Dasar Logika Matematika
|
|
|
- Yuliana Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Dasar Logika Matematika Pertemuan 4: Objective Mahasiswa dapat menjelaskan himpunan (set) Himpunan (Set) Mahasiswa dapat memodelkan himpunan dengan menggunakan diagram venn Himpunan (Set) 2 Definisi Himpunan Apa itu himpunan? Himpunan (set) adalah kumpulan objek yang memiliki anggota yang berbeda satu dengan lainnya. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HIMA adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain. Georg Cantor ( ) 1. Setiap anggota himpunan harus dituliskan secara rinci B = {2, 4, 6, 8, 10}. C = {TIF, KOM, PSI, DKV, MGT} {2, 4, 6, 8, 10} dan {TIF, KOM, PSI, DKV, MGT} merupakan anggota dari himpunan B dan C. Keanggotaan sebuah himpunan dapat disimbolkan dengan (elemen) dan (bukan elemen). Himpunan (Set) 3 Himpunan (Set) 4
2 Himpunan (Set) 5 2. Himpunan dapat juga dituliskan menggunakan simbol-simbol baku, sebagai berikut. P = himpunan bilangan bulat positif = { 1, 2, 3,... } N = himpunan bilangan asli atau alami (natural) = { 1, 2,... } Z = himpunan bilangan bulat integer= {..., -2, -1, 0, 1, 2,... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks U = semesta (universal) 3. Penyajian himpunan dapat juga direpresentasikan dalam bentuk notasi pembentukan himpunan. Format { x syarat yang harus dipenuhi oleh x}. A adalah himpunan bilangan bulat positif kecil dari 5 Jawab : A = { 1, 2, 3, 4}, jika dituliskan dengan notasi himpunan, maka penulisannya sebagai berikut, A = { x x bilangan bulat positif lebih kecil dari 5} atau A = { x x P, x < 5 } Himpunan (Set) 6 4. Diagram Venn. Diagram venn digunakan untuk menggambarkan relasi antar satu hmpunan dengan himpunan lainnya. Misalkan U = {1, 2,, 7, 8}, A = {1, 2, 3, 5}, dan B = {2, 5, 6, 8}. John Venn (4 Ags Apr 1923) Relasi himpunan dapat dinyatakan sebagai: Subset (himpunan bagian) Disjoint (himpunan saling lepas) Overlapping (himpunan yang memiliki elemen yang sama) Himpunan (Set) 7 Himpunan (Set) 8
3 Himpunan (Set) 9 Subset Sebuah himpunan dikatakan subset dari himpunan lainnya jika dan hanya jika setiap elemen himpunan tersebut merupakan elemen dari himpunan lainnya ( ). A = {1, 3, 5} dan B = {1, 2, 3, 4, 5}, maka A dikatakan subset dari B atau A B. Sedangkan B merupakan superset dari A (B A). Disjoint 2 buah himpunan dikatakan disjoint apabila kedua himpunan tidak memiliki elemen yang sama. A = {1, 3, 5} dan B = {2, 4, 6, 8}, maka A disjoint B atau A // B. Himpunan (Set) 10 Overlapping Dua buah himpunan dikatakan overlapping jika keduanya memiliki elemen yang sama setidaknya satu elemen. A = {2, 3, 5, 7, 9} dan B = {1, 2, 3, 4, 5}, maka {2, 3, 5} dapat dikatakan sebagai intersection/irisan A dan B atau dapat dinotasikan dengan A B = {x x A dan x B} Himpunan (Set) 11. Jelaskan dan gambarkan relasi menggunakan diagram venn: 1. Menteri dan DPR 2. Pemenang Oscar dan pemenang Golden Globe 3. Atlet dan Mahasiswa. Himpunan (Set) 12
4 Himpunan (Set) 13 Kardinalitas Menunjukkan banyaknya elemen dalam sebuah himpunan. Dinotasikan dengan n(simbol himpunan) atau simbol himpunan i. B = { x x merupakan bilangan prima lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 ii. T = {kucing, a, Amir, 10, paku, pena}, maka T = 5 Himpunan Kosong (Null Set) Himpunan yag memiliki nilai kardinalitas 0. Dinotasikan dengan atau { }. i. E = {x x < x}, maka n(e) = 0 ii. P = {orang Indonesia yang pernah ke bulan}, maka n(p) = 0 iii. A = {x x adalah bilangan prima < 2}, n(a) = 0 himpunan {{ }} dapat juga ditulis sebagai { } Himpunan (Set) 14 Himpunan yang Sama Dua buah himpunan dikatakan sama jika dan hanya jika setiap elemen yang satu merupakan elemen lainnya atau sebaliknya. Atau Dua buah himpunan dikatakan sama jika himpunan satu merupakan bagian dari himpunan lainnya dan sebaliknya. Notasi: A = B A B dan B A. Himpunan (Set) 15 Himpunan yang Sama Jika A = { 3, 5, 8 } dan B = {5, 3, 8 }, maka A = B Jika A = { 3, 5, 8} dan B = {3, 8}, maka A B Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut: A = A, B = B, dan C = C jika A = B, maka B = A jika A = B dan B = C, maka A = C Himpunan (Set) 16
5 Himpunan (Set) 17 Himpunan yang Ekivalen Dua buah himpunan dikatakan ekivalen jika dan hanya jika nilai kardinalitas elemen yang satu sama dengan nilai kardinalitasb himpunan lainnya. Notasi: A ~ B A = B. Misalkan A = {1, 3, 5, 7} dan B = {a, b, c, d}, maka A ~ B sebab A = B = 4 1. Intersection (Irisan). Notasi: A B = {x x A dan x B} Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A B =. Artinya: A // B A = {amir, budi, ani} dan B={budi, ali, toni} maka A B = {budi} Himpunan (Set) Union (Gabungan). Notasi: A B = {x x A atau x B} 3. Complement (Komplemen). Notasi: Ā = {x x U, x A} Jika A = {2, 5, 8} dan B = {7, 5, 22}, maka A B = {2, 5, 7, 8, 22} A = A Himpunan (Set) 19 Misalkan U = {1, 2, 3,..., 9} Jika A = {1, 3, 7, 9}, maka Ā = {2, 4, 6, 8} Jika A = {x x/2 P, x < 9}, maka Ā = {1, 3, 5, 7, 9} Himpunan (Set) 20
6 Dasar Logika Matematika Pertemuan 4: Misalkan: A = Himpunan semua mobil buatan dalam negeri B = Himpunan semua mobil impor C = Himpunan semua mobil yang dibuat sebelum tahun 1990 D = Himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta E = Himpunan semua mobil milik mahasiswa universitas tertentu Himpunan (Set) 22 Tentukan operasi terhadap himpunan jika memiliki kondisi berikut: 1. Mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri. E A E B atau E (A B) 2. Semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta. A C D 3. Semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta. Himpunan (Set) Sebuah kelas terdiri 40 siswa,diantaranya 18 siswa suka IPA, 23 suka IPS, 8 siswa suka keduanya dan sejumlah siswa tidak suka keduanya, tentukan: a. Jumlah siswa yang tidak suka keduanya b. Gambarkan diagram venn 2. Suatu kelompok belajar berjumlah 21 siswa, diantaranya 10 siswa belajar bahasa inggris, dan 15 siswa belajar matematika. Tentukan: a. Jumlah siswa yang belajar keduanya, b. Gambarkan diagram venn Himpunan (Set) 24
7 Himpunan (Set) Perhatikan diagram Venn di samping ini kemudian tentukan anggota himpunan A, B, M, dan N berikut notasi yang memenuhi diagram Venn tersebut jika U adalah bilangan asli! 4. Jika diketahui A adalah himpunan siswa yang aktif pada OSIS, B adalah himpunan siswa yang aktif pada Fotographi, C adalah himpunan siswa yang aktif pada Sains, D adalah himpunan siswa yang aktif pada Modern Dance sedangkan U adalah himpunan Semesta dan anggota-anggotanya adalah sebagai berikut: A = {Agus, Rina, Riska, Bonny, David, Abraham, Fely, Vita, Fania} B = {Lucky, Fathur, Vita, Fanny, Budi, Firman, David} C = {Aldo, Adnan, Benny, Monik, Fawazz, Thomas, David, Vita} D = {Natasha, Firda, Denny, Febri, Yanuar} Himpunan (Set) 26 Gambarlah sebuah diagram Venn yang merepresentasikan situasi tersebut! Beberapa voucher gratis masuk sebuah Taman Rekreasi akan diberikan kepada beberapa siswa dengan ketentuan seleksi adalah V = (A B C) D. Tentukanlah, siapakah siswa-siswa yang memperoleh voucher? Dasar Logika Matematika Pertemuan 4: Himpunan (Set) 27
Logika Matematika Modul ke: Himpunan
Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
Bahan kuliah Matematika Diskrit. Himpunan. Oleh: Didin Astriani P, M.Stat. Fakultas Ilkmu Komputer Universitas Indo Global Mandiri
Bahan kuliah Matematika Diskrit Himpunan Oleh: Didin Astriani P, M.Stat Fakultas Ilkmu Komputer Universitas Indo Global Mandiri 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
1 HIMPUNAN DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMK adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Himpunan. Himpunan (set)
BAB 1 HIMPUNAN Himpunan (set) Himpunan Himpunan (set) adalah kumpulan dari objek-objek yang mempunyai sifat tertentu dan didefinisikan secara jelas. Anggota Himpunan Objek di dalam himpunan disebut elemen,
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah
Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Teori Himpunan 2011 Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. -
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Bahan kuliah Matematika Diskrit 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan,
Materi 1: Teori Himpunan
Materi 1: Teori Himpunan I Nyoman Kusuma Wardana STMIK STIKOM Bali Himpunan (set) kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Terdapat beberapa cara
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
PERTEMUAN 5. Teori Himpunan
PERTEMUAN 5 Teori Himpunan Teori Himpunan Definisi 7: Himpunan (set) adalah kumpulan objek-objek yang terdfinisi dengan jelas Penyajian Himpunan 1. Enumerasi Enumerasi artinya menuliskan semua elemen (anggota)
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota
HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.
MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi
MATEMATIKA BISNIS. Dosen Hikmah Agustin,SP.,MM. Politeknik Dharma Patria Kebumen 2016
MATEMATIKA BISNIS Dosen Hikmah Agustin,SP.,MM Politeknik Dharma Patria Kebumen 2016 Himpunan Himpunan adalah kumpulan benda atau objek-objek atau lambang-lambang yang mempunyai arti yang dapat didefinisikan
Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa.
Kata kata Motivasi. Malas belajar hanya akan membuat suatu pelajaran semakin sulit dipelajari.
M e n g e n a l H i m p u n a n 1 Kata kata Motivasi Malas belajar hanya akan membuat suatu pelajaran semakin sulit dipelajari. Tidak ada mata pelajaran yang sulit, kecuali kemalasan akan mempelajari mata
TEORI HIMPUNAN. A. Penyajian Himpunan
TEORI HIMPUNAN A. Penyajian Himpunan Definisi 1 Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Dalam
TEORI HIMPUNAN Penyajian Himpunan
TEORI HIMPUNAN 1.1. Penyajian Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu
H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.
H i m p u n a n Oleh : Panca Mudji Rahardjo, ST. MT. Himpunan Definisi himpunan Penyajian himpunan Definisi-definisi Operasi himpunan Prinsip inklusi dan eksklusi Himpunan ganda 1 Definisi Himpunan (set)
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO
MTEMTIK BISNIS BY : NIN SUDIBYO BB 1. HIMPUNN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek yang harus didefinisikan dengan jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan
HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si
HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas
BAB I H I M P U N A N
1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
Himpunan Bagian ( Subset )
Teori Himpunan 2 Himpunan Bagian ( Subset ) 1. Jika dan hanya jika setiap anggotanya merupakan anggota himpunan lain 2. Dituliskan dg simbol Contoh pabila himp merupakan himpunan bagian dari himp B maka
Matematika Diskrit 1
Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai
INF-104 Matematika Diskrit
Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011
Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan
PENDAHULUAN. 1. Himpunan
PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga
Teori Himpunan Ole l h h : H anu n n u g n N. P r P asetyo
Teori Himpunan Oleh : Hanung N. Prasetyo Meski sekilas berbeda, akan kita lihat bahwa logika matematika dan teori himpunan berhubungan sangat erat. Matematika Diskrit Kuliah-2 2 Definisi: himpunan (set)
LANDASAN MATEMATIKA Handout 1 (Himpunan)
LANDASAN MATEMATIKA Handout 1 (Himpunan) Tatik Retno Murniasih, S.Si., M.Pd. /[email protected] / [email protected] Standar Kompetensi Mahasiswa dapat mengerti dan memahami arti himpunan, cara menyatakan
Teori Himpunan Elementer
Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15
Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,
Mohammad Fal Sadikin
Mohammad Fal Sadikin Purcell, Varberg, Rigdon, Kalkulus, Erlangga, 2004. Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi, Penerbit BPFE Yogyakarta, 1996. Himpunan : kumpulan objek yang didefinisikan
[HIMPUNAN] MODUL MATEMATIKA SMP KELAS VII KURIKULUM 2013 RAJASOAL..COM. istiyanto
2014 MODUL MATEMATIKA SMP KELAS VII RAJASOAL..COM KURIKULUM 2013 istiyanto [HIMPUNAN] Modul ini berisi rangkuman materi mengenai Himpunan untuk siswa SMP kelas VII. Modul ini disusun sesuai dengan kurikulum
Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:
Teori himpunan Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang
LOGIKA MATEMATIKA PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN. TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
LOGIKA MATEMATIKA Modul ke: PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN Fakultas ILKOM TITI RATNASARI, SSi., MSi Program Studi SISTEM INFORMASI www.mercubuana.ac.id Pengertian Himpunan Definisi
1.2 PENULISAN HIMPUNAN
BAB I HIMPUNAN 1.1 PENGERTIAN Definisi : Himpunan adalah kumpulan benda atau hal hal lain yang telah terdefinisi secara jelas. Benda atau hal hal lain tersebut disebut elemen atau unsure atau anggota himpunan.
LANDASAN MATEMATIKA Handout 2
LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. [email protected]
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo 1 2 Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggotaanggota dari
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
Himpunan. by Ira Prasetyaningrum. Page 1
Himpunan by Ira Prasetyaningrum Page 1 Set / Himpunan Set/Himpunan = kumpulan dari objek-objek yang berbeda Anggota Himpunan disebut elemen/anggota Contoh Listing: Example: A = {1,3,5,7} = {7, 5, 3, 1,
H I M P U N A N. 1 Matematika Ekonomi Definisi Dasar
H I M P U N A N 1.1. Definisi Dasar Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu
Ulang Kaji Konsep Matematika
Ulang Kaji Konsep Matematika Teori Bahasa dan Automata Viska Mutiawani - Informatika FMIPA Unsyiah 1 Ulang Kaji Konsep Matematika Set / himpunan Fungsi Relasi Graf Teknik pembuktian Viska Mutiawani - Informatika
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I oleh : Lisna Zahrotun, S.T, M.Cs [email protected] lisnazahrotun.tif.uad.ac.id 1 Penilaian : 1. UTS 25% 2. UAS 30% 3. Keaktifan 4. Praktikum
Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.
LOGIKA MATEMATIKA. Dosen: Drs. Sumardi Hs., M.Sc. Modul ke: 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM LOGIKA MATEMATIKA Dosen: Program Studi Teknik Informatika Drs. Sumardi Hs., M.Sc. Template Modul Himpunan 1 Tentang Abstrak Modul ini membahas pengertian himpunan, notasi-notasi,
Logika Matematika. Teknik Informatika IT Telkom
Logika Matematika Andrian Rakhmatsyah Teknik Informatika IT Telkom 1 OUTLINE ATURAN PENILAIAN SYLABUS PUSTAKA TEORI HIMPUNAN BAB I ALJABAR BOOLEAN 2 PENILAIAN UTS : 35% UAS : 40% KUIS : 20% PR/PRAKTEK
Logika Matematika. Pengertian Himpuan, Cara Penyajian Himpunan, Bentuk- Bentuk Himpunan, dan Operasi Himpunan. Harni Kusniyati, ST.
Modul ke: Logika Matematika Pengertian Himpuan, Cara Penyajian Himpunan, Bentuk- Bentuk Himpunan, dan Operasi Himpunan Fakultas Ilmu Komputer Harni Kusniyati, ST., MKom Program Studi Teknik Informatika
BAB 1 PENGANTAR. 1.1 Himpunan
BAB 1 PENGANTAR Bab ini menyajikan tentang materi pengantar untuk mata kuliah struktur Aljabar. Bab ini bertujuan untuk membantu mahasiswa untuk menyiapkan diri dalam menempuh matakuliah Struktur Aljabar.
MATEMATIKA 1. Pengantar Teori Himpunan
MATEMATIKA 1 Silabus: Logika, Teori Himpunan, Sistem Bilangan, Grup, Aljabar Linier, Matriks, Fungsi, Barisan dan deret, Beberapa Cara pembuktian Pengertian Himpunan Pengantar Teori Himpunan Himpunan adalah
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2 2/24/2016 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
Urian Singkat Himpunan
Urian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] February 27, 2013 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Logika Matematika Himpunan
Modul ke: Logika Matematika Himpunan Modul ini menjelaskan mengenai himpunan dan operasi-operasi dasar himpunan. Fakultas ILMU KOMPUTER Tedjo Nugroho, ST. MT Program Studi Sistem Informasi www.mercubuana.ac.id
Pengantar Matematika Diskrit
Pengantar Matematika Diskrit Referensi : Rinaldi Munir, Matematika Diskrit, Informatika Bandung 2005 1 Matematika Diskrit? Bagian matematika yang mengkaji objek-objek diskrit Benda disebut diskrit jika
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill Book Company,
MATEMATIKA BISNIS. Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan. Sitti Rakhman, SP., MM. Modul ke: Fakultas FEB. Program Studi Manajemen
Modul ke: MATEMATIKA BISNIS Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan Fakultas FEB Sitti Rakhman, SP., MM. Program Studi Manajemen www.mercubuana.ac.id KONTRAK PERKULIAHAN SAP Rincian Besarnya Bobot
DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.
HIMPUNN Himpunan (set): DEFINISI Kumpulan objek-objek yang berbeda. Dengan kata lain : Kumpulan dari objek-objek tertentu yang merupakan suatu kesatuan. Elemen dari himpunan : Obyek-obyek itu sendiri.
Himpunan, Dan Fungsi. Ira Prasetyaningrum,M.T
Himpunan, Dan Fungsi Ira Prasetyaningrum,M.T Materi Matematika 1 Himpunan dan fungsi Matrik Limit dan kekontinuan Differensial Trigonometri Integral Bilangan Komplek Peraturan Di Kelas Mahasiswa Maksimal
HIMPUNAN MEMBAHAS TENTANG:
Modul ke: HIMPUNAN MEMBAHAS TENTANG: Fakultas Ekonomi dan Bisnis Program Studi Akuntansi www.mercubuana.ac.id PENGERTIAN HIMPUNAN, PENYAJIAN HIMPUNAN, HIMPUNAN UNIVERSAL DAN HIMPUNAN KOSONG, OPERASI HIMPUNAN,
Pertemuan 6. Operasi Himpunan
Pertemuan 6 Operasi Himpunan Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika
Uraian Singkat Himpunan
Uraian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 3, 2014 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
[Enter Post Title Here]
[Enter Post Title Here] SISTEM BILANGAN REAL DAN HIMPUNAN A. Perubah, Konstanta dan Parameter Suatu perubah (variable) adalah sesuatu yang besarnya dapat berubah. Luas lingkaran tergantung dari jari-jarinya.
BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan
BILANGAN MODUL PERKULIAHAN
MODUL PERKULIAHAN BILANGAN Sistem bilangan real Operasi pada bilangan bulat Operasi pada bilangan pecahan Sifat-sifat bilangan berpangkat Operasi bilangan berpangkat Fakultas Program Studi Tatap Muka Kode
Pengertian Himpunan. a. kumpulan makanan lezat b. kumpulan batu-batu besar c. kumpulan lukisan indah. 1. Kumpulan yang bukan merupakan himpunan
Pengertian Himpunan Himpunan adalah sekumpulan objek yang mempunyai syarat tertentu dan jelas. Objek yang dimaksud dapat berupa bilangan, manusia, hewan, tumbuhan, negara dan sebagainya. Objek ini selanjutnya
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 08125218506 / 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill
Teori Himpunan. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Teori Himpunan
Teori Himpunan Learning is not child's play, we cannot learn without pain. - Aristotle 1 Kilas Balik Negasi (1) Semua mobil di kota Malang memiliki plat nomor N. NEGASINYA: Ada mobil di bukan kota Malang
Matematika Ekonomi. Bab I Himpunan
Matematika Ekonomi Bab I Himpunan 1.1 Pengantar Pernahkah kalian masuk ke sebuah supermarket? Tentu hampir semua orang pernah ke sana. Hal yang kita lihat adalah susunan barang yang sejenis ditempatkan
BAB I PEMBAHASAN A. HIMPUNAN DAN SUB HIMPUNAN. 1. PENGERTIAN HIMPUNAN Marilah kita perhatikan firman Allah swt dalam al qur an surat al-nur ayat 45.
BAB I PEMBAHASAN A. HIMPUNAN DAN SUB HIMPUNAN 1. PENGERTIAN HIMPUNAN Marilah kita perhatikan firman Allah swt dalam al qur an surat al-nur ayat 45. Artinya : dan Allah telah menciptakan semua jenis hewan
SILABUS MATAKULIAH. Kegiatan Pembelajaran 1. mendiskusikan pengertian atau batasan. Pokok Bahasan dan Subpokok Bahasan 1. Pengertian atau batasan
SILABUS MATAKULIAH Matakuliah : Teori Himpunan Kode Matakuliah : SKS/JS : 2/3 Standar Kompetensi : Setelah mengikuti perkuliahan mahasiswa diharapkan: (1) dan operasinya, (2) bilangan dan serta sifat-sifatnya,
Matematika: Himpunan 10/18/2011 HIMPUNAN. Syawaludin A. Harahap 1
HIMPNN Syawaludin. Harahap 1 Dikembangkan oleh matematikawan Jerman bernama George Cantor (1845-1918), dan dikenal sebagai bapak dari teori himpunan. Himpunan didefinisikan sebagai suatu kumpulan/koleksi
Modul ke: Logika Matematika. Himpunan. Fakultas FASILKOM. Bagus Priambodo. Program Studi SISTEM INFORMASI.
Modul ke: 1 Logika Matematika Himpunan Fakultas FASILKOM Bagus Priambodo Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Berbagai macam bentuk himpunan Diagram Venn Operasi
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
Bab1. Himpunan. Gajah Merpati. Burung Nuri Jerapah
Bab1. Himpunan I. Pengantar Himpunan merupakan konsep yang sangat mendasar dalam ilmu matematika. Banyak sekali kegiatan-kegiatan dalam kehidupan sehari-hari berkaitan dengan himpunan. Untuk memahami himpunan
Contoh:A= { a, e, i, o, u }; S=U = himpunan semua huruf
HIMPUNAN Definisi: himpunan (set) adalah kumpulan obyek-obyek tidak urut (unordered) dan terdefinisi dengan jelas Obyek dalam himpunan disebut elemen atau anggota (member) Himpunan yang tidak berisi obyek
MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.
MODUL 1 A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu. 2. Penyajian Himpunan Suatu himpunan dapat disajikan dengan
Materi Ke_2 (dua) Himpunan
Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau
TEORI HIMPUNAN (Kajian tentang Karakteristik, Relasi, Operasi dan Representasi Himpunan)
Outline (Kajian tentang Karakteristik, Relasi, Operasi dan Representasi Himpunan) Drs., M.App.Sc PS. Pendidikan Matematika FKIP PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline
LOGIKA MATEMATIKA. 3 SKS By : Sri Rezeki Candra Nursari
LOGIKA MATEMATIKA 3 SKS By : Sri Rezeki Candra Nursari Komposisi nilai UAS = 36% Open note UTS = 24% Open note ABSEN = 5 % TUGAS = 35% ============================ 100% Blog : reezeki2011.wordpress.com
Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.
Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang
