BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dikemukakan teori-teori yang mendukung pembahasan penyelesaian persamaan diferensial linier tak homogen dengan menggunakan metode fungsi green antara lain: persamaan diferensial, orde dan derajat suatu persamaan diferensial, persamaan diferensial linear, persamaan diferensial linear homogen dengan koefisien konstan, persamaan diferensial linier orde-n tak homogen dengan koefisien konstan,determinan wronski, selesaian khusus persamaan tak homogen dengan metode variasi parameter, dan sistem fisis persamaan osilasi harmonik teredam 2.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat turunan dari satu (atau beberapa) fungsi yang tidak diketahui. Ada dua macam persamaan diferensial, yaitu: a. Persamaan diferensial biasa yaitu persamaan dimana fungsi yang belum diketahui hanya memuat satu variabel bebas saja. Contoh 1. dddd dddd = xx + 6, (dimana hanya mengandung satu variabel bebas yaitu xx) 2. dd 2 yy ddxx dddd dddd + 2yy = 0 3. xxxx + yy = 3 4. yy + 2(yy ) 2 + yy = cccccccc b. Persamaan diferensial parsial yaitu persamaan diferensial dimana fungsi yang belum diketahui memuat dua atau lebih variabel bebas. Contoh: 1. = zz + xx

2 2.. 2 zz xx zz yy 2 = xx2 yy 2.2 Orde dan Derajat Suatu Persamaan Diferensial Orde persamaan diferensial adalah tingkat tertinggi turunan yang timbul. Sedangkan derajat persamaan diferensial dapat ditulis sebagai polynomial dalam turunan, adalah derajat turunan tingkat tertinggi yang terjadi. Contoh: 1. dddd dddd = xx + 6 (merupakan persamaan diferensial biasa orde 1 derajat 1). 2. dd2 yy + 3 dddd + 2yy = 0 (merupakan persamaan diferensial biasa orde 2 derajat 1). ddxx 2 dddd 3. xxxx + yy = 3 (merupakan persamaan diferensial biasa orde 1 derajat 1). 4. yy + 2 yy 2 + yy = cccccccc (merupakan persamaan diferensial biasa orde 3 derajat 1). 5. (yy ) 2 + (yy ) 2 + 3yy = xx 2 (merupakan persamaan diferensial biasa orde 2 derajat 2). 6. = zz + xx (merupakan persamaan diferensial parsial orde 1 derajat 1). 7. zz2 xx 2 + zz2 yy 2 = xx2 + yy (merupakan persamaan diferensial parsial orde 2 derajat 1). 2.3 Persamaan Diferensial Linier Sebuah persamaan diferensial termasuk persamaan diferensial linier jika memenuhi dua hal berikut: 1. Variabel-variabel terikat dan turunannya tertinggi berpangkat 1 2. Tidak mengandung bentuk perkalian antara sebuah variabel terikat dengan variabel terikat lainnya, atau turunan yang satu dengan turunan yang lainnya, atau variabel terikat dengan sebuah turunan. Jadi istilah linier berkaitan dengan kenyataan bahwa tiap suku dalam persamaan diferensial itu, peubah-peubah y, y',, y(n) berderajat 1 atau nol. Contoh: 1. xxxx + yy = 3 2. yy + 2 yy 2 + yy = xx jadi bentuk umum persamaan diferensial linier orde- n adalah aa 0 (xx)yy nn + aa 1 (xx)yy (nn 1) + + aa nn 1 (xx)yy + aa nn (xx)yy = ff(xx) (2.3)

3 keterangan: Jika ff(xx) = 0, maka persamaan (2.3.1) disebut persamaan diferensial linier homogeny orde nn Jika ff(xx) 0, maka persamaan (2.3.1) disebut persamaan diferensial linier non homogen orde nn. jika semua koefisien aa 0 (xx), aa 1 (xx),, aa nn (xx) adalah tetap, maka persamaan (2.3.1) disebut persamaan diferensial linier dengan koefisien konstan. jika semua koefisien aa 0 (xx), aa 1 (xx),, aa nn (xx) adalah berupa fungsi, maka persamaan (2.3.1) disebut persamaan diferensial linier dengan koefisien variabel (peubah). 2.4 Persamaan Diferensial Linear Homogen dengan Koefisien Konstan Bentuk umum persamaan diferensial linear homogen dengan koefisien konstan: aa 0 yy nn + aa 1 yy (nn 1) + + aa nn 1 yy + aa nn yy = 0 (2.4.1) dimana aa 0, aa 1,, aa nn adalah konstanta. Untuk menentukan selesaiannya yaitu dengan mensubstitusi y = e tx, kemudian menentukan bilangan tetap t sehingga e tx sehingga persamaan (2.4.1) karena y = e tx, y = t e tx, y =t 2 e tx dan seterusnya hingga y n =t n e tx. Bila disubstitusikan ke persamaan (2.4.1) akan didapatkan suatu persamaan dalam t, yaitu: ee tttt (aa 0 tt nn + aa 1 tt nn 1 + aa 2 tt nn aa nn ) = 0 (2.4.2) karena e tx 0, maka (aa 0 tt nn + aa 1 tt nn 1 + aa 2 tt nn aa nn ) = 0 (2.4.3) Persamaan (2.4.3) tersebut disebut persamaan karakteristik dari persamaan diferensial (2.4.1) dan akar-akarnya disebut akar-akar karakteristik. Ada tiga kemungkinan selesaian yang bebas linier dari persamaan (2.4.1), yaitu: 1. Bila akar-akarnya real dan berlainan, maka selesaian bebas liniernya yaitu: ee tt1xx, ee tt2xx,, ee tt nn xx 2. Bila akar-akarnya real dan sama, maka selesaian bebas liniernya yaitu: ee tttt, xxee tttt,, xx nn 1 ee tttt 3. Bila akar-akarnya kompleks, maka selesaian bebas liniernya yaitu:ee (aa bbbb )xx atau ee aaaa (cos bbbb + sin bbbb) 2.5 Persamaan Diferensial Linier Orde-n Tak Homogen Dengan Koefisien Konstan

4 Bentuk umum persamaan diferensial tak homogeny orde-n adalah sebagai berikut : AA nn yy nn + AA nn 1 yy nn 1 + AA nn 2 yy nn AA 1 yy + AA 0 yy = rr(xx) (2.5.1) Solusi umum yy(xx) akan didapatkan bila solusi umum yy h xx dari Persamaan Diferensial Homogen diketahui, dimana bentuk umum persamaan diferensial homogenya orde-n adalah sebagai berikut : AA nn yy nn + AA nn 1 yy nn 1 + AA nn 2 yy nn AA 1 yy + AA 0 yy = 0 (2.5.2) Kemudian yy(xx) dibentuk dengan penambahan yy h xx sembarang solusi yy termasuk konstanta tak tetapnya. Sehingga, yy(xx) = yy h (xx) + yy pp (xx) (2.5.3) Dalam hal ini kita membahas penyelesaian untuk mendapatkan persamaan partikulirnya dengan melalui metode fungsi green dan dengan melalui metode koefisien tak tentu. 2.6 Determinan Wronski Misalkan ff 1, ff 2,, ff nn kumpulan n buah fungsi yang semuanya dan turunanturunannya sampai dengan turunan yang ke n-1kontinyu pada selang a x b. Wronski dari ff 1, ff 2,, ff nn dihitung pada x dinyatakan oleh WW(ff 1, ff 2,, ff nn ; xx) dan ditentukan sebagai determinan WW(ff 1, ff 2,, ff nn ; xx) = ff 1 ff 2 ff nn ff 1 ff 2 ff nn ff 1 ff 2 ff nn nn 1 ff nn ff 1 nn 1 ff 2 nn 1 (2.6.1) tiap fungsi yang muncul dalam determinan ini dihitung pada x. Contoh Diketahuiff 1 (xx) = xx 2 dan ff 2 (xx) = cos xx, cari WW(ff 1, ff 2 ; xx)

5 Penyelesaian: Dari defenisi di atas dan dari fungsi-fungsi yang telah diketahui, maka dapat dihitung: WW(xx 2, cos xx; xx) = xx2 cos xx 2xx sin xx = xx2 sin xx 2xx cos xx Misalkan bahwa yy 1, yy 2,, yy nn merupakan n buah penyelesaian persamaan diferensial (2.4.1). Misalkan juga bahwa fungsi-fungsi tersebut bebas linier pada selang defenisi persamaan diferensial ini. Dikatakan bahwa fungsi-fungsi itu membentuk himpunan fundamental (atau sistem fundamental) penyelesaian persamaan diferensial tersebut. Sebagai contoh fungsi cos xx dan fungsi sin xx merupakan suatu himpunan fundamental penyelesaian persamaan diferensial yy + yy = 0. Juga fungsi ee xx dan ee xx membentuk suatu himpunan fundamental penyelesaian persamaan diferensial yy yy = Selesaian Khusus Persamaan Takhomogen: Penyelesaian Dengan Metode Variasi Parameter Metode variasi parameter adalah metode yang dapat digunakan untuk menentukan selesaian khusus PD linier takhomogen dengan koefisien variabel, sehingga lebih umum daripada metode koefisien tak tentu. Perhatikan PD linier orde 2 yang mempunyai bentuk yy + pp(xx)yy + qq(xx)yy = rr(xx) (2.7.1) dengan p, q, dan r fungsi-fungsi kontinu pada suatu interval buka I. Kita akan menentukan selesaian khusus dari (2.7.1) dengan metode variasi parameter seperti berikut. Kita mengetahui bahwa PD homogen yang bersesuaian, yaitu yy + pp(xx)yy + qq(xx)yy = 0 (2.7.2) mempunyai suatu selesaian umum yy h (xx) pada I yang berbentuk yy h (xx) = cc 1 yy 1 (xx) + cc 2 yy 2 (xx) (2.7.3) Metode variasi parameter terdiri dari penggantian cc 1 dan cc 2 dengan fungsi uu(xx) dan vv(xx) yang akan ditentukan sedemikian hingga fungsi penggantinya, yaitu yy h (xx) = uu(xx)yy 1 (xx) + vv(xx)yy 2 (xx) (2.7.4)

6 merupakan selesaian khusus dari (2.7.1) pada I. dengan menurunkan (2.7.3) diperoleh yy pp = uu yy 1 + uuyy 1 + vv yy 2 + vvyy 2 (2.7.5) Persamaan (2.7.3) memuat dua fungsi uu dan vv, tetapi syarat bahwa yy pp memenuhi (2.7.1) mengakibatkan bahwa hanya ada satu syarat pada uu dan vv.. Karena itu kita bisa menerapkan kondisi (syarat) sebarang yang ke dua. Perhitungan berikut akan menunjukkan bahwa kita dapat menentukan uu dan vv sedemikian hingga yy pp memenuhi (2.7.1) dan uu dan vv memenuhi, sebagai syarat ke dua, hubungan: Ini mereduksi ekspresi untuk yy pp ke bentuk Dengan menurunkan fungsi ini diperoleh uu yy 1 + vv yy 2 = 0 (2.7.6) yy pp = uuyy 1 + vvyy 2. (2.7.7) yy pp = uu yy 1 + uuyy 1 + vv yy 2 + vvyy 2 (2.7.8) Dengan mensubstitusikan (2.7.3), (2.7.5) dan (2.7.6) ke dalam (2.7.1) dan mengumpulkan suku-suku yang memuat uu dan vv akan diperoleh uu(yy 1 + ppyy 1 + qqyy 1 ) + vv(yy 2 + ppyy 2 + qqyy 2 ) + uu yy 1 + vv yy 2 = rr (2.7.9) Karena yy 1 dan yy 2 selesaian dari PD homogen (2.7.6), maka persamaan di atas mereduksi ke bentuk (i) uu yy 1 + vv yy 2 = rr (ii) uu yy 1 + vv yy 2 = 0 Persamaan (i) dan (ii) merupakan sistem dua persamaan aljabar linier dari fungsi-fungsi uu dan vv yang tidak diketahui. Selesaian diperoleh dengan aturan Cramer: uu = yy 2rr WW vv = yy 1rr WW (2.7.10) Dengan WW = yy 1 yy 2 + yy 1 yy 2 (2.7.11) adalah Wronski dari dari yy 1 dan yy 2. Jelas bahwa W 0 karena yy 1, yy 2 membangun basis selesaian. Pengintegralan (2.7.7) menghasilkan

7 uu = yy 2rr WW dddd vv = yy 1rr WW dddd (2.7.12) Integral ini ada karena rr(xx) kontinu. Substitusikan ekspresi untuk uu dan vv ini ke dalam (2.7.3), untuk memperoleh selesaian dari (2.7.1). yy pp (xx) = yy 1 yy 2rr WW dddd + yy 2 yy 1rr WW dddd (2.7.13) 2.8 Konsep Fungsi Green Dari suatu sistem persamaan diferensial linear tak homogen orde-n: aa 0 (xx)yy (nn) + aa 1 (xx)yy (nn 1) + + aa nn 1 (xx)yy + aa nn (xx)yy = ff(xx) (2.8) dengan fungsi ff(xx) merupakan fungsi yang kontinyu. Fungsi GG(xx, tt) dikatakan sebagai fungsi green untuk masalah nilai awal persamaan diferensial di atas jika memenuhi kondisi berikut ini: a) GG(xx, tt) terdefenisi pada daerah R=I x I dari semua titik (xx, tt) dimana xx dan tt terletak dalam selang I. b) GG(xx, tt),, 2 GG,, nn GG xx 2 xx nn merupakan fungsi kontinu pada R=I x I xx c) Untuk setiap xx 0 dalam selang I, fungsi yy pp (xx) = GG(xx, tt)ff(tt)dddd adalah solusi xx 0 persamaan diferensial di atas yang memenuhi kondisi awal yy pp (xx 0 ) = yy pp (xx 0 ) = yy pp (xx 0 ) = = yy pp (nn 1) (xx 0 ) = Metode koefisien tak tentu Ide dasar dari metode koefisien tak tentu adalah menduga dengan cerdas solusi yy pp berdasarkan bentuk fungsi rr(xx) di ruas kanan. Bentuk persamaan umum: AA nn yy nn + AA nn 1 yy nn 1 + AA nn 2 yy nn AA 1 yy + AA 0 yy = rr(xx) (2.9.1)

8 Fungsi rr(xx) yang merupakan bentuk solusi pertikular yy pp (xx) diperoleh dengan cara menebak, seperti misalnya: fungsi cos, fungsi sin, fungsi exponensial atau jumlah dari beberpa fungsi rr(xx) berisikan koefisien tak tentu Turunkan yy pp sesuai persamaan umum di atas Subtitusikan yy pp dan seluruh turunannya ke dalam persamaan Bentuk rr(xx) Pilihan untuk yy pp ee aaaa AAee aaaa kk xx nn (nn = 0,1, ) kk nn xx nn + kk nn 1 xx nn kk 1 xx + kk 0 xx ee aaaa sin aaaa cos aaaa AAee aaaa + BBBB ee aaaa AA sin aaaa + BB cos aaaa AA sin aaaa + BB cos aaaa Tabel 2.1 Metode Koefisian Tak Tentu Misal ff(xx) merupakan fungsi polinom, eksponen, sinus atau cosines. Maka solusi yy pp dimisalkan sebagai jumlah dari ff(xx) dan semua turunannya. Selanjutnya yy pp yy pp dan yy pp disubstitusikan ke persamaan awal untuk menghitung nilai dari koefisiennya Sistem Fisis Persamaan Osilasi Harmonik Teredam Sampai saat ini masih banyak anggapan bahwa tidak ada gaya gesekan yang bekerja pada osilator. Jika anggapan ini dipegang, maka bandul atau beban pada pegas akan berosilasi terus menerus. Pada kenyataannya, amplitudo osilasi berkurang sedikit demi sedikit sampai akhirnya menjadi nol karena pengaruh gesekan. Dikatakan bahwa geraknya teredam oleh gesekan dan disebut osilasi teredam. Gesekan seringkali muncul dari gesekan udara atau gaya dalam. Besar gaya gesekan biasanya bergantung kepada laju. Dalam banyak hal, gaya

9 gesekan sebanding dengan kecepatan, tetapi arahnya berlawanan. Contoh dari osilasi teredam misalnya adalah pada shock absorber mobil. Shock absorber merupakan komponen penting suatu kendaraan yaitu dalam sistem suspensi, yang berguna untuk meredam gaya osilasi dari pegas. Shock absorber berfungsi untuk memperlambat dan mengurangi besarnya getaran gerakan dengan mengubah energi kinetik dari gerakan suspensi menjadi energi panas yang dapat dihamburkan melalui cairan hidrolik. Peredam kejut (shockabsorber) pada mobil memiliki komponen pada bagian atasnya terhubung dengan piston dan dipasangkan dengan rangka kendaraan. Bagian bawahnya, terpasang dengan silinder bagian bawah yang dipasangkan dengan as roda. Fluida kental menyebabkan gaya redaman yang bergantung pada kecepatan relatif dari kedua ujung unit tersebut. Hal ini membantu untuk mengendalikan guncangan pada roda. Konstruksi shock absorber itu terdiri atas piston, piston rod dan tabung. Piston adalah komponen dalam tabung shock absorber yang bergerak naik turun di saat shock absorber bekerja. Sedangkan tabung adalah tempat dari minyak shock absorber dan sekaligus ruang untuk piston bergerak naik turun. Dan yang terakhir adalah piston rod adalah batang yang menghubungkan piston dengan tabung bagian atas (tabung luar) dari shock absorber. Untuk lebih jelasnya dapat dilihat pada gambar berikut: Piston Roo Oriface Piston Saluran Besar Tabung Keterangan: Katup Gambar 2.1 Detail struktur shock absorber

10 Shock absorber bekerja dalam dua siklus yakni siklus kompresi dan siklus ekstensi. Siklus kompresi (penekanan) Saat shock absorber ditekan karena gaya osilasi dari pegas suspensi, maka gerakan yang terjadi adalah shock absorber mengalami pemendekan ukuran. Siklus kompresi terjadi ketika piston bergerak ke bawah, menekan fluida hidrolik di dalam ruang bawah piston. Dan minyak shock absorber yang berada dibawah piston akan naik keruang atas piston melalui lubang yang ada pada piston. Sementara lubang kecil (orifice) pada piston tertutup karena katup menutup saluran orifice tersebut. Penutupan katub ini disebabkan karena peletakan katup yang berupa membran (plat tipis) dipasangkan dibawah piston, sehingga ketika minyak shock absorber berusaha naik ke atas maka katup membran ini akan terdorong oleh shock absorber dan akilbatnya menutup saluran orifice. Jadi minyak shock absorber akan menuju ke atas melalui lubang yang besar pada piston, sementara minyak tidak bisa keluar melalui saluran oriface pada piston. Pada saat ini shock absorber tidak melakukan peredaman terhadap gaya osilasi dari pegas suspensi, karena minyak dapat naik ke ruang di atas piston dengan sangat mudah. Siklus ekstensi (memanjang) Pada saat memanjang piston di dalam tabung akan begerak dari bawah naik ke atas. Gerakan naik piston ini membuat minyak shock absorber yang sudah berada diatas menjadi tertekan. Minyak shock absorber ini akan mencari jalan keluar agar tidak tertekan oleh piston terus. Maka minyak ini akan mendorong katup pada saluran oriface untuk membuka dan minyak akan keluar atau turun ke bawah melalui saluran oriface. Pada saat ini katup pada lubang besar di piston akan tertutup karena letak katup ini yang berada di atas piston. Minyak shock absorber ini akan menekan katup lubang besar, piston ke bawah dan mengaakibat katup ini tertutup. Tapi letak katup saluran oriface membuka karena letaknya berada di bawah piston, sehingga ketika minyak shock menekan ke bawah katup ini membuka. Pada saat ini minyak shock absorber hanya dapat turun ke bawah melalui saluran orifice yang kecil. Karena salurannya yang kecil, maka minyak shock absorber tidak akan bisa cepat turun ke bawah alias terhambat. Di saat inilah shock absorber melakukan peredaman terhadap gaya osilasi pegas suspensi.

11 Tipikal mobil atau truk ringan akan memiliki lebih banyak perlawanan selama siklus ekstensi daripada siklus kompresi. Semua peredam kejut modern adalah kecepatan-sensitif suspensi semakin cepat bergerak, semakin banyak perlawanan yang shock breker sediakan. Hal ini memungkinkan guncangan untuk menyesuaikan diri dengan kondisi jalan dan untuk mengontrol semua gerakan yang tidak diinginkan yang dapat terjadi dalam kendaraan yang bergerak. Secara sederhana shock absorber merupakan pengaplikasian dari gerak osilasi harmonik yang teredam. Fo cos wt m y k c Gambar 2.2 Sistem fisis pada shock absorber Bila peredaman diperhitungkan, maka gaya peredam juga berlaku pada massa. Bila bergerak dalam fluida benda akan mendapatkan redaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) adalah c dengan satuan N s/m (SI) Persamaan osilasi teredam diberikan oleh hokum gerak kedua, FF = mmmm, dengan F merupakan jumlah dari gaya pemulih kkkk dan gaya redaman cc dddd/dddd ; dalam hal ini c adalah konstanta positif. Kita peroleh bahwa ΣΣΣΣ = mmmm (2.10.1) atau kkkk cc dddd dddd = mm dd 2 yy dddd 2 (2.10.2) atau mm dd 2 yy dddd dddd 2 + cc + kkkk = 0 (2.10.3) dddd

12 Dalam osilasi teredam sebenarnya masih terdapat gaya lain yang bekerja berupa gaya paksaan. Dalam hal ini, dimisalkan gaya paksaan yang diberikan terhadap sistem yang telah disebutkan adalah FF 0 cos ωωωω. Di sini FF 0 adalah harga dari gaya eksternal dan ωω adalah frekuensi sudutnya. Untuk jelasnya, dapat kita bayangkan bahwa gaya eksternal tersebut diberikan langsung pada massa yang digantungkan pada pegas. Maka kita peroleh persamaan: diperoleh atau ΣΣΣΣ = mmmm kkkk cc dddd dddd + FF 0 cos ωωωω = mm dd 2 yy dddd 2 (2.10.4) mm dd 2 yy dddd dddd 2 + cc + kkkk = FF dddd 0 cos ωωωω (2.10.5)

Aplikasi Fungsi Green Pada Dinamika Sistem Fisis-Massa Pegas Dengan Shock Absorber

Aplikasi Fungsi Green Pada Dinamika Sistem Fisis-Massa Pegas Dengan Shock Absorber Aplikasi Fungsi Green Pada Dinamika Sistem Fisis-Massa Pegas Dengan Shock Absorber 1) Mangara Tua Sitanggang ) Tenang Ginting 3) Tua Raja Simbolon Jurusan Fisika Teoritis Fakultas MIPA USU 1 Mahasiswa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

Rangkuman Suku Banyak

Rangkuman Suku Banyak Rangkuman Suku Banyak Oleh: Novi Hartini Pengertian Suku banyak Perhatikan bentuk aljabar dibawah ini i. Suku banyak xx 2 + 4xx + 9 berderajat 2, sebab pangkat tertinggi peubah x adalah 2 ii. Suku banyak

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang

BAB II LANDASAN TEORI. Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang BAB II LANDASAN TEORI Pada bab ini, akan diuraikan definisi-definisi dan teorema-teorema yang akan digunakan sebagi landasan pembahasan untuk bab III. Materi yang akan diuraikan antara lain persamaan diferensial,

Lebih terperinci

ANALISIS DEFLEKSI DAN TEGANGAN SHOCK ABSORBER RODA BELAKANG SEPEDA MOTOR YAMAHA JUPITER

ANALISIS DEFLEKSI DAN TEGANGAN SHOCK ABSORBER RODA BELAKANG SEPEDA MOTOR YAMAHA JUPITER ANALISIS DEFLEKSI DAN TEGANGAN SHOCK ABSORBER RODA BELAKANG SEPEDA MOTOR YAMAHA JUPITER R. Bagus Suryasa Majanasastra 1) 1) Dosen Program Studi Teknik Mesin - Universitas Islam 45, Bekasi Email : bagus.suryasa@gmail.com

Lebih terperinci

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye

Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Jurnal Matematika Murni dan Terapan εpsilon Vol.7 No.2 (2013) Hal. 12-19 PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER MELALUI DIAGONALISASI MATRIKS Edy Sarwo Agus Wibowo, Yuni Yulida, Thresye Program

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jurnal Matematika Murni dan Terapan εpsilon SOLUSI DARI PERSAMAAN DIFERENSIAL BIASA LINIER ORDE 2 DALAM BENTUK POLINOMIAL TAYLOR Herlyn Basrina, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

ANALISA RANCANGAN DESAIN SHOCK ABSORBER BELAKANG PADA MOTOR YAMAHA JUPITER. Paridawati 1)

ANALISA RANCANGAN DESAIN SHOCK ABSORBER BELAKANG PADA MOTOR YAMAHA JUPITER. Paridawati 1) ANALISA RANCANGAN DESAIN SHOCK ABSORBER BELAKANG PADA MOTOR YAMAHA JUPITER Paridawati 1) 1) Dosen Program Studi Teknik Mesin - Universitas Islam 45, Bekasi ABSTRAK Shock absorber merupakan komponen penting

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

LAMPIRAN A OSILATOR HARMONIK

LAMPIRAN A OSILATOR HARMONIK 46 LAMPIRAN A OSILATOR HARMONIK Persamaan Schrodinger untuk Osilator Harmonik dapat dinyatakan sebagai berikut: dd 2 ΨΨ dddd 2 + (α y2 )Ψ = 0 (A.1) Dengan y = ( 1 ħ kkkk)1/2 dimana v = 1 2ππ kk mm α =

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

PEMBAHASAN TES KEMAMPUAN DASAR SAINS DAN TEKNOLOGI SBMPTN 2013 KODE 431

PEMBAHASAN TES KEMAMPUAN DASAR SAINS DAN TEKNOLOGI SBMPTN 2013 KODE 431 PEMBAHASAN TES KEMAMPUAN DASAR SAINS DAN TEKNOLOGI SBMPTN 203 KODE 43. Persamaan lingkaran dengan pusat (,) dan menyinggung garis 3xx 4yy + 2 0 adalah Sebelum menentukan persamaan lingkarannya, kita tentukan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

ANALISIS PENGARUH TINGKAT REDAMAN SHOCK UPSIDE DOWN PADA KENDARAAN BERMOTOR YAMAHA BYSON 150 CC

ANALISIS PENGARUH TINGKAT REDAMAN SHOCK UPSIDE DOWN PADA KENDARAAN BERMOTOR YAMAHA BYSON 150 CC ANALISIS PENGARUH TINGKAT REDAMAN SHOCK UPSIDE DOWN PADA KENDARAAN BERMOTOR YAMAHA BYSON 150 CC Dedy Muji Prasetyo, Eko Prasetyo Jurusan Teknik Mesin Fakultas Teknik Unversitas Pancasila dedymuji@gmail.com,

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

Soal 1: Alinemen Horisontal Tikungan Tipe S-C-S

Soal 1: Alinemen Horisontal Tikungan Tipe S-C-S (Oct 4, 01) Soal 1: Alinemen Horisontal Tikungan Tipe S-C-S Suatu tikungan mempunyai data dasar sbb: Kecepatan Rencana (V R ) : 40 km/jam Kemiringan melintang maksimum (e max ) : 10 % Kemiringan melintang

Lebih terperinci

KAJIAN KELENGKUNGAN PERSAMAAN

KAJIAN KELENGKUNGAN PERSAMAAN KAJIAN KELENGKUNGAN PERSAMAAN KURVA DI RR Iis Herisman, Komar Baihaqi Jurusan Matematika, Institut Teknologi Sepuluh Nopember, Surabaya iis@matematikaitsacid, komar@matematikaitsacid Abstrak Tujuan dari

Lebih terperinci

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Kunlestiowati H *. Nani Yuningsih **, Sardjito *** * Staf Pengajar Polban, kunpolban@yahoo.co.id ** Staf Pengajar Polban, naniyuningsih@gmail.com

Lebih terperinci

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), ( Print)

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), ( Print) E27 Rancang Bangun dan Analisis Karakteristik Dinamis Atmospheric Pressure Shock Absorber (APSA) dengan Diameter Silinder 60 mm dan Diameter Orifice 1 mm Pada Kendaraan Angkut Bima Adisetya Putra dan Harus

Lebih terperinci

Soal 1: Alinemen Horisontal Tikungan Tipe S-S

Soal 1: Alinemen Horisontal Tikungan Tipe S-S (Oct 5, 01) Soal 1: Alinemen Horisontal Tikungan Tipe S-S Suatu tikungan mempunyai data dasar sbb: Kecepatan Rencana (V R ) : 40 km/jam Kemiringan melintang maksimum (e max ) : 10 % Kemiringan melintang

Lebih terperinci

SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER. Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda

SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER. Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER Helfa Oktafia Afisha, Yuni Yulida *, Nurul Huda Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Fluida 2.1.1 Pengertian Fluida Fluida didefinisikan sebagai zat yang berdeformasi terus-menerus selama dipengaruhi suatu tegangan geser. Tegangan (gaya per satuan luas) geser

Lebih terperinci

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. y 3 x 9 3. Hubungan dua buah garis Letak dua buah garis y = m 1 x + c 1 dan y = m 2 x + c 2 dalam satu bidang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

PROFIL GETARAN PEGAS DENGAN PENGARUH GAYA LUAR DAN VARIASI FAKTOR REDAMAN SKRIPSI

PROFIL GETARAN PEGAS DENGAN PENGARUH GAYA LUAR DAN VARIASI FAKTOR REDAMAN SKRIPSI PROFIL GETARAN PEGAS DENGAN PENGARUH GAYA LUAR DAN VARIASI FAKTOR REDAMAN SKRIPSI Oleh : Rachmad Hadiyansyah NIM : 011810101088 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Satuan Pendidikan. : XI (sebelas) Program Keahlian

Satuan Pendidikan. : XI (sebelas) Program Keahlian Satuan Pendidikan Kelas Semester Program Keahlian Mata Pelajaran : SMA : XI (sebelas) : 1 (satu) : IPA : Fisika 1. Bacalah do a sebelum mengerjakan Lembar Kerja Siswa (LKS) ini. 2. Pelajari materi secara

Lebih terperinci

BAB II DASAR TEORI Suspensi

BAB II DASAR TEORI Suspensi digilib.uns.ac.id BAB II DASAR TEORI 2. 1. Suspensi Suspensi adalah suatu sistem yang berfungsi meredam kejutan, getaran yang terjadi pada kendaraan akibat permukaan jalan yang tidak rata. Suspensi dapat

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

RANCANG BANGUN STRUKTUR RANGKA KENDARAAN HYBRID RODA TIGA

RANCANG BANGUN STRUKTUR RANGKA KENDARAAN HYBRID RODA TIGA 1 RANCANG BANGUN STRUKTUR RANGKA KENDARAAN HYBRID RODA TIGA Agil Erbiansyah dan Prof. Ir. I Nyoman Sutantra M.Sc.,Ph.D. Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

MODUL MATEMATIKA TEKNIK

MODUL MATEMATIKA TEKNIK MODUL MATEMATIKA TEKNIK Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 Linear

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Pengertian Regresi Linier Pengertian Regresi secara umum adalah sebuah alat statistik yang memberikan penjelasan tentang pola hubungan (model) antara dua variabel atau lebih Analisis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

Gambar 1.1 BAB II LANDASAN TEORI

Gambar 1.1 BAB II LANDASAN TEORI 9 Gambar 1.1 BAB II LANDASAN TEORI 2.1 Probabilitas Dasar Andrei Kolgomorov (193-1987) meletaan landasan matematis teori peobabilitas dan teori acak. Dalam tulisaya, Kolgomorov menggunakan teori probabilitas

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan model umum yang dapat digunakan untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang

Lebih terperinci

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu.

Kuliah PD. Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Kuliah PD Pertemuan ke-1: Motivasi: 1. Mekanika A. Hukum Newton ke-: Gaya yang bekerj a pada suatu massa sama dengan laju perubahan momentum terhadap waktu. Misalkan F: gaya, m: massa benda, a: percepatan,

Lebih terperinci

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana MODUL PERKULIAHAN OSILASI Bagian- Fakultas Program Studi atap Muka Kode MK Disusun Oleh eknik eknik Elektro 3 MK4008, S. M Abstract Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

n p = putaran poros ( rpm ) ( Aaron, Deutschman, 1975.Hal 485 ) 3. METODOLOGI

n p = putaran poros ( rpm ) ( Aaron, Deutschman, 1975.Hal 485 ) 3. METODOLOGI n p = putaran poros ( rpm ) ( Aaron, Deutschman, 1975.Hal 485 ). METODOLOGI Pada bab ini akan dibahas secara detail mengenai perencanaan dan pembuatan alat,secara keseluruan proses pembuatan dan penyelesaian

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR

HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR HUBUNGAN ANTARA PEMETAAN LINEAR DAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika, Jurusan Pendidikan MIPA, Fakultas Keguruan dan Ilmu Pendidikan, Unveristas Khairun ABSTRAK Let UU,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah

Lebih terperinci

Redesign Sistem Peredam Sekunder dan Analisis Pengaruh Variasi Nilai Koefisien Redam Terhadap Respon Dinamis Kereta Api Penumpang Ekonomi (K3)

Redesign Sistem Peredam Sekunder dan Analisis Pengaruh Variasi Nilai Koefisien Redam Terhadap Respon Dinamis Kereta Api Penumpang Ekonomi (K3) E33 Redesign Sistem Peredam Sekunder dan Analisis Pengaruh Variasi Nilai Koefisien Redam Terhadap Respon Dinamis Kereta Api Penumpang Ekonomi (K3) Dewani Intan Asmarani Permana dan Harus Laksana Guntur

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)

Lebih terperinci

BAB II KAJIAN PUSTAKA. glide/refleksi geser, grup simetri, frieze group, graphical user interface (GUI) dijelaskan mengenai operasi biner.

BAB II KAJIAN PUSTAKA. glide/refleksi geser, grup simetri, frieze group, graphical user interface (GUI) dijelaskan mengenai operasi biner. BAB II KAJIAN PUSTAKA Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu, grup, transformasi, translasi, refleksi, rotasi, glide/refleksi geser, grup simetri,

Lebih terperinci

LAMPIRAN 1. Surat Ijin Melakukan Penelitian

LAMPIRAN 1. Surat Ijin Melakukan Penelitian LAMPIRAN LAMPIRAN Surat Ijin Melakukan Penelitian Lampiran Surat Ijin Melakukan Uji Instrumen Penelitian Lampiran Surat Keterangan Uji Pakar Insrtumen Lampiran 4 Surat Keterangan Melakukan Uji

Lebih terperinci

Husna Arifah,M.Sc :Ayunan (osilasi) dipakai.resonansi

Husna Arifah,M.Sc :Ayunan (osilasi) dipakai.resonansi Pembentukan Model Ayunan (Osilasi) Dipakai: Resonansi Di dalam Pasal.6 kita telah membahas osilasi bebas dari suatu benda pada suatu pegas seperti terlihat di dalam Gambar 48. Gerak ini diatur oleh persamaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Potensial Listrik Interaksi gaya elektrostatik F dan melalui medan listrik E, di mana kedua besaran fisis tersebut merupakan besaran vektor. Potensial listrik besaran vektor.

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut :

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut : PENDAHULUAN Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut : F = G Dimana : F = Gaya tarikan menarik antara massa m 1 dan m 2, arahnya menurut garispenghubung

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

Oleh : Annisa Dwi Sulistyaningtyas NRP Dosen Pembimbing : Prof. Dr. Basuki Widodo, M.Sc

Oleh : Annisa Dwi Sulistyaningtyas NRP Dosen Pembimbing : Prof. Dr. Basuki Widodo, M.Sc Oleh : Annisa Dwi Sulistyaningtyas NRP. 1209 100 063 Dosen Pembimbing : Prof. Dr. Basuki Widodo, M.Sc JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Lebih terperinci

DASAR PENGUKURAN MEKANIKA

DASAR PENGUKURAN MEKANIKA DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan

Lebih terperinci

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung

Lebih terperinci

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga ENERGI POTENSIAL 1. Pendahuluan Energi potensial merupakan suatu bentuk energi yang tersimpan, yang dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga potensial tidak dapat dikaitkan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

SIFAT-SIFAT PEMETAAN BILINEAR

SIFAT-SIFAT PEMETAAN BILINEAR SIFAT-SIFAT PEMETAAN BILINEAR Mustafa A.H. Ruhama Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT Let UU, VV and WW are vector

Lebih terperinci

INTEGRAL RIEMANN-LEBESGUE

INTEGRAL RIEMANN-LEBESGUE INTEGRAL RIEMANN-LEBESGUE Ikram Hamid Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT In this paper, we discuss a Riemann-type

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

Hendra Gunawan. 25 April 2014

Hendra Gunawan. 25 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan

Lebih terperinci

PENDEKATAN NUMERIK KONTROL SISTEM PILOT OTOMATIS UNTUK GERAK LONGITUDINAL PESAWAT DENGAN METODE PARKER-SOCHACKI

PENDEKATAN NUMERIK KONTROL SISTEM PILOT OTOMATIS UNTUK GERAK LONGITUDINAL PESAWAT DENGAN METODE PARKER-SOCHACKI PENDEKATAN NUMERIK KONTROL SISTEM PILOT OTOMATIS UNTUK GERAK LONGITUDINAL PESAWAT DENGAN METODE PARKER-SOCHACKI SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci