Metode Beda Hingga pada Persamaan Gelombang
|
|
|
- Sugiarto Atmadja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Metode Beda Hingga pada Persamaan Gelombang Tulisan ini diadaptasi dari buku PDP yang disusun oleh Dr. Sri Redeki Pudaprasetia M. Jamhuri UIN Malang July 2, 2013 M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
2 Metode Beda Hingga Perhatikan persamaan gelombang dengan syarat awal u tt c 2 u xx = 0 1 u x, 0 = φ x, dan u t x, 0 = ψ x 2 Persamaan beda skema CTCS central time central space untuk persamaan 1 adalah sebagai berikut 2u n + u n 1 t 2 c 2 un +1 2un + un 1 x 2 = 0 3 atau dapat dituliskan sebagai dengan = S u+1 n + un S u n u n 1 4 S = c2 t 2 x 2 Perhatikan bahwa persamaan beda 4 memerlukan dua baris syarat awal, sementara permasalahan kita hanya mempunyai syarat awal 2, yang berarti u 0, untuk = 1,..., Mx. Untuk memperoleh u 1 terapkan beda pusat dengan akurasi O t 2 pada u t 0, yaitu u 1 u 1 2 t = ψ 5 M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
3 Persamaan 4 untuk n = 0 menghasilkan u 1 = S u u S u 0 u 1 dan karena maka diperoleh atau u 1 u 1 = 2 tψ u 1 = S u u S u tψ u 1 u 1 = S 2 u u S u 0 + tψ 6 Berikutnya, substitusikan kondisi u 0 = φ pada persamaan 6 sehingga diperoleh u 1 = S 2 φ φ S φ 0 + tψ 7 Jadi, persamaan beda 4 dapat diterapkan dengan menggunakan u 0 7 sebagai nilai awal untuk dua baris pertama. = φ dan persamaan M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
4 Syarat Kestabilan Syarat kestabilan dari persamaan beda 4 dapat dicari dengan cara mensubstitusikan u n = ρ n e ia kedalam persamaan tersebut, yaitu ρ n+1 e ia = S ρ n e ia+1 + ρ n e ia S ρ n e ia ρ n 1 e ia selanutnya bagi persamaan diatas dengan ρ n e ia, sehingga diperoleh ρ = S e ia + e ia S ρ 1 8 Karena e ±ia = cos a ± i sin a, maka persamaan 8 dapat ditulis sebagai atau ρ = S [cos a + i sin a] + [cos a i sin a] S ρ 1 ρ 2 = [2S cos a 1 + 2] ρ 1 Misalkan S cos a 1 = p, maka diperoleh sehingga akar-akarnya adalah ρ 2 [2S cos a 1 + 2] ρ + 1 = 0 9 ρ 2 2p + 2 ρ + 1 = 0 ρ 1 = p p 2 + 2p dan ρ 2 = p + 1 p 2 + 2p M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
5 Nilai dari ρ 1 dan ρ 2 terbagi menadi tiga kasus yaitu: 1 Jika p 2 + 2p > 0 dan p < 2, diperoleh ρ 1 dan ρ 2 bernilai riil dan salah satu diantaranya bernilai < 1, adi skema tidak stabil. 2 Jika p 2 + 2p < 0 dan 2 < p 0, diperoleh ρ 1 dan ρ 2 ρ 1,2 = p + 1 ± i p 2 2p merupakan bilangan kompleks dengan ρ 1,2 = 1. Jadi ρ 1,2 = cos θ + i sin θ. 3 Jika p = 2, maka akan diperoleh ρ = 1. Dengan demikian, skema beda hingga stabil ika p [ 2, 0], a, dan 2 S cos a x 1 0, a dan karena 2 cos a x 1 0, a, maka diperoleh atau 2 2S 0 0 < S 1 Jasi syarat kestabilan untuk persamaan gelombang skema CTCS adalah S = c 2 t2 x 2 1 M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
6 Kekonsistenan Perhatikan uraian deret Taylor berikut: u n±1 = u n ± t u t n t2 u tt n ± 1 6 t3 u ttt n t4 u tttt n + 10 u n ±1 = u n ± x u x n x2 u xx n ± 1 6 x3 u xxx n x4 u xxxx n + 11 Dari persamaan 10 dan 11 diperoleh u+1 n + un 1 = 2 u n t2 u xx n x4 u xxxx n + + u n 1 = 2 u n t2 u tt n x4 u tttt n Substitusikan persamaan 12 dan 13 ke dalam persamaan beda 4 dan dengan sedikit manipulasi alabar di peroleh 2u n + t2 u tt n t4 u tttt n 2Sun S x2 u xx n S 2 24 x4 u xxxx n = 2 1 S u n 14 Persamaan 14 diatas dapat disederhanakan menadi t 2 u tt c 2 u xx n + 2 t 4 u tttt S x 4 u xxxx n 24 M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
7 Skema diatas konsisten, Selanutnya suku pertama truncation terms-nya adalah 2 t 4 u tttt S x 4 u xxxx 4! = 2 4! t 4 c 2 u xxxx S x 4 u xxxx = 2 4! x4 S 2 S u xxxx yang berupa suku difusi, dan akan bernilai nol ika dan hanya ika S 2 S = 0 atau S = c 2 t2 x 2 = 1 M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
8 Simulasi Perhatikan persamaan gelombang u tt = u xx, untuk 0 x 10, dengan syarat batas u x 0, t = 0 dan u 10, t = 0, dan syarat awal u t x, 0 = 0 dan { 2 u x, 0 = 16 x 32 x 7 2, 3 x 7 0, untuk x lainnya Terapkan skema beda hingga orde-2 untuk persamaan gelombang. Gunakan pula hampiran orde-2 untuk menaksir u x, t, uga untuk syarat batas kiri. Jika dipilih x = 1, diperoleh suatu hampiran bagi simpangan awal berikut u x, 0 = Hitung u x, t untuk beberapa selang waktu hand-calculation, pilih t = 1. Apa yang anda lihat pada batas? Implementasikan dan simulasikan perpecahan gundukan awal sampai gelombang pecahannya menabrak batas kanan dan kiri, kemudian berbalik. Amatilah! Kerakan soal c namun simpangan awal nol, dan kecepatan awal { 1, x 5 1 u t x, 0 = 0, x lainnya M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
9 Jawaban Soal 1.a Skema beda hingga orde-2 untuk persamaan gelombang diatas adalah = S u+1 n + un 1 dengan S u n u n 1 15 S = t2 x 2 Hampiran orde-2 untuk syarat awal u t x, 0 = 0 adalah u 1 u 1 = 0 t u 1 = u 1 16 Hampiran orde-2 untuk syarat batas kiri u x 0, t = 0 adalah u1 n un 1 = 0 2 t u 1 n = un 1 17 Jawaban Soal 1.b untuk x = t = 1, maka S = 1 dan persamaan 15, menadi = u n +1 + un 1 un 1 18 untuk = 0, dan n = 0 maka u 0 1 = u0 1 dan u 1 0 = u substitusikan 19 ke persamaan 18 untuk n = 0, dan = 0 diperoleh u 1 0 = u untuk n = 0, dan = 1 M x 1, berlaku u 1 = u u 1 u 1 dengan mensubstitusikan 16 pada persamaan diatas diperoleh u 1 = u u M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
10 Jawaban soal 1.b untuk n = 1 N t dan = 0, berlaku u0 n+1 = u1 n + un 1 un 1 0 dan dengan mensubstitusikan 17 pada persamaan diatas diperoleh 0 = 2u n 1 un Dengan menggunakan kondisi awal dan kondisi batas 20, 21, dan 22 diperoleh hasil sebagai berikut: t/x M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
11 Jawaban Soal 1.c Persamaan beda untuk persamaan gelombang u tt = u xx adalah = S u+1 n + un S u n u n 1, S = t2 x 2 23 untuk = 0, dan n = 0, maka persamaan 23 menadi u0 1 = S u1 0 + u S u 0 0 u substitusikan persamaan 16 untuk = 0, dan persamaan 17 untuk n = 0 pada persamaan 24, diperoleh atau u 1 0 = S u u S u 0 0 u 1 0 2u 1 0 = 2Su S u0 0 u 1 0 = Su S u untuk n = 0 dan = 1 M x 1 persamaan 23 menadi u 1 = S u u S u 0 u 1 dengan menggunakan 16, persamaan 26 menadi u 1 = S 2 u u S u 0 untuk = 0 dan n = 2 N t persamaan 23 menadi u0 n+1 = S u1 n + un S u n 0 un dengan menggunakan 17, persamaan 28 menadi u0 n+1 = 2Su1 n S un 0 un M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
12 Simulasi Soal 1.c Hasil Simulai M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
13 Simulasi Soal 1.d Hasil Simulasi M. Jamhuri UIN Malang Metode Beda Hingga pada Persamaan Gelombang July 2, / 13
Simulasi Persamaan Gelombang
December 15, 213 Soal 1 Perhatikan persamaan gelombang u tt = u xx, untuk x 1, dengan syarat batas u x (,t) = dan u (1,t) =, dan syarat awal u t (x,) = dan { 2 u (x,) = 16 (x 3) 2 (x 7) 2, 3 x 7, untuk
Reflektor Gelombang 1 balok
Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor
Soal Ujian 2 Persamaan Differensial Parsial
Soal Uian 2 Persamaan Differensial Parsial M. Jamhuri April 15, 2013 1 Buktikan bahwa ux,t) = πˆ 1 x e θ2 dθ merupakan solusi persamaan difusi u t = u xx untuk setiap x R,t > 0. Untuk x 0 tunukkan bahwa
Persamaan Difusi. Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M. Jamhuri. April 7, UIN Malang. M. Jamhuri Persamaan Difusi
Persamaan Difusi Penurunan, Solusi Analitik, Solusi Numerik (Beda Hingga, RBF) M Jamhuri UIN Malang April 7, 2013 Penurunan Persamaan Difusi Misalkan u(x, t) menyatakan konsentrasi dari zat pada posisi
Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)
Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik
Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)
Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan
Solusi Numerik Persamaan Transport
Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
MATERI PERKULIAHAN. Gambar 1. Potensial tangga
MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya
1 Pendahuluan pdp 2. 4 Persamaan Difusi Prinsip Maksimum Fungsi Green Metoda separasi variable, recall...
Contents 1 Pendahuluan pdp 2 2 Persamaan Type Hiperbolik 6 2.1 Persamaan Transport.............................. 6 2.1.1 Metoda karakteristik........................... 7 2.1.2 Koefisien tak konstan..........................
BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.
BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi
Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan
PDP linear orde 2 Agus Yodi Gunawan
PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan
UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK
UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +
Barisan dan Deret Agus Yodi Gunawan
Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk
BAB IV SIMULASI NUMERIK
BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah
BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah
III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3
8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.
I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.
I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk
BAB 1. PENDAHULUAN KALKULUS
BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan
LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U
1 BAB 4 ANALISIS DAN BAHASAN
1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan
BAB 3. LIMIT DAN KEKONTINUAN FUNGSI
BAB. LIMIT DAN KEKONTINUAN FUNGSI A. Definisi it Sebelum mendefinisikan it, terlebih dahulu perhatikan gambar berikut! y L + ε ε ε f() f() - L L f() - L f() L - ε c - δ c c + δ c- -c δ δ Gambar. Dari gambar
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar
Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010
Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk
3. Kekonvergenan Deret Fourier
3. Kekonvergenan Deret Fourier Sekarang kita akan membahas kekonvergenan deret Fourier, khususnya kekonvergenan titik demi titik. Melalui Contoh 2 yang dibahas pada bab sebelumnya kita mengetahui bahwa
DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG
h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus
Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial
Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, [email protected] Abstract Artikel ini membahas tentang salah satu
MA1201 KALKULUS 2A (Kelas 10) Bab 8: Bentuk Tak Tentu d
MA1201 KALKULUS 2A (Kelas 10) Bab 8: dan Do maths and you see the world ? Pengantar Bentuk tak tentu? Bentuk apa? Bentuk tak tentu yang dimaksud adalah bentuk limit dengan nilai seolah-olah : 0 0 ; ; 0
MA1201 KALKULUS 2A Do maths and you see the world
Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis
Galat & Analisisnya. FTI-Universitas Yarsi
BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian
7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z
MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan
LAMPIRAN I. Alfabet Yunani
LAMPIRAN I Alfabet Yunani Alha Α Nu Ν Beta Β Xi Ξ Gamma Γ Omicron Ο Delta Δ Pi Π Esilon Ε Rho Ρ Zeta Ζ Sigma Σ Eta Η Tau Τ Theta Θ Usilon Υ Iota Ι hi Φ, Kaa Κ Chi Χ Lambda Λ Psi Ψ Mu Μ Omega Ω LAMPIRAN
I. Sistem Persamaan Diferensial Linier Orde 1 (Review)
I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu
Hendra Gunawan. 26 Februari 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan
II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )
II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan
Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit
Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan
Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:
Sidang Tugas Akhir - Juli 2013
Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD
LIMIT KED. Perhatikan fungsi di bawah ini:
LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat
BAB 4 ANALISIS DAN BAHASAN
BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William
BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar
Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian
Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR
Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205
Bab I. Bilangan Kompleks
Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan
PENYELESAIAN NUMERIK PERSAMAAN GELOMBANG AIR DANGKAL LINIER 1D MENGGUNAKAN METODE VOLUME HINGGA SKRIPSI OLEH LIA IZZATUN NIKMAH NIM.
PENYELESAIAN NUMERIK PERSAMAAN GELOMBANG AIR DANGKAL LINIER 1D MENGGUNAKAN METODE VOLUME HINGGA SKRIPSI OLEH LIA IZZATUN NIKMAH NIM. 11610009 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS
matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran
Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan
Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal
Matematika LAPORAN AKHIR PENELITIAN PENGUATAN PROGRAM STUDI Simulasi Perambatan Tsunami menggunakan Persamaan Gelombang Air-Dangkal Oleh: Mohammad Jamhuri, M.Si NIP. 1981050 00501 1004 FAKULTAS SAINS DAN
Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!
Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),
BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.
BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT
29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen
BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi
BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan
Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal
Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan
PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN
PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN IRMA ISLAMIYAH 1105 100 056 FISIKA FMIPA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PENDAHULUAN LATAR BELAKANG
LIMIT DAN KEKONTINUAN
LIMIT DAN KEKONTINUAN 10.1 PENDAHULUAN Sebelum mambahas it fungsi di suatu titik terlebih dahulu kita akan mengamati perilaku suatu fungsi bila peubahnya mendekati suatu bilangan ril c tertentu. Misal
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan
Menyelesaikan Persamaan Kuadrat Bentuk umum : ax² + bx + c = 0 x variabel; a,b,c konstanta ; a 0 Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut
PD Orde 2 Lecture 3. Rudy Dikairono
PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x
Pengantar Metode Perturbasi Bab 1. Pendahuluan
Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait
BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan
BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,
BAB IV REDUKSI BIAS PADA PENDUGAAN
BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan
Deret Taylor. dengan radius kekonvergenan positif. Maka, dengan menggunakan teorema turunan deret pangkat, (x a) + f 00 (a) 2! (x a) 2 + f 000 (a) 3!
oki neswan (fmipa-itb) Deret Taylor Sebelumnya kita telah melihat bagaimana sebuah deret pangkat membangkitkan sebuah fungsi dengan domain merupakan interval kekonvergenan deret pangat tersebut. Sekarang
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas
Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk
matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA
K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan
BAB IV PROSES BIRTH-DEATH DAN APLIKASINYA DALAM SISTEM ANTRIAN. Kebanyakan sistem antrian dimodelkan menggunakan interarrival times dan
BAB IV PROSES BIRTH-DEATH DAN APIKASINYA DAAM SISTEM ANTRIAN 4. Distribusi Eksponensial Dalam Proses Birth-Death Kebanyakan sistem antrian dimodelkan menggunakan interarrival times dan service times berdistribusi
Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier
Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis.
2. Sinyal Waktu-Diskret dan Sistemnya
2.1 Sinyal Waktu-Diskret Sinyal waku diskret x(n) : 2. Sinyal Waktu-Diskret dan Sistemnya Sinyal waktu diskret didefinisikan untuk setiap nilai n integer untuk - < n
Stabilitas Sistem. Nuryono S.W., S.T.,M.Eng. Dasar Sistem Kendali 1
Stabilitas Sistem Nuryono S.W., S.T.,M.Eng. Dasar Sistem Kendali 1 Definisi Kestabilan Kestabilan sebuah sistem ditentukan oleh tanggapannya terhadap masukan atau gangguan. Secara naluriah, sistem yang
MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen
MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut
BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK
BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas
Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2)
FI Mekanika B Sem. 7- Pekan #3 Osilasi Persamaan diferensial linear Misal kia memiliki sebuah fungsi berganung waku (. Persamaan diferensial linear dalam adalah persamaan yang mengandung variabel dan urunannya
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON
SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,
Karena deret tersebut konvergen pada garis luarnya, kita dapat menukar orde integrasi dan penjumlahan pada ruas kanan.
Transformasi- 3. Invers Transformasi- Formasi inversi untuk memperoleh dari x(n) dari X() dapat diperoleh menggunakan teorema integral Cauchy yang merupakan teorema penting dalam variabel kompleks. Transformasi-
Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi
JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah
B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)
1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat
Husna Arifah,M.Sc : Persamaan Bessel: Fungsi-fungsi Besel jenis Pertama
Bentuk umum PD Bessel : x 2 y"+xy' +(x 2 υ 2 )y =...() Kita asumsikan bahwa parameter υ dalam () adalah bilangan riil dan tak negatif. Penyelesaian PD mempunyai bentuk : y(x) = x r m = a m x m = a m xm
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
TEOREMA SISA 1. Nilai Sukubanyak Tugas 1
TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai
Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma
Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi
Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14
Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan
a b c d e nol di belakang pada representasi desimalnya adalah... a b c d e. 40.
Soal Babak Penyisihan OMITS 0 Soal Pilihan Ganda. Banyaknya pasangan bilangan bulat non negatif O, M, I, T, S yang memenuhi : O + M + I + T + S = Dimana O, M 4, I 5, T 6, dan S 7, adalah... a. 80 b. 80
Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai
Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Pada bab ini sistem persamaan (3.3.9-10) akan diselesaikan secara numerik dengan menggunakan metoda beda hingga. Kemudian simulasi numerik
BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang
BAB II LANDASAN TEORI Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang akan digunakan sebagi landasan pembahasan untuk bab III. Materi yang akan diuraikan antara lain persamaan diferensial,
PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH
PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p
Fungsi Elementer (Bagian Kedua)
Fungsi Elementer (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemuan Minggu IX) Outline 1 Fungsi Hiperbolik 2 sin(iz) =
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Dalam bab ini akan dikemukakan teori-teori yang mendukung pembahasan penyelesaian persamaan diferensial linier tak homogen dengan menggunakan metode fungsi green antara lain: persamaan
BAB II TINJAUAN PUSTAKA
7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan
BAB V. PERTIDAKSAMAAN
BAB V. PERTIDAKSAMAAN Pengertian: Pertidaksamaan adalah kalimat terbuka dimana ruas kiri dan kanannya dihubungkan dengan tanda pertidaksamaan > (lebih dari), < (kurang dari), (lebih besar dari dan sama
Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka
Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com
SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan
