Pertemuan 6. Operasi Himpunan
|
|
|
- Sudirman Kusnadi
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Pertemuan 6 Operasi Himpunan
2 Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A B =. Artinya: A // B
3 2. Gabungan (union) Notasi : A B = { x x A atau x B } Contoh (i) Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A B = { 2, 5, 7, 8, 22 } (ii) A = A
4 3. Komplemen (complement) Notasi : A = { x x U, x A } Contoh: Misalkan U = { 1, 2, 3,..., 9 }, (i) jika A = {1, 3, 7, 9}, maka A = {2, 4, 6, 8} (ii) jika A = { x x/2 P, x < 9 }, maka A= { 1, 3, 5, 7, 9 }
5 Contoh : Misalkan: A = himpunan semua mobil buatan dalam negeri B = himpunan semua mobil impor C = himpunan semua mobil yang dibuat sebelum tahun 1990 D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta E = himpunan semua mobil milik mahasiswa universitas tertentu (i) mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri (E A) (E B) atau E (A B) (ii) semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta A C D (iii) semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta C D B
6 4. Selisih (difference) Notasi : A B = { x x A dan x B } = A B Contoh: (i) Jika A = { 1, 2, 3,..., 10 } dan B = { 2, 4, 6, 8, 10 }, maka A B = { 1, 3, 5, 7, 9 } dan B A = (ii) {1, 3, 5} {1, 2, 3} = {5}, tetapi {1, 2, 3} {1, 3, 5} = {2}
7 5. Beda Setangkup (Symmetric Difference) Notasi: A B = (A B) (A B) = (A B) (B A) Contoh: Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A B = { 3, 4, 5, 6 }
8 Contoh: Misalkan U = himpunan mahasiswa P = himpunan mahasiswa yang nilai ujian UTS di atas 80 Q = himpunan mahasiswa yang nilain ujian UAS di atas 80 Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80. (i) Semua mahasiswa yang mendapat nilai A : P Q (ii) Semua mahasiswa yang mendapat nilai B : P Q (iii) Semua mahasiswa yang mendapat nilai C : U (P Q)
9 6. Perkalian Kartesian (cartesian product) Notasi: A B = {(a, b) a A dan b B } Contoh: (i) Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } (ii) Misalkan A = B = himpunan semua bilangan riil, maka A B = himpunan semua titik di bidang datar
10 Catatan: 1. Jika A dan B merupakan himpunan berhingga, maka: A B = A. B. 2. (a, b) (b, a). 3. A B B A dengan syarat A atau B tidak kosong. Pada Contoh 20(i) di atas, C = { 1, 2, 3 }, dan D = { a, b }, D C = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) } C D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } D C C D. 4. Jika A = atau B =, maka A B = B A =
11 Contoh: Misalkan A = himpunan makanan = { s = soto, g = gado-gado, n = nasi goreng, m = mie rebus } B = himpunan minuman = { c = coca-cola, t = teh, d = es dawet } Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas? Jawab: A B = A B = 4 3 = 12 kombinasi dan minuman, yaitu {(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)}.
12 Perampatan Operasi Himpunan A A n i 1 A n A i A A n i 1 A n A i A A A A n A A n i 1 n A A n i i 1 i
13 Contoh: (i) A (B 1 B 2... B n ) = (A B 1 ) (A B 2 )... (A B n ) A ( n i 1 B i ) n i 1 ( A B i ) (ii) Misalkan A = {1, 2}, B = {a, b}, dan C = {, }, maka A B C = {(1, a, ), (1, a, ), (1, b, ), (1, b, ), (2, a, ), (2, a, ), (2, b, ), (2, b, ) }
14 Hukum-hukum Himpunan Disebut juga sifat-sifat (properties) himpunan Disebut juga hukum aljabar himpunan 1. Hukum identitas: A = A A U = A 3. Hukum komplemen: A A = U A A = 2. Hukum null/dominasi: A = A U = U 4. Hukum idempoten: A A = A A A = A
15 5. Hukum involusi: (A) = A 7. Hukum komutatif: A B = B A A B = B A 9. Hukum distributif: A (B C) = (A B) (A C) A (B C) = (A B) (A C) 6. Hukum penyerapan (absorpsi): A (A B) = A A (A B) = A 8. Hukum asosiatif: A (B C) = (A B) C A (B C) = (A B) C 10. Hukum De Morgan: A B = A B A B = A B 11. Hukum 0/1 = U U =
16 Prinsip Dualitas Prinsip dualitas dua konsep yang berbeda dapat saling dipertukarkan namun tetap memberikan jawaban yang benar.
17 Contoh: AS kemudi mobil di kiri depan Inggris (juga Indonesia) kemudi mobil di kanan depan Peraturan: (a) di Amerika Serikat, - mobil harus berjalan di bagian kanan jalan, - pada jalan yang berlajur banyak, lajur kiri untuk mendahului, - bila lampu merah menyala, mobil belok kanan boleh langsung (b) di Inggris, - mobil harus berjalan di bagian kiri jalan, - pada jalur yang berlajur banyak, lajur kanan untuk mendahului, - bila lampu merah menyala, mobil belok kiri boleh langsung Prinsip dualitas: Konsep kiri dan kanan dapat dipertukarkan pada kedua negara tersebut sehingga peraturan yang berlaku di Amerika Serikat menjadi berlaku pula di Inggris
18 (Prinsip Dualitas pada Himpunan) Misalkan S adalah suatu kesamaan (identity) yang melibatkan himpunan dan operasi-operasi seperti,, dan komplemen. Jika S* diperoleh dari S dengan mengganti,, U, U, sedangkan komplemen dibiarkan seperti semula, maka kesamaan S* juga benar dan disebut dual dari kesamaan S.
19 1. Hukum identitas: A = A 2. Hukum null/dominasi: A = 3. Hukum komplemen: A A = U 4. Hukum idempoten: A A = A Dualnya: A U = A Dualnya: A U = U Dualnya: A A = Dualnya: A A = A
20 5. Hukum penyerapan: A (A B) = A 6. Hukum komutatif: A B = B A 7. Hukum asosiatif: A (B C) = (A B) C 8. Hukum distributif: A (B C)=(A B) (A C) Dualnya: A (A B) = A Dualnya: A B = B A Dualnya: A (B C) = (A B) C Dualnya: A (B C) = (A B) (A C) 9. Hukum A BDe AMorgan: B Dualnya: A B = A = B 10. Hukum 0/1 = U Dualnya: U =
21 Prinsip Inklusi-Eksklusi Untuk dua himpunan A dan B: A B = A + B A B A B = A + B 2 A B
22 Contoh: Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5? Penyelesaian: A = himpunan bilangan bulat yang habis dibagi 3, B = himpunan bilangan bulat yang habis dibagi 5, A B = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK Kelipatan Persekutuan Terkecil dari 3 dan 5, yaitu 15), Yang ditanyakan adalah A B. A = 100/3 = 33, B = 100/5 = 20, A B = 100/15 = 6 A B = A + B A B = = 47 Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5.
23 Contoh: Di antara bilangan bulat antara (termasuk 101 dan 600 itu sendiri), berapa banyak bilangan yang tidak habis dibagi oleh 4 atau 5 namun tidak keduanya?
24 Penyelesaian: Diketahui: U = 500 A = 600/4 100/4 = = 125 B = 600/5 100/5 = = 100 A B = 600/20 100/20 = 30 5 = 25 yang ditanyakan Hitung terlebih dahulu A B =? A B = A + B 2 A B = = 175 untuk mendapatkan A B = U A B = = 325
25 Himpunan Ganda (multiset) Himpunan yang elemennya boleh berulang (tidak harus berbeda) disebut himpunan ganda (multiset). Contohnya, {1, 1, 1, 2, 2, 3}, {2, 2, 2}, {2, 3, 4}, {}. Multiplisitas dari suatu elemen pada himpunan ganda adalah jumlah kemunculan elemen tersebut pada himpunan ganda. Contoh: M = { 0, 1, 1, 1, 0, 0, 0, 1 }, multiplisitas 0 adalah 4. Himpunan (set) merupakan contoh khusus dari suatu multiset, yang dalam hal ini multiplisitas dari setiap elemennya adalah 0 atau 1. Kardinalitas dari suatu multiset didefinisikan sebagai kardinalitas himpunan padanannya (ekivalen), dengan mengasumsikan elemen-elemen di dalam multiset semua berbeda.
26 Operasi Antara Dua Buah Multiset: Misalkan P dan Q adalah multiset: 1. P Q adalah suatu multiset yang multiplisitas elemennya sama dengan multiplisitas maksimum elemen tersebut pada himpunan P dan Q. Contoh: P = { a, a, a, c, d, d } dan Q ={ a, a, b, c, c }, P Q = { a, a, a, b, c, c, d, d } 2. P Q adalah suatu multiset yang multiplisitas elemennya sama dengan multiplisitas minimum elemen tersebut pada himpunan P dan Q. Contoh: P = { a, a, a, c, d, d } dan Q = { a, a, b, c, c } P Q = { a, a, c }
27 3. P Q adalah suatu multiset yang multiplisitas elemennya sama dengan: multiplisitas elemen tersebut pada P dikurangi multiplisitasnya pada Q, jika selisihnya positif 0, jika selisihnya nol atau negatif. Contoh: P = { a, a, a, b, b, c, d, d, e } dan Q = { a, a, b, b, b, c, c, d, d, f } maka P Q = { a, e } 4. P + Q, yang didefinisikan sebagai jumlah (sum) dua buah himpunan ganda, adalah suatu multiset yang multiplisitas elemennya sama dengan penjumlahan dari multiplisitas elemen tersebut pada P dan Q. Contoh: P = { a, a, b, c, c } dan Q = { a, b, b, d }, P + Q = { a, a, a, b, b, b, c, c, d }
Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Teori Himpunan 2011 Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. -
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2 2/24/2016 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Bahan kuliah Matematika Diskrit 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan,
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
1 HIMPUNAN DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMK adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa.
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah
BAB I H I M P U N A N
1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
1 Pendahuluan I PENDAHULUAN
1 Pendahuluan 1.1 Himpunan I PENDAHULUAN Himpunan merupakan suatu konsep mendasar dalam semua cabang ilmu matematika. Mengapa himpunan adalah hal yang sangat penting dalam matematika?, untuk mencari jawaban
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
Pengertian Himpunan. a. kumpulan makanan lezat b. kumpulan batu-batu besar c. kumpulan lukisan indah. 1. Kumpulan yang bukan merupakan himpunan
Pengertian Himpunan Himpunan adalah sekumpulan objek yang mempunyai syarat tertentu dan jelas. Objek yang dimaksud dapat berupa bilangan, manusia, hewan, tumbuhan, negara dan sebagainya. Objek ini selanjutnya
Materi 2: Operasi Terhadap Himpunan
Materi 2: Operasi Terhadap Himpunan I Nyoman Kusuma Wardana STMIK STIKOM Bali Operasi pada Himpunan: 1. Gabungan 2. Irisan 3. Komplemen 4. Selisih 5. Beda setangkup 6. Perkalian kartesian Hukum-hukum Himpunan
Logika Matematika Teori Himpunan
Pertemuan ke-2 Logika Matematika Teori Himpunan Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2007/2008 Perampatan Operasi Himpunan A1 A2... An = Ai A1 U A2 U... U An = U
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011
Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan
TEORI HIMPUNAN. A. Penyajian Himpunan
TEORI HIMPUNAN A. Penyajian Himpunan Definisi 1 Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Dalam
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1
BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur, anggota, elemen) yang dirumuskan secara jelas dan tegas, sehingga dapat dibeda-bedakan antara satu dengan
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
LANDASAN MATEMATIKA Handout 2
LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. [email protected]
HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si
HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas
HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga
DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.
HIMPUNN Himpunan (set): DEFINISI Kumpulan objek-objek yang berbeda. Dengan kata lain : Kumpulan dari objek-objek tertentu yang merupakan suatu kesatuan. Elemen dari himpunan : Obyek-obyek itu sendiri.
MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.
MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi
H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.
H i m p u n a n Oleh : Panca Mudji Rahardjo, ST. MT. Himpunan Definisi himpunan Penyajian himpunan Definisi-definisi Operasi himpunan Prinsip inklusi dan eksklusi Himpunan ganda 1 Definisi Himpunan (set)
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN Apakah himpunan itu? Tidak ada definisi himpunan, yang ada hanya sinonim-sinonim atau kesamaan kata. 1. Menurut Kamus Besar Bahasa Indonesia: himpunan
Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union),
Lecture 1: ALGEBRA OF SETS Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union), A B = {x x A x B} Irisan (intersection),
Matematika Diskrit (Discrete Mathematics) Oleh : Asep Jalaludn,S.T.,M.M.
Matematika Diskrit (Discrete Mathematics) Oleh : Asep Jalaludn,S.T.,M.M. LOGIKA Oleh : Asep Jalaludn,S.T.,M.M. MUKADIMAH Dia akan meninggikan orang-orang yang beriman di antara kamu dan orang-orang yang
Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15
Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,
Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar
Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I oleh : Lisna Zahrotun, S.T, M.Cs [email protected] lisnazahrotun.tif.uad.ac.id 1 Penilaian : 1. UTS 25% 2. UAS 30% 3. Keaktifan 4. Praktikum
FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011
FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan Operasi Himpunan 4. Beda Setangkup
HIMPUNAN MEMBAHAS TENTANG:
Modul ke: HIMPUNAN MEMBAHAS TENTANG: Fakultas Ekonomi dan Bisnis Program Studi Akuntansi www.mercubuana.ac.id PENGERTIAN HIMPUNAN, PENYAJIAN HIMPUNAN, HIMPUNAN UNIVERSAL DAN HIMPUNAN KOSONG, OPERASI HIMPUNAN,
Himpunan. Himpunan (set)
BAB 1 HIMPUNAN Himpunan (set) Himpunan Himpunan (set) adalah kumpulan dari objek-objek yang mempunyai sifat tertentu dan didefinisikan secara jelas. Anggota Himpunan Objek di dalam himpunan disebut elemen,
MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO
MTEMTIK BISNIS BY : NIN SUDIBYO BB 1. HIMPUNN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek yang harus didefinisikan dengan jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan
Mohammad Fal Sadikin
Mohammad Fal Sadikin Purcell, Varberg, Rigdon, Kalkulus, Erlangga, 2004. Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi, Penerbit BPFE Yogyakarta, 1996. Himpunan : kumpulan objek yang didefinisikan
LOGIKA MATEMATIKA PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN. TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
LOGIKA MATEMATIKA Modul ke: PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN Fakultas ILKOM TITI RATNASARI, SSi., MSi Program Studi SISTEM INFORMASI www.mercubuana.ac.id Pengertian Himpunan Definisi
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
INF-104 Matematika Diskrit
Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang
Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.
MODUL STRUKTUR ALJABAR 1. Disusun oleh : Isah Aisah, Dra., MSi NIP
MODUL STRUKTUR ALJABAR 1 Disusun oleh : Isah Aisah, Dra., MSi NIP 196612021999012001 Program Studi S-1 Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Padjadjaran Januari 2017 DAFTAR
Review Sistem Digital : Aljabar Boole
JURUSAN PENDIDIKAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK UNY Sem 5 9/ Review Sistem Digital : Aljabar Boole S dan D3 Mata Kuliah : Elektronika Industri 2 x 5 Lembar Kerja Dalam Aljabar Boole, Misalkan terdapat
POLITEKNIK TELKOM BANDUNG
POLITEKNIK TELKOM BANDUNG 29 Penyusun dan Editor Adi Wijaya M.Si Dilarang menerbitkan kembali, menyebarluaskan atau menyimpan baik sebagian maupun seluruh isi buku dalam bentuk dan dengan cara apapun tanpa
Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.
Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang
MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H
MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
[HIMPUNAN] MODUL MATEMATIKA SMP KELAS VII KURIKULUM 2013 RAJASOAL..COM. istiyanto
2014 MODUL MATEMATIKA SMP KELAS VII RAJASOAL..COM KURIKULUM 2013 istiyanto [HIMPUNAN] Modul ini berisi rangkuman materi mengenai Himpunan untuk siswa SMP kelas VII. Modul ini disusun sesuai dengan kurikulum
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.
I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan
BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;
BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga
ALJABAR BOOLEAN. Misalkan terdapat. Definisi:
ALJABAR BOOLEAN Definisi: Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada opeartor +,, dan - dan adalah dua elemen yang berbeda dari B. Tupel
1.2 PENULISAN HIMPUNAN
BAB I HIMPUNAN 1.1 PENGERTIAN Definisi : Himpunan adalah kumpulan benda atau hal hal lain yang telah terdefinisi secara jelas. Benda atau hal hal lain tersebut disebut elemen atau unsure atau anggota himpunan.
Materi Ke_2 (dua) Himpunan
Materi Ke_2 (dua) Himpunan 12-10-2013 OPERASI HIMPUNAN Gabungan (union), notasi U : Gabungan dari himpunan A dan himpunan B merupakan suatu himpunan yang anggota-anggotanya adalah anggota himpunan A atau
Definisi Aljabar Boolean
Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf
I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)
I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,
Definisi Aljabar Boolean
1 UNTUK DOWNLOAD LEBIH BANYAK EBOOKS TENTANG KOMPUTER KUNJUNGI http://wirednotes.blogspot.com Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner: - B : himpunan
BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan
BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional
Bab1. Himpunan. Gajah Merpati. Burung Nuri Jerapah
Bab1. Himpunan I. Pengantar Himpunan merupakan konsep yang sangat mendasar dalam ilmu matematika. Banyak sekali kegiatan-kegiatan dalam kehidupan sehari-hari berkaitan dengan himpunan. Untuk memahami himpunan
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
PENDAHULUAN. 1. Himpunan
PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:
Teori himpunan Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang
MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.
MODUL 1 A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu. 2. Penyajian Himpunan Suatu himpunan dapat disajikan dengan
Modul ke: Matematika Ekonomi. Himpunan dan Bilangan. Bahan Ajar dan E-learning
Modul ke: 01 Pusat Matematika Ekonomi Himpunan dan Bilangan Bahan Ajar dan E-learning MAFIZATUN NURHAYATI, SE.MM. 08159122650 [email protected] Selamat Datang di Perkuliahan MATEMATIKA EKONOMI 2 BUKU
II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar
II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang
Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan
Overview Pertemuan : I Dosen Pembina : Danang Junaedi Deskripsi Tujuan Instruksional Kaitan Materi Penilaian Grade Referensi Jurusan Teknik Informatika Universitas Widyatama Deskripsi Mata kuliah ini mempelajari
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill Book Company,
Urian Singkat Himpunan
Urian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] February 27, 2013 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Uraian Singkat Himpunan
Uraian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 3, 2014 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Hukum-hukum Logika 2/8/ Hukum komutatif: p q q p p q q p. 8. Hukum asosiatif: p (q r) (p q) r p (q r) (p q) r
Hukum-hukum Logika Disebut juga hukum-hukum aljabar proposisi. 1. Hukum identitas: p F p p T p 3. Hukum negasi: p ~p T p ~p F 5. Hukum involusi (negasi ganda): ~(~p) p 2. Hukum null/dominasi: p F F p T
MATEMATIKA 1. Pengantar Teori Himpunan
MATEMATIKA 1 Silabus: Logika, Teori Himpunan, Sistem Bilangan, Grup, Aljabar Linier, Matriks, Fungsi, Barisan dan deret, Beberapa Cara pembuktian Pengertian Himpunan Pengantar Teori Himpunan Himpunan adalah
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
Relasi Tegas (Crips Relation)
Logika Fuzzy (3) 1 Cartesian Product Terdapat dua himpunan A = {0, 1} dan B = {a, b, c}. Maka beberapa variasi hasil-kali kartesian (cartesian product) dapat dituliskan sebagai berikut: 2 Relasi Tegas
Teori Himpunan. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Teori Himpunan
Teori Himpunan Learning is not child's play, we cannot learn without pain. - Aristotle 1 Kilas Balik Negasi (1) Semua mobil di kota Malang memiliki plat nomor N. NEGASINYA: Ada mobil di bukan kota Malang
yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya (Definisi 2.1 Menurut Lipschutz, Seymour & Marc Lars Lipson dalam
2.1 Definisi Aljabar Boolean Aljabar Boolean dapat didefinisikan secara abstrak dalam beberapa cara. Cara yang paling umum adalah dengan menspesifikasikan unsur unsur pembentuknya dan operasi operasi yang
03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa
0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :
Matematika informatika 1 ALJABAR BOOLEAN
Matematika informatika 1 ALJABAR BOOLEAN ALJABAR BOOLEAN Matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya
Teori Himpunan Ole l h h : H anu n n u g n N. P r P asetyo
Teori Himpunan Oleh : Hanung N. Prasetyo Meski sekilas berbeda, akan kita lihat bahwa logika matematika dan teori himpunan berhubungan sangat erat. Matematika Diskrit Kuliah-2 2 Definisi: himpunan (set)
Matematika Ekonomi. Bab I Himpunan
Matematika Ekonomi Bab I Himpunan 1.1 Pengantar Pernahkah kalian masuk ke sebuah supermarket? Tentu hampir semua orang pernah ke sana. Hal yang kita lihat adalah susunan barang yang sejenis ditempatkan
BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang
FPMIPA UPI ILMU KOMPUTER I. TEORI HIMPUNAN
I. TEORI HIMPUNAN 1. Definisi Himpunan hingga dan Tak hingga 2. Notasi himpuanan 3. Cara penulisan 4. Macam-macam Himpunan 5. Operasi Himpunan 6. Hukum pada Operasi Himpunan 7. Perkalian Himpunan (Product
Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.
Glosarium A Akar pangkat dua : akar pangkat dua suatu bilangan adalah mencari bilangan dari bilangan itu, dan jika bilangan pokok itu dipangkatkan dua akan sama dengan bilangan semula; akar kuadrat. Asosiatif
BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.
BILANGAN CACAH a. Pengertian Bilangan Cacah Bilangan cacah terdiri dari semua bilangan asli (bilangan bulat positif) dan unsur (elemen) nol yang diberi lambang 0, yaitu 0, 1, 2, 3, Bilangan cacah disajikan
Definisi Aljabar Boolean
Aljabar Boolean Definisi Aljabar Boolean Misalkan terdapat - Dua operator biner: + dan - Sebuah operator uner:. - B : himpunan yang didefinisikan pada operator +,, dan - dan adalah dua elemen yang berbeda
SISTEM BILANGAN BULAT
SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil
