6/28/2016 al muiz
|
|
|
- Hengki Tedjo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 6/28/2016 al muiz
2 Unsur-unsur dalam model matematis Varia bel Kons tanta Para meter Unsur model matematis 6/28/2016 al muiz
3 Variabel adalah sesuatu yang besarnya dapat berubah, misalnya sesuatu yang dapat menerima nilai yang berbeda. Karena setiap variabel dapat menerima berbagai nilai, maka variabel harus dinyatakan dengan simbol tertentu. Contoh: harga (P), pendapatan (R), biaya (C), pendapatan nasional (Y) Akan tetapi, jika telah dinyatakan bahwa P=3 atau C=18, maka nilai variabel ini sudah tertentu. 6/28/2016 al muiz
4 Ada 2 macam variabel yaitu : variabel endogen adalah variabel yang nilai penyelesaiannya dicari melalui model atau diperoleh dari dalam variabel eksogen adalah variabel variabel yang dianggap dapat ditentukan oleh kekuatan dari luar model dan nilai-nilai variabel yang diperoleh dari data yang ada 6/28/2016 al muiz
5 Konstanta Konstanta adalah besaran yang tidak berubah, sehingga merupakan lawan dari variabel. Jika suatu konstanta digabung dengan sebuah variabel, maka angka itu sering disebut koefisien variabel tersebut. Konstanta parametrik atau yang biasa disebut parameter digunakan untuk mengidentifikasikan kedudukan yang khusus. Secara umum, konstanta parametrik biasanya dinyatakan engan simbol a,b,c atau dalam abad Yunani, seperti α 6/28/2016 al muiz
6 Variabel dapat berdiri sendiri, tetapi baru ada artinya bila berhubungan satu dengan yang lain melalui persamaan atau ketidaksamaan. Dalam penerapan ekonomi, dibedakan 3 macam persamaan : 1. Persamaan definisi : membentuk identitas antara dua pernyataan yang mempunyai arti persis sama. TR = P.Q 2. Persamaan perilaku : menunjukkan perilaku suatu variabel sebagai tanggapan terhadap perubahan variabel lainnya. Y = C + I 3. Persamaan bersyarat : menyatakan persyaratan yang harus dipenuhi, S = I 6/28/2016 al muiz
7 Sistem Bilangan Nyata Bilangan nyata Bilangan rasional Bilangan irasional Bilangan bulat Bilangan pecah Bilangan negatif Bilangan positif 6/28/2016 al muiz
8 Konsep Himpunan Penulisan Himpunan Himpunan adalah kumpulan objek yang berbeda, baik makanan, bilangan, atau yang lainnya. Objek-objek dalam suatu himpunan disebut elemen-elemen himpunan. Ada 2 cara menulis himpunan : 1. Dengan menyebut satu per satu. Misal S mewakili himpunan dari tiga bilangan 2,3,4 dapat ditulis S = {2,3,4} 2. Dengan gambaran. Misal I merupakan himpunan bilangan bulat positif, dapat ditulis I = ( x x bilangan bulat positif ) 6/28/2016 al muiz
9 Hubungan diantara himpunan-himpunan Bila dua himpunan berisi elemen yang sama maka dikatakan sama. Contoh : S1={2,a,7,f} dan S2={2,7,a,f},maka S1 = S2 1 himpunan mungkin merupakan himpunan bagian dari himpunan lainnya. Contoh : S={1,3,5,7} dan T = {1,5} 2 himpunan yang seluruh elemennya berbeda sama sekali. Misalnya : 1 himpunan bilangan positif, 1 himpunan bil. negatif 2 himp. Dengan beberapa elemen yang sama tetapi beberapa elemen diantaranya aneh satu sama lainnya 6/28/2016 al muiz
10 Operasi Himpunan Gabungan (union) : gabungan dari 2 himpunan yang membentuk himpunan yang berisi kedua himpunan. Himpunan gabungan menggunakan simbol A B Dalam diagram Venn digambarkan Irisan (intersection) :himpunan baru yang berisi elemen yang sama dari kedua himpunan. Himpunan irisan menggunakan simbol A B. Dalam diagram Venn digambarkan Komplemen (complement) : himpunan yang berada diluar daerah himpunan. A A B A à = Komplemen à 6/28/2016 al muiz B
11 Hukum komutatif A B = B A A B = B A Hukum asosiatif A ( B C) = (A B) C A ( B C) = (A B) C Hukum distributif A ( B C) = (A B) (A C) A (B C) = (A B) U (A C) 6/28/2016 al muiz
12 Hubungan dan Fungsi Hasil kali Cartesius adalah himpunan pasangan urut atau tersusun dari (x, y) dimana setiap unsur x X dipasangkan dengan setiap unsur y Y. Misal : Hubungan antara partisipasi dan nilai UAS X = partisipasi, Y= nilai UAS X = {1, 2, 3, 4} sedangkan Y = {1, 2, 3} Himpunan hasil kali Cartesius adalah: X x Y = {(x, y)/ x ε X, y ε Y} 6/28/2016 al muiz
13 Fungsi Konstan Fungsi yang range nya hanya terdiri dari satu elemen. misal : y=f(x) = 7, nilainya tetap sama tanpa memperhatikan nilai x. Fungsi seperti diatas akan digambarkan sebagai suatu garis lurus horisontal. Fungsi Polinom Memiliki bentuk umum: y = a + bx + cx px n Setiap suku berisi koefisien serta pangkat bilangan bulat non-negatif dari variabel x. Misal : n = 1 y = a 0 + a 1 x [fungsi linear] n = 2 y = a 0 + a 1 x + a 2 x 2 [fungsi kuadrat] 6/28/2016 al muiz
14 Fungsi rasional Fungsi dengan y dinyatakan sebagai perbandingan dua polinom dalam variabel x. Fungsi rasional khusus yang mempunyai penerapan menarik dlm ekonomi adalah fungsi y = (a/x) atau xy = a Karena hasil kali dua variabel tsb selalu konstan, maka fungsi tsb dapat digunakan untuk menunjukkan kurva permintaan dan kurva biaya tetap rata-rata Fungsi Nonaljabar Fungsi nonaljabar (transendental) adalah fungsi yang variabel bebasnya merupakan eksponen. Misal, fungsi eksponensial seperti y = b x Fungsi logaritma seperti y = log b X Fungsi trigonometri (sirkulasi) dalam hubungannya dengan analisis dinamis 6/28/2016 al muiz
15 Fungsi Fungsi aljabar Fungsi nonaljabar 1.FUNGSI LINIER 2. FUNGSI KUADRAT: 3. FUNGSI POLINOMIAL 4. FUNGSI RASIONAL. FUNGSI EKSPONEN Parabola FUNGSI LOGARITMA Lingkaran FUNGSI TRIGONOMET RI Ellips Hiperbola 6/28/2016 al muiz
16 Aturan I = x m x x n = x m+n Contoh : x 3 x x 4 = x 7 Aturan II : x m / x n = x m-n Contoh : x 4 / x 3 = x Aturan III : x -n = 1/x n (x 0) Aturan IV : x 0 = 1 (x 0) Aturan V : x 1/n = Aturan VI : (x m ) n = x mn Aturan VII : x m x y m = (xy) m 6/28/2016 al muiz
17 Fungsi dari Dua atau Lebih Variabel Bebas z = g (x, y) z = ax + by atau z = a 0 + a 1 x + a 2 x 2 + b 1 y + b 2 y 2 Fungsi g membuat peta dari suatu titik dalam ruang dua dimensi, ke satu titik pada garis ruas (titik dalam ruang satu dimensi), seperti : dari titik (x 1,y 1 ) ke titik z 1 dari titik (x 2, y 2 ) ke titik z 2 Fungsi lebih dari satu variabel juga dapat diklasifikasikan ke dalam berbagai jenis. Misalnya sebuah fungsi yg mempunyai bentuk y = a 1 x 1 + a 2 x a n x n adalah fungsi linear, yang mempunyai karakteristik bahwa setiap variabel hanya berpangkat satu. 6/28/2016 al muiz
18 Dalam rangka mencapai suatu tingkat umum yang lebih tinggi, kita dapat menggunakan fungsi umum y = f (x) atau z = g(x,y). Fungsi tersebut tidak terbatas apakah linear, kuadrat, atau eksponen seluruhnya akan dimasukkan ke dalam fungsi yg ada. 6/28/2016 al muiz
19 S E L E S A I 6/28/2016 al muiz
FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan
FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan
Modul Matematika MINGGU 4. g. Titik Potong fungsi linier
MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran
5 F U N G S I. 1 Matematika Ekonomi
5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal
03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa
0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :
KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag
KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:
Teori himpunan Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang
PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI
FUNGSI PENGERTIAN FUNGSI JENIS-JENIS FUNGSI PENGGAMBARAN GRAFIK FUNGSI PENGERTIAN FUNGSI Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap X anggota A dengan tepat
Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir
Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu
Materi Ke_2 (dua) Himpunan
Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau
HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden
Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
KISI-KISI PENULISAN SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016
KISI-KISI PENULISAN SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016 Nama Sekolah : SMA NEGERI 56 JAKARTA Mata Pelajaran : MATEMATIKA PEMINATAN Kurikulum : KUR 2013 MATERI KELAS X P1 P2 P3 mor 1. Menganalisis
MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN
MATEMATIKA TEKNIK DASAR-I FUNGSI-2 SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN FUNGSI Perhatikan relasi {(x,y) x, y R; y=x 2 } Untuk tiap-tiap nilai x dalam wilayahnya, relasi itu hanya menyatakan
DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.
HIMPUNN Himpunan (set): DEFINISI Kumpulan objek-objek yang berbeda. Dengan kata lain : Kumpulan dari objek-objek tertentu yang merupakan suatu kesatuan. Elemen dari himpunan : Obyek-obyek itu sendiri.
KISI-KISI UJIAN SEKOLAH TAHUN 2016
KISI-KISI UJIAN SEKOLAH TAHUN 2016 MATA PELAJARAN : MATEMATIKA WAJIB Penyusun : Team MGMP Matematika JENJANG : SMA SMA DKI Jakarta KURIKULUM : Kurikulum 2013 No Urut Kompetensi Dasar Bahan Kls/Smt Materi
PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear
Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum
PTE 4109, Agribisnis UB
MATEMATIKA EKONOMI PTE 4109, Agribisnis UB 1 Materi ang dipelajari Pengertian dan Unsur- unsur Fungsi Jenis- jenis fungsi Penggambaran fungsi Linear Penggambaran fungsi non linear -Penggal -Simetri - Perpanjangan
MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT
MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi
GLOSSARIUM. A Akar kuadrat
A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
MODUL 1. Himpunan FEB. Nur Azmi Karim, SE, M.Si. Fakultas. Modul ke: Program Studi
MODUL 1 Modul ke: Himpunan Fakultas 01 FEB Nur Azmi Karim, SE, M.Si Program Studi Penulisan Himpunan Himpunan adalah suatu kumpulan objek yang berbeda, yang mungkin merupakan suatu kelompok bilangan- bilangan
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
a 2 e. 7 p 7 q 7 r 7 3. a. 8p 3 c. (2 14 m 3 n 2 ) e. a 10 b c a. Uji Kompetensi a. a c. x 3. a. 29 c. 2
Kunci Jawaban Uji Kompetensi 1.1 1. a. {, 1,0,1,,3,4} BAB I Bilangan Riil Uji Kompetensi 1. 1. a. asosiatif b. memiliki elemen penting 3. 10 Uji Kompetensi 1.3 1. a. 1 4 e. 1 35 15 c. 1 8 1 1 c. 1 4 5.
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA
MODUL 11 FUNGSI EKSPONENSIAL & LOGARITMA 11.1. Ketentuan dan Sifat-Sifat KETENTUAN a P = a. a. a. a................. sampai p faktor (a dinamakan bilangan pokok, p dinamakan pangkat atau eksponen) SIFAT-SIFAT
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
Modul ke: Matematika Ekonomi. Himpunan dan Bilangan. Bahan Ajar dan E-learning
Modul ke: 01 Pusat Matematika Ekonomi Himpunan dan Bilangan Bahan Ajar dan E-learning MAFIZATUN NURHAYATI, SE.MM. 08159122650 [email protected] Selamat Datang di Perkuliahan MATEMATIKA EKONOMI 2 BUKU
Sistem Bilangan Riil
Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0
Modul Matematika 2012
Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar
SISTEM BILANGAN REAL
SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari
MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi
matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN
K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear
Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL
Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi
MATERI 3 FUNGSI NON LINIER
MATERI 3 FUNGSI NON LINIER Sub Materi : 1. Penggal dan lereng garis lurus 2. Pembentukan persamaan linier 3. Hubungan dua garis lurus 4. Pencarian akar-akar persamaan linier 5. Penerapan ekonomi Pertemuan
Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah
ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara
Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.
Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
SMPIT AT TAQWA Beraqidah, Berakhlaq, Berprestasi
KISI-KISI SOAL UJIAN AKHIR SEMESTER (UAS) GENAP TAHUN PELAJARAN 2015/2016 BIDANG STUDI : Matematika KELAS : 7 ( Tujuh) STANDAR KOMPETENSI / KOMPETENSI INTI : 1. Memahami sifat-sifat operasi hitung bilangan
matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear
K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan
Sistem Bilangan Ri l
Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π
BILANGAN MODUL PERKULIAHAN
MODUL PERKULIAHAN BILANGAN Sistem bilangan real Operasi pada bilangan bulat Operasi pada bilangan pecahan Sifat-sifat bilangan berpangkat Operasi bilangan berpangkat Fakultas Program Studi Tatap Muka Kode
Matematik Ekonom Fungsi nonlinear
1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya
3. FUNGSI DAN GRAFIKNYA
3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,
MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO
MTEMTIK BISNIS BY : NIN SUDIBYO BB 1. HIMPUNN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek yang harus didefinisikan dengan jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan
INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah
No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai
FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.
FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel
Bab1. Sistem Bilangan
Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali
FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya
FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)
MA5032 ANALISIS REAL
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan
SEBARAN MATERI SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016
SEBARAN MATERI SOAL UJIAN MATEMATIKA PEMINATAN TP 2015 / 2016 Nama Sekolah : SMA NEGERI 56 JAKARTA Mata Pelajaran : MATEMATIKA PEMINATAN Kurikulum : KUR 2013 mor 1. Menganalisis data sifat-sifat grafik
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA
Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA
KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK)
0 KISI-KISI UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) MATA PELAJARAN : MATEMATIKA KELAS : XII KELOMPOK : TEKNOLOGI, PERTANIAN DAN KESEHATAN BENTUK & JMl : PILIHAN GANDA = 35 DAN URAIAN = 5 WAKTU :
LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.
LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com
1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.
I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi
Fungsi Macam-macam fungsi Polinomial (sampai dengan derajat 2) Akar kuadrat Rasional Ekponensial Logaritma Fungsi Polinomial Bentuk Umum: f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n, dengan a 0, a 1, a 2,
atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1
i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=
MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS
MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan
matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL
K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear
APA ITU FUNGSI? x f : x y atau y=f(x) f : x y y=f(x) y=f(x)=x 2. Imajinasi : bermain golf
FUNGSI TEP FTP UB APA ITU FUNGSI? Imajinasi : bermain golf x f f : x y atau y=f(x) y Sebuah fungsi adalah transformasi dari input x pada output y = f(x). f : x y y=f(x) y=f(x)=x 2 Fungsi adalah hubungan
III. FUNGSI POLINOMIAL
III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan
Sistem Bilangan Riil. Pendahuluan
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
SISTEM BILANGAN RIIL DAN FUNGSI
SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline
BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5
BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama
Matematika: Aljabar (Persamaan Linear) 11/15/2011 ALJABAR. Oleh Syawaludin A. Harahap SUB POKOK BAHASAN. Syawaludin A. Harahap 1
MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM10.103 SKS : 2 (1-1) 1) ALJABAR Oleh Syawaludin A. Harahap UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN JATINANGOR 2011 SUB POKOK BAHASAN
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
MAT 602 DASAR MATEMATIKA II
MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B
2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.
A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT
K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
BAB I BILANGAN BULAT dan BILANGAN PECAHAN
File asli diunduh di 8-Spensasi.blogspot.com BAB I BILANGAN BULAT dan BILANGAN PECAHAN A. Bilangan Bulat I. Pengertian Bilangan bulat terdiri atas bilangan bulat positif atau bilangan asli, bilangan nol
SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.
SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.
BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI
BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan
MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.
MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi
SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.
SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi
PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT
LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana
Mohammad Fal Sadikin
Mohammad Fal Sadikin Purcell, Varberg, Rigdon, Kalkulus, Erlangga, 2004. Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi, Penerbit BPFE Yogyakarta, 1996. Himpunan : kumpulan objek yang didefinisikan
KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /
Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : [email protected] Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang
Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS. Relasi dan Fungsi Pada saat di Sekolah Lanjutan Pertama (SMP) telah dipelajari tentang topik Relasi, Fungsi dan Grafik. Pada materi relasi ini selain menggunakan istilah
KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan
KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan
Institut Manajemen Telkom
Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :
RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan
POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.
POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa
FUNGSI. Riri Irawati, M.Kom 3 sks
FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.
PERTIDAKSAMAAN PECAHAN
PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas : X Semester : I (SATU) KKM
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
BAB VI BILANGAN REAL
BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD
SUMBER BELAJAR PENUNJANG PLPG 016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB II ALJABAR Dra.Hj.Rosdiah Salam, M.Pd. Dra. Nurfaizah, M.Hum. Drs. Latri S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Widya
Sistem Bilangan Riil
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
