralaa yag beba
BAB I PENDAHULUAN. universal, disemua negara tanpa memandang ukuran dan tingkat. kompleks karena pendekatan pembangunan sangat menekankan pada
BAB I PENDAHULUAN A. Laar Belakang Disparias pembangunan ekonomi anar daerah merupakan fenomena universal, disemua negara anpa memandang ukuran dan ingka pembangunannya. Disparias pembangunan merupakan
BAB 2 LANDASAN TEORI
BAB LANDAAN TEORI. Tnjauan Pusaka.. Uj Keseragaman Daa Tujuan uama pengukuran uj keseragaman daa adalah unuk mendapakan da yang seragam. Kedak seragaman daa dapa daang anpa dsadar, maka dperlukan suau
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Tujuan Peneltan Peneltan n bertujuan untuk mengetahu Pembelajaran Kooperatf Tpe Student Team Achevement Dvon (STAD) dengan Meda Komk Lebh Efektf darpada Pembelajaran dengan
Oleh : Debrina Puspita Andriani Teknik Industri Universitas Brawijaya /
4 Oleh : Debrina Puspia Andriani Teknik Indusri Universias Brawijaya e-mail : [email protected] / [email protected] www.debrina.lecure.ub.ac.id O. Dasar perhiungan depresiasi 2. Meode-meode depresiasi.
Tentukan invers transformasi dari hasil kali kedua fungsi dalam kawasan frekuensi berikut :
Tenuan nver ranforma ar hal al eua fung alam awaan freuen beru : Pen: F () an F () Inver ranforma Laplace mang-mang fung erebu enu aja aalah f () u() an f () e - u() engan menggunaan negral onvolu ang
Hidraulika Komputasi
Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.
PERENCANAAN PERSEDIAAN DAN PENGENDALIAN BAHAN BAKU DI PABRIK PRODUK BETON PT WIJAYA KARYA BETON, BOGOR
B-5-1 PERENCANAAN PERSEDIAAN DAN PENGENDALIAN BAHAN BAKU DI PABRIK PRODUK BETON PT WIJAYA KARYA BETON, BOGOR Wsnu Bud Sunaryo, Haryono ITS Surabaya ABSTRAK Dalam duna konsruks saa n pemakaan produk beon
IV. METODE PENELITIAN
IV. METODE PENELITIAN 4.1. Lokasi dan Waku Peneliian Peneliian ini dilakukan di Dafarm, yaiu uni usaha peernakan Darul Fallah yang erleak di Kecamaan Ciampea, Kabupaen Bogor, Jawa Bara. Pemilihan lokasi
III. METODE PENELITIAN. Usahatani belimbing karangsari adalah kegiatan menanam dan mengelola. utama penerimaan usaha yang dilakukan oleh petani.
III. METODE PENELITIAN A. Konsep Dasar dan Definisi Operasional Usahaani belimbing karangsari adalah kegiaan menanam dan mengelola anaman belimbing karangsari unuk menghasilkan produksi, sebagai sumber
Marzuki Program Studi Pendidikan Matematika FKIP Universitas Almuslim ABSTRAK
PERBANDINGAN PRETAI IWA ANTARA PEMBELAJARAN PROBLEM OLVING DENGAN METODE KONVENONAL PADA DALIL PHYTAGORA TERHADAP IWA KELA VIII MP NEGERI PEUANGAN ELATAN KABUPATEN BIREUEN Marzuk Program tud Penddkan Matematka
Suatu Catatan Matematika Model Ekonomi Diamond
Vol. 5, No.2, 58-65, Januari 2009 Suau aaan Maemaika Model Ekonomi Diamond Jeffry Kusuma Absrak Model maemaika diberikan unuk menjelaskan fenomena dalam dunia ekonomi makro seperi modal/kapial, enaga kerja,
Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang
Fska Modern Persaaan Schroodnger dan Fngs Gelobang Apa Persaaan unuk Gelobang Maer? De Brogle eberkan posula bahwa seap parkel elk hubungan: h/ p Golobang aer ala n dkonfras oleh percobaan dfraks elekron,
DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.
DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:
Bab 9 Transformasi Laplace
Meode Maemaika Aronomi- Bab 9 Tranformai aplace 9-. Definii Tranformai aplace Mialkan f() uau fungi real dengan variable dan >. Tranformai aplace didefiniikan ebagai: T f ( ) F( ) lim f ( ) e d f ( ) e
TRANSMISI GELOMBANG MELALUI STRUKTUR BAWAH AIR BERBAHAN GEOTEXTILE TUBE SEBAGAI PELINDUNG PANTAI PASIR BUATAN
Jurnal Re dan Teknolog Kelauan (JRTK) Volume 10, Nomor, Jul - Deember 01 TRANSMISI GELOMBANG MELALUI STRUKTUR BAWA AIR BERBAAN GEOTEXTILE TUBE SEBAGAI PELINDUNG PANTAI PASIR BUATAN Danel Bara Padang Allo
BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV
BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV 4. Proses Sokask Dalam kehdupa yaa, sergkal orag g megama keerkaa sau kejada dega kejada la dalam suau erval waku ereu, yag merupaka suau barsa kejada.
\ DANA ALOKASI DESA DENGAN RAHMAT TUHAN YANG MAHA ESA
y BUPAT PACTAN PERATURAN BUPAT PACTAN : NOMOR 55" TAHUN 20 ; TENTANG \ DANA ALOKAS DESA DENGAN RAHMAT TUHAN YANG MAHA ESA BUPAT PACTAN, Menmbang : a. bahwa dalam rangka penngkaan penyelenggaraan pemernahan,
Bab II TINJAUAN PUSTAKA II.1 aransi II.1.1 Klasifikasi Garansi
Bab II TINJAUAN USTAKA ada bab n aan dbaha onep eor dan meode yang yang dgunaan dalam pengembangan model raeg layanan garan unu produ dengan pola penggunaan nermen Konep dan eor erebu erdr aa Sub bab II
BAHAN AJAR GERAK LURUS KELAS X/ SEMESTER 1 OLEH : LIUS HERMANSYAH,
BAHAN AJAR GERAK LURUS KELAS X/ SEMESTER 1 OLEH : LIUS HERMANSYAH, S.Si NIP. 198308202011011005 SMA NEGERI 9 BATANGHARI 2013 I. JUDUL MATERI : GERAK LURUS II. INDIKATOR : 1. Menganalisis besaran-besaran
Peramalan Penjualan Sepeda Motor di Jawa Timur dengan Menggunakan Model Dinamis
JURNAL SAINS DAN NI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Prin) D-224 Peramalan Penjualan Sepeda Moor di Jawa Timur dengan Menggunakan Model Dinamis Desy Musika dan Seiawan Jurusan Saisika,
PENERAPAN METODE TRIPLE EXPONENTIAL SMOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUSAHAAN MEBEL SINAR JEPARA TANJUNGANOM NGANJUK.
PENERAPAN METODE TRIPLE EXPONENTIAL MOOTHING UNTUK MENGETAHUI JUMLAH PEMBELI BARANG PADA PERUAHAAN MEBEL INAR JEPARA TANJUNGANOM NGANJUK. ii Rukayah*), Achmad yaichu**) ABTRAK Peneliian ini berujuan unuk
ULANGAN IPA BAB I GERAK PADA MAKHLUK HIDUP DAN BENDA
Nama No Aben Kela ULANGAN IPA BAB I GERAK PADA MAKHLUK HIDUP DAN BENDA Romawi I 1. Gerak umbuhan yang dipengaruhi oleh rangangan dari dalam umbuhan iu endiri diebu... a. Endonom c. Higrokopi b. Eionom
Jurnal Ilmiah Widya Teknik Vol No ISSN
Jurnal Ilmah Wdya Teknk Vol. 13 --- No. 1 --- 2014 IN 1412-7350 PENERAPAN MODEL OPTIMAI LINE BALANCING DAN GENETIC ALGORITHM (TUDI KAU: PT. KARYA MEKAR DEWATAMALI) Andy Lanto, Dan Retno ar Dew*, Dn Endah
FISIKA. Kelas X GLB DAN GLBB K13 A. GERAK LURUS BERATURAN (GLB)
K3 Kelas X FISIKA GLB DAN GLBB TUJUAN PEMBELAJARAN Seelah mempelajari maeri ini, kamu diharapkan memiliki kemampuan beriku.. Memahami konsep gerak lurus berauran dan gerak lurus berubah berauran.. Menganalisis
