STK 211 Metode Statistika PENGUJIAN HIPOTESIS
|
|
|
- Susanti Lie
- 9 tahun lalu
- Tontonan:
Transkripsi
1 STK Metode Statistika PENGUJIAN HIPOTESIS
2 Pendahuluan Dalam mempelajari karakteristik populasi sering telah memiliki hipotesis tertentu. pemberian DHA pada anak-anak akan menambah kecerdasannya atau pemberian vaksin polio akan mengurangi jumlah anak-anak yang menderita penyakit ini Diperlukan pengumpulan data Apakah data mendukung hipotesis tersebut
3 Pendahuluan Hipotesis dalam statistika dinyatakan dalam dua bentuk yaitu: H 0 (hipotesis nol): suatu pernyataan / anggapan yang umumnya ingin kita tolak H / H A (hipotesis alternatif): pernyataan lain yang akan diterima jika H 0 ditolak
4 Kesalahan dalam Keputusan Pengambilan keputusan akan memunculkan dua jenis kesalahan yaitu: Salah jenis I (Error type I) : kesalahan akibat menolak H 0 padahal H 0 benar Salah jenis II (Error type II) : kesalahan akibat menerima H 0 padahal H benar Besarnya peluang kesalahan dapat ini dapat dihitung sebagai berikut: P(salah jenis I) P(tolak H 0 H 0 benar) α P(salah jenis II) P(terima H 0 H benar) β
5 H 0 b e n a r H 0 s a l a h T o l a k H 0 P e l u a n g s a l a h j e n i s I ( T a r a f n y a t a ; α ) T e r i m a H 0 T i n g k a t k e p e r c a y a a n ( - α ) K u a s a p e n g u j i a n ( - β ) P e l u a n g s a l a h j e n i s I I ( β )
6 Efek α dan β Teladan : Andaikan suatu perusahaan A akan menerima dari suplier apabila produknya minimal mengandung 55% zat X. Untuk meyakinkan maka diambil 9 contoh (dgn asumsi simpangan baku sebesar %).
7 Sisi suplier : Ingin semua diterima
8 Dengan μ65% hampir semua kiriman suplier diterima.
9 Kondisi ini tentu tidak menguntungkan suplier. Bagaimana apabila kriteria β diturunkan?.
10
11 Terlihat bahwa apabila beta diperkecil dgn kondisi yg lain tetap Tidak menguntungkan sisi konsumen Bagaimana supaya menurunkan keduanya?
12
13
14
15
16
17
18 Untuk menurukan kedua-duanya secara simultan hanya ada satu cara yaitu dengan meningkatkan banyaknya contoh
19 Sampel berukuran 5 diambil secara acak dari populasi normal(µ;σ 9). Hipotesis yang akan diuji, H 0 : µ 5 H : µ 0 Tolak H 0 jika rata-rata kurang dari atau sama dengan.5 Berapakah besarnya kesalahan jenis I dan II?
20 Jawab: P(salah jenis I) P(tolak H 0 µ 5) P(z (.5-5)/(3/ 5)) P(z ) 0 P(salah jenis II) P(terima H 0 µ 0) P(z (.5-0)/(3/ 5)) P(z 4.67 ) - P(z 4.67 ) 0
21 Sayangnya kita tahu bahwa parameter populasi sering kali tidak diketahui Sehingga dalam pengujian hipotesis hanya nilai salah jenis I (α) yang dapat dikendalikan. Akan timbul pertanyaan : Berapa nilai α yang digunakan? Tergantung resiko keputusan yang akan diambil
22 STK Metode Statistika Pengujian Hipotesis: - Nilai Tengah Populasi - Selisih Dua Nilai Tengah Populasi
23 Langkah-langkah dalam Pengujian Hipotesis () Tuliskan hipotesis yang akan diuji Ada dua jenis hipotesis: Hipotesis sederhana Hipotesis nol dan hipotesis alternatif sudah ditentukan pada nilai tertentu H 0 : µ µ 0 vs H : µ µ H 0 : σ σ 0 vs H : σ σ H 0 : P P 0 vs H : P P
24 Hipotesis majemuk Hipotesis nol dan hipotesis alternatif dinyatakan dalam interval nilai tertentu b.. Hipotesis satu arah H 0 : µ µ 0 vs H : µ < µ 0 H 0 : µ µ 0 vs H : µ > µ 0 b.. Hipotesis dua arah H 0 : µ µ 0 vs H : µ µ 0
25 (). Tetapkan tingkat kesalahan/peluang salah jenis I/taraf nyata α (3). Deskripsikan data sampel yang diperoleh (hitung rataan, ragam, standard error dll) (4). Hitung statistik ujinya Statistik uji yang digunakan sangat tergantung pada sebaran statistik dari penduga parameter yang diuji TELADAN H 0 : µ µ 0 maka maka statistik ujinya bisa t- student atau normal baku (z) atau x µ t h 0 s / n x µ 0 z h σ / n
26 (5) Tentukan batas kritis atau daerah penolakan H 0 Daerah penolakan H 0 sangat tergantung dari bentuk hipotesis alternatif (H ) TELADAN H : µ < µ0 Tolak H 0 jika th < -t(α; db)(tabel) H : µ > µ0 Tolak H 0 jika th > t(α; db)(tabel) H : µ µ0 Tolak H 0 jika th > t(α/; db)(tabel) (6).Tarik keputusan dan kesimpulan
27 Pengujian Nilai Tengah Populasi Kasus Satu Populasi Suatu contoh acak diambil dari satu populasi Normal berukuran n Tujuannya adalah menguji apakah parameter µ sebesar nilai tertentu, katakanlah µ 0 Populasi X~N(µ,σ ) Acak Uji µ Sampel
28 Hipotesis yang dapat diuji: Hipotesis satu arah: H 0 : µ µ 0 vs H : µ < µ 0 H 0 : µ µ 0 vs H : µ > µ 0 Hipotesis dua arah: H 0 : µ µ 0 vs H : µ µ 0
29 Statistik uji: Jika ragam populasi (σ ) diketahui : x z h σ / µ Jika ragam populasi (σ ) tidak diketahui : x t h s / 0 n µ 0 n
30 Daerah kritis pada taraf nyata (α) Besarnya taraf nyata sangat tergantung dari bidang yang sedang dikaji Daerah penolakan H 0 sangat tergantung dari bentuk hipotesis alternatif (H ) dan statistik uji yang digunakan. Teladan di bawah untuk statistik uji T. H: µ < µ0 Tolak H0 jika th < -t (α; dbn-) (tabel) H: µ > µ0 Tolak H0 jika th > t (α; dbn-) (tabel) H: µ µ0 Tolak H0 jika th > t (α/; dbn-) (tabel)
31 TELADAN Batasan yang ditentukan oleh pemerintah terhadap emisi gas CO kendaraan bermotor adalah 50 ppm. Sebuah perusahaan baru yang sedang mengajukan ijin pemasaran mobil, diperiksa oleh petugas pemerintah untuk menentukan apakah perusahan tersebut layak diberikan ijin. Sebanyak 0 mobil diambil secara acak dan diuji emisi CO-nya. Dari data yang didapatkan, rata-ratanya adalah 55 dan ragamnya 4.. dengan menggunakan taraf nyata 5%, layakkan perusahaan tersebut mendapat ijin?
32 Hipotesis yang diuji: H 0 : µ < 50 vs H : µ > 50 Statistik uji: t h (55-50)/ (4./0)0.9 Daerah kritis pada taraf nyata 0.05 Tolak H 0 jika t h > t (0,05;db9),79
33 Kesimpulan: Tolak H 0, artinya emisi gas CO kendaraan bermotor yang akan dipasarkan oleh perusahaan tersebut melebihi batasan yang ditentukan oleh pemerintah sehingga perusahaan tersebut tidak layak memperoleh ijin untuk memasarkan mobilnya.
34 Perbandingan Nilai Tengah Dua Populasi Kasus Dua Sample Saling Bebas Setiap populasi diambil sampel acak berukuran tertentu (bisa sama, bisa juga tidak sama) Pengambilan kedua sampel saling bebas Tujuannya adalah menguji apakah parameter µ sama dengan parameter µ Populasi I X~N(µ,σ ) µ??? µ Acak dan saling bebas Populasi II X~N(µ,σ ) Sampel I (n ) Sampel II (n )
35 Hipotesis Hipotesis satu arah: H 0 : µ - µ δ 0 vs H : µ - µ <δ 0 H 0 : µ - µ δ 0 vs H : µ - µ >δ 0 Hipotesis dua arah: H 0 : µ - µ δ 0 vs H : µ - µ δ 0
36 Statistik uji: Jika ragam kedua populasi diketahui katakan σ dan σ : Jika ragam kedua populasi tidak diketahui: ) ( 0 ) ( x x h x x z σ δ ) ( 0 ) ( x x h s x x t δ ( ) + + ; ; σ σ σ σ n s n s n n s s g x x + ; ; σ σ σ σ db efektif n n db
37 Daerah kritis pada taraf nyata (α) Pada prinsipnya sama dengan kasus satu sampel, dimana daerah penolakan H 0 sangat tergantung dari bentuk hipotesis alternatif (H ) H: H : µ - µ <δ 0 Tolak H0 jika t h < -t (α; db) (tabel) H: µ - µ >δ 0 Tolak H0 jika t h > t (α; db) (tabel) H: µ - µ δ 0 Tolak H0 jika t h > t (α/; db) (tabel)
38 Teladan Dua buah perusahaan yang saling bersaing dalam industri kertas karton saling mengklaim bahwa produknya yang lebih baik, dalam artian lebih kuat menahan beban. Untuk mengetahui produk mana yang sebenarnya lebih baik, dilakukan pengambilan data masing-masing sebanyak 0 lembar, dan diukur berapa beban yang mampu ditanggung tanpa merusak karton. Datanya adalah : Persh. A Persh. B Ujilah karton produksi mana yang lebih kuat dengan asumsi ragam kedua populasi berbeda, gunakan taraf nyata 0%
39 Jawab: Rata-rata dan ragam kedua sampel: x x ,5 56,5 s s n n x ( xi ) n( n ) x ( xi ) n( n ) 0(905) - (45) 0(9) 0(355) - (565) 0(9) Perbandingan kekuatan karton Hipotesis: H 0 : µ µ vs H : µ µ
40 Statistik uji: (ragam populasi tidak diketahui dan diasumsikan σ σ ) ( x x ) ( µ µ ) t h ( s / n ) + ( s / n ) 56,5 4,5 0 66,94 /0 + 06,94 /0 3,36 db ( s / n 7,0 7 ) ( s /( n / n + s / n) ) + ( s / n ) /( n ) (0.34 / /0) (0.34 /0) / 9 + (8.8 /0) / 9 Daerah kritis pada taraf nyata 0%: Tolak H 0 jika t h > t (0,05;7),740 Kesimpulan: Tolak H 0, artinya kekuatan karton kedua perusahaan berbeda nyata pada taraf nyata 0%. Diduga karton yang diproduksi oleh perusahaan B lebih kuat daripada karton A
41 Perbandingan Nilai Tengah Dua Populasi Berpasangan Kasus Dua Sample Saling Berpasangan Setiap populasi diambil sampel acak berukuran n (wajib sama) Pengambilan kedua sampel berpasangan, ada pengkait antar kedua sampel (bisa waktu, objek, tempat, dll) Tujuannya adalah menguji apakah parameter µ sama dengan parameter µ Populasi I X~N(µ,σ ) Sampel I (n) µ??? µ Acak dan berpasangan Populasi II X~N(µ,σ ) Sampel II (n) Pasangan Pasangan Pasangan n
42 Hipotesis Hipotesis satu arah: H 0 : µ - µ δ 0 vs H : µ - µ <δ 0 atau H 0 : µ D δ 0 vs H : µ D <δ 0 H 0 : µ - µ δ 0 vs H : µ - µ >δ 0 atau H 0 : µ D δ 0 vs H : µ D >δ 0 Hipotesis dua arah: H 0 : µ - µ δ 0 vs H : µ - µ δ 0 atau H 0 : µ D δ 0 vs H : µ D δ 0
43 Statistik uji: Gunakan t atau z jika ukuran contoh n besar d δ t h 0 s / n Dimana d adalah simpangan antar pengamatan pada sampel pertama dengan sampel kedua Pasangan 3 n Sampel (X) x x x3 xn Sampel (X) x x x3 xn D (X-X) d d d3 dn Daerah Kritis: (lihat kasus satu sampel)
44 Ilustrasi Suatu klub kesegaran jasmani ingin mengevaluasi program diet, kemudian dipilih secara acak 0 orang anggotanya untuk mengikuti program diet tersebut selama 3 bulan. Data yang diambil adalah berat badan sebelum dan sesudah program diet dilaksanakan, yaitu: Berat Badan Peserta Sebelum (X) Sesudah (X) DX-X Apakah program diet tersebut dapat mengurangi berat badan minimal 5 kg? Lakukan pengujian pada taraf nyata 5%!
45 Jawab: Karena kasus ini merupakan contoh berpasangan, maka: Hipotesis: H 0 : µ D 5 vs H : µ D < 5 Deskripsi: d d n 5 0 n ( ) i d i di s s d 5, d,43,0 n( n ) 0(73) (5) 0(9),43 Statistik uji: t d µ d d µ d s s d d n 5, 5,0 / 0 0,6
46 Daerah kritis pada α5% Tolak H 0, jika t h < -t (α5%,db9) Kesimpulan: Terima H 0, artinya program diet tersebut dapat mengurangi berat badan minimal 5 kg
STK 511 Analisis statistika. Materi 6 Pengujian Hipotesis
STK 5 Analisis statistika Materi 6 Pengujian Hipotesis Pendahuluan Dalam mempelajari Karakteristik Populasi kita sering telah memiliki pernyataan/anggapan tertentu. pemberian DHA pada anak-anak akan menambah
Materi 1 : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN
Materi : Review Statistika Inferensia Pengujian Hipotesis PERANCANGAN PERCOBAAN Pendahuluan Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung
STK511 Analisis Statistika. Pertemuan 6 Statistika Inferensia (2)
STK511 Analisis Statistika Pertemuan 6 Statistika Inferensia () 6. Statistika Inferensia () Pengujian Hipotesis x? s p 6. Statistika Inferensia () Pengujian Hipotesis Rataan populasi: nilainya tidak diketahui
STK511 Analisis Statistika. Pertemuan 5 Statistika Inferensia (1)
STK511 Analisis Statistika Pertemuan 5 Statistika Inferensia (1) Pendugaan Parameter mengacu pada suatu proses yang menggunakan data contoh untuk menduga nilai suatu parameter (populasi). 5. Statistika
Hipotesis Statistik. 3. Terima H 1 (tolak H 0 ) dan populasi sebenarnya. memang H 0 benar = P(terima H 0 / pop H 0 )= 1-α
Pengujian Hipotesis Hipotesis: kesimpulan sementara dari penelitian, yang akan dibuktikan dengan data empiris Utk diuji secara statistik hipotesis statistik (Ho vs H1) : pernyataan (dugaan) mengenai satu
PENGERTIAN PENGUJIAN HIPOTESIS
PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau
LOGO PENGUJIAN HIPOTESIS HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND
LOGO PENGUJIAN HIPOTESIS HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND Kompetensi Khusus menjelaskan mengenai pengujian hipotesis dan hal-hal yang terkait menguraikan langkah-langkah pengujian
Pengujian Hipotesis. Oleh : Dewi Rachmatin
Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan
Pengertian Pengujian Hipotesis
PENGUJIAN HIPOTESIS Pengertian Pengujian Hipotesis HUPO BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau pernyataan
DISTRIBUSI SAMPLING besar
DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan
deck of 52 cards
deck of 52 cards http://www.amstat.org/publications/jse/v2n1/eckert.html Volunteer "I am going to have (...) pull out a card from the deck. What is the probability that she/he pulls out a red card? P=...
PENGUJIAN HIPOTESIS 1
PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang
PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih
PENGUJIAN HIPOTESIS. Pendahuluan Hipotesis Statistik : populasi. pernyataan atau dugaan mengenai satu atau lebih Pengujian hipotesis berhubungan dengan penerimaan atau penolakan suatu hipotesis. Kebenaran
Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya
Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa
UJI HIPOTESIS SATU-SAMPEL
UJI HIPOTESIS SATU-SAMPEL Pengantar 1. Tulisan ini terkait dengan artikel berjudul KETIKA ILMU HUKUM SEIRING STATISTIKA pada laman www.edscyclopedia.com. Pada website tersebut, mengenai uji hipotesis secara
STATISTIKA II (BAGIAN
STATISTIKA II (BAGIAN - ) Oleh : WIJAYA email : [email protected] FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 008 Wijaya : Statistika II (Bagian-) 0 VI. PENGUJIAN HIPOTESIS Hipotesis
Terima hipotesis Tidak membuat kesalahan Kesalahan tipe II Tolak hipotesis Kesalahan tipe I Tidak membuat kesalahan
PENGUJIAN HIPOTESIS Hipotesis Statistik adalah pernyataan atau dugaan mengenai satu atau lebih populasi. Dengan mengambil suatu sampel acak dari populasi tersebut dan menggunakan informasi yang dimiliki
STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh
STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka
Ayundyah Kesumawati. April 20, 2015
Pengujian Kesumawati Nol dan Prodi Statistika FMIPA-UII April 20, 2015 Pengujian Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi Pengujian hipotesis berhubungan dengan penerimaan atau
Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:
Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji
PENGUJIAN HIPOTESIS. Konsep: Dua macam kekeliruan. Pengujian hipotesis.
Konsep: PENGUJIAN HIPOTESIS Agus Susworo Dwi Marhaendro Hipotesis: asumsi atau dugaan sementara mengenai sesuatu hal. Dituntut untuk dilakukan pengecekan kebenarannya. Jika asumsi atau dugaan dikhususkan
BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )
BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H
ESTIMASI. Arna Fariza PENDAHULUAN
ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Kontrak Perkuliahan Pertemuan & Materi RPKPS Penilaian Tugas, short quiz (30%) Quiz 1 & 2 (40%) UAS (30%) Referensi Montgomery, D.C, George C. Runger. Applied Statistic and
PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F
PENGUJIAN HIPOTESIS O L E H : R I A N D Y S Y A R I F DEFINISI HIPOTESIS Hipotesis berasal dari bahasa Yunani ; Hipo berarti Lemah atau kurang atau di bawah dan Thesis berarti teori, proposisi atau pernyataan
Ummu Kalsum UNIVERSITAS GUNADARMA
Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)
Hipotesis : asumsi atau anggapan bisa benar atau bisa salah seringkali dipakai sebagai dasar dalam memutuskan
PENGUJIAN HIPOTESIS Hipotesis : Merupakan suatu asumsi atau anggapan yang bisa benar atau bisa salah mengenai sesuatu hal, dan dibuat untuk menjelaskan sesuatu hal tersebut sehingga memerlukan pengecekan
Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan)
Metode Statistika Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Pengantar Seringkali kita tertarik dengan karakteristik umum dari suatu populasi parameter Misalnya saja berapa rata-rata
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 PENGUJIAN HIPOTESIS V. PENGUJIAN HIPOTESIS Hipotesis adalah jawaban sementara terhadap suatu masalah. Setiap
PENGUJIAN HIPOTESIS RATA-RATA DUA POPULASI -YQ-
PENGUJIAN HIPOTESIS RATA-RATA DUA POPULASI -YQ- Materi : Pengujian Hipotesis Rata-rata Dua Populasi Data Tidak Berpasangan Data Berpasangan 5 Langkah-langkah pengujian hipotesis Menentukan hipotesis nol
STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh
STK 511 Analisis statistika Materi 4 Sebaran Penarikan Contoh 1 Pengantar Pada dasarnya data contoh diperoleh dengan dua cara: Data telah ada Teknik Penarikan Contoh Data belum tersedia Perancangan Percobaan
Pengujian Hipotesis. Vitamin C dalam pakan bisa mempercepat
Pengujian Hipotesis Vitamin C dalam pakan bisa mempercepat pertumbuhan ayam?? 1 MATERI BAHASAN : Hypothesis Null Hypothesis Alternatif Pengujian 2 arah or 1 arah Nilai P 2 Hypothesis Hipotesis: Dugaan
PERTEMUAN KE 2 HIPOTESIS
PERTEMUAN KE 2 HIPOTESIS DEFINISI Jawaban sementara terhadap masalah penelitian yang kebenarannya masih harus diuji secara empiris. Pernyataan mengenai keadaan populasi yang akan diuji kebenarannya berdasarkan
Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER
Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui
SEBARAN PENARIKAN CONTOH
STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean
PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut :
PENGUJIAN HIPOTESIS A. Pengertian Pengujian Hipotesis Hipotesis berasal dari bahasa Yunani, yaitu hupo dan thesis. Hupo berarti lemah, kurang, atau di bawah dan thesis berarti teori, proposisi, atau pernyataan
BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis
BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep uji hipotesis, kesalahan tipe 1 dan 2, uji hipotesis untuk mean (1 dan 2 sampel),
PENGUJIAN HIPOTESIS (2)
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel
PENGUJIAN HIPOTESIS 2
PENGUJIAN HIPOTESIS. Menguji Kesamaan Dua Rata-rata a. Uji Dua Pihak Misalkan ada dua populasi berdistribusi normal dengan masing-masing rata-rata dan simpangan baku secara berturut-turut μ dan μ dan σ
PENGUJIAN HIPOTESIS. 100% - 5 % = 95% (Ho di terima) 2,5% (Ho ditolak) 2,5% ( Ho ditolak ) - Zα 0 Zα
PENGUJIAN HIPOTESIS. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh :. Pernyataan
10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)
/4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu
MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean
MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk
STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi
Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi
STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT)
STATISTIKA II Distribusi Sampling (Nuryanto, ST., MT) 1. Pendahuluan Bidang Inferensia Statistik membahas generlisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan
PENGUJIAN HIPOTESIS. 1. Pengertian Hipotesis
PENGUJIAN HIPOTESIS. Pengertian Hipotesis Dari arti katanya, menurut Arikunto (: ) hipotesis berasal dari penggalan kata, hypo yang artinya di bawah dan thesa yang artinya kebenaran. Jadi hipotesis yang
MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR
TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang
PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif
PENGUJIAN HIPOTESIS RATA- RATA Oleh : Riandy Syarif Definisi Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yg didasarkan atas informasi sampelnya. Pengujian
15Ilmu. Uji t-student dan Uji Z (Distribusi Normal)
Modul ke: Fakultas 15Ilmu Komunikasi Uji t-student dan Uji Z (Distribusi Normal) Untuk sebaran distribusi sampel kecil, dikembangkan suatu distribusi khusus yang disebut distribusi t atau t-student Dra.
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability
STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.
STATISTIKA Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. Statistika deskriptif: pencatatan dan peringkasan hasil
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi
Bab 3. Uji Hipotesis
Bab 3 Uji ipotesis Pengantar ipotesis merupakan anggapan yang mungkin benar yang harus diuji kebenarannya dan dapat digunakan sebagai dasar pengambilan keputusan untuk dasar penelitian lebih lanjut IPOTESIS
Regresi Linier Berganda
Regresi Linier Berganda Regresi Berganda Contoh Menguji hubungan linier antara variabel dependen (y) dan atau lebih variabel independen (x n ) Hubungan antara suhu warehouse dan viskositas cat dengan jumlah
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 PENGUJIAN HIPOTESIS V. PENGUJIAN HIPOTESIS Hipotesis adalah jawaban sementara terhadap suatu masalah. Setiap
MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012
Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang
6 Departemen Statistika FMIPA IPB
Suplemen Responsi Pertemuan ANALISIS DATA KATEGORIK (STK351) 6 Departemen Statistika FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referensi Waktu Uji Kebaikan Suai Khi- Kuadrat untuk Sebaran Kontinu dan Uji
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : [email protected] FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 009 V. PENGUJIAN HIPOTESIS Hhipotesis adalah jawaban sementara terhadap suatu
PENGUJIAN HIPOTESIS. pernyataan atau dugaan mengenai satu atau lebih
PENGUJIAN HIPOTESIS 1. Pendahuluan Hipotesis Statistik : populasi. pernyataan atau dugaan mengenai satu atau lebih Pengujian hipotesis berhubungan dengan penerimaan atau penolakan suatu hipotesis. Kebenaran
Hipotesis (Ho) Benar Salah. (salah jenis I)
PENGUJIAN HIPOTESIS Hipotesis Suatu pernyataan yang masih lemah kebenarannya dan perlu dibuktikan/ dugaan yg sifatnya masih sementara Hipotesis ini perlu untuk diuji utk kmd diterima/ ditolak Pengujian
PENGUJIAN HIPOTESIS (1) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (1) 1 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Pengertian Pengujian Hipotesis (1) 3 BAHASA YUNANI HUPO Lemah, kurang, di bawah THESIS Teori,
Penyusunan Hipotesa : 1. : µ 1 = µ 2 : µ 1 µ 2 2. : µ 1 µ 2 : µ 1 > µ 2 3. : µ 1 µ 2 : µ 1 < µ 2 Apabila data yang diambil dari hasil eksperimen, maka
MODUL DISTRIBUSI t 1. PENDAHULUAN Pengujian hipotesis dengan distribusi t adalah pengujian hipotesis yang menggunakan distribusi t sebagai uji statistik. Tabel pengujiannya disebut tabel t-student. Distribusi
Engkau tidak akan memperoleh ilmu kecuali dengan enam hal : Kecerdasan Semangat keras Rajin dan tabah Biaya yang cukup Bersahabat dengan guru (Imam
Engkau tidak akan memperoleh ilmu kecuali dengan enam hal : Kecerdasan Semangat keras Rajin dan tabah Biaya yang cukup Bersahabat dengan guru (Imam Syafi i) Hipotesis Hipotesis berasal dari kata hupo dan
BAGAIMANA CARA MENGATASI KASUS TERSEBUT? JAWAB: MELAKUKAN UJI HIPOTESIS
UJI HIPOTESIS Kasus Misalkan suatu perusahaan shampo KILAU mengiklankan bahwa 7 dari 10 orang menggunakan produknya. Anisa, seorang mahasiswa, merasa bahwa pernyataan tersebut berlebihan. Oleh karena itu,
SEBARAN PENARIKAN SAMPEL LOGO
SEBARAN PENARIKAN SAMPEL LOGO KOMPETENSI menentukan sebaran penarikan sampel bagi suatu statistik A menentukan sebaran penarikan sampel bagi nilai tengah menentukan sebaran penarikan sampel bagi selisih
Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015
Uji Hipotesis Atina Ahdika, S.Si, M.Si Universitas Islam Indonesia 015 Definisi Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya
Pengujian Hipotesis - Sipil Geoteknik 2013 PENGUJIAN HIPOTESIS. Dr. Vita Ratnasari, M.Si 02/10/2013
1 PENGUJIAN HIPOTESIS Dr. Vita Ratnasari, M.Si Pengertian hipotesis 2 Hipotesis merupakan pernyataan tentang sebuah parameter yang masih harus diuji kebenarannya. Pengujian hipotesis adalah prosedur untuk
Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data
Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan
TEORI PENDUGAAN (TEORI ESTIMASI)
TEORI PENDUGAAN (TEORI ESTIMASI) Tujuan Pembelajaran Mempelajari bagaimana cara melakukan pendugaan parameter populasi berasarkan statistik yang dihitung dari sampel A. Pendahuluan Pendahuluan : Tujuan
STATISTIK NON PARAMETRIK (1)
11 STATISTIK NON PARAMETRIK (1) Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Metode Statistik : Parametrik
SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION)
SEBARAN PENARIKAN CONTOH (SAMPLING DISTRIBUTION) Andaikan ada suatu populasi dengan jumlah anggotanya sebanyak N diambil contoh sebanyak n. Apabila dari setiap kemungkinan contoh tersebut dihitung suatu
STMIK KAPUTAMA - BINJAI
STMIK KAPUTAMA - BINJAI Pengujian hipotesis merupakan suatu prosedur yang didasarkan pada bukti sampel dan teori probabilitas yang digunakan untuk menentukan apakah suatu hipotesis adalah pernyataan yang
MODUL DISTRIBUSI T. Objektif:
MODUL DISTRIBUSI T Objektif: 1. Membantu mahasiswa memeahami materi Distribusi t 2. Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi t I. PENDAHULUAN Pengujian hipotesis
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:
KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters
Bab 2. Teori Dasar. 2.1 Pendahuluan
Bab 2 Teori Dasar 2.1 Pendahuluan Gagasan bagan kendali statistik pertama kali diperkenalkan oleh Walter A. Shewhart dari Bell Telephone laboratories pada tahun 1924 (Montgomery, 2001, hal 9). Tujuan dari
HIPOTESIS Pembuatan Hipotesis
HIPOTESIS Pembuatan Hipotesis Pengujian & Analisis Hipotesis 1 Populasi Pengujian & Analisis Hipotesis 2 Populasi Diyan Herdiyantoro, SP., MSi. Laboratorium Biologi & Bioteknologi Tanah Jurusan Ilmu Tanah
STATISTIK Hypothesis Testing 2 Contoh kasus
STATISTIK Hypothesis Testing 2 Contoh kasus Chapter 6 Sulidar Fitri, M.Sc Analisis Data Deskriptif Menghitung ukuran tendensi central (mean, median dan modus) dan ukuran dispersi (range, mean deviasi,
1. PENGERTIAN. Manfaat Sampling :
1. PENGERTIAN Sampel adalah sebagian dari anggota populasi yang dipilih dengan cara tertentu yang akan diteliti sifat-sifatnya dalam penelitian. Nilai-nilai yang berasal dari data sampel dinamakan dengan
Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis
PENGUJIAN HIPOTESIS Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] 1 Hipotesis Hipotesis adalah suatu pernyataan mengenai nilai suatu parameter populasi yang dimaksudkan untuk pengujian
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : [email protected] FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 IV. PENDUGAAN PARAMETER Populasi Sampling Sampel N n Rata-rata : μ Simp.
DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1
DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori
Pengujian Hipotesis (Hypothesis Testing)
Pengujian Hipotesis (Hypothesis Testing) Pada awalnya kita mempunyai hipotesis substansi, yaitu pernyataan awal yang bersifat sementara mengenai substansi penelitian atau pendapat (klaim) yang akan kita
Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar
Uji Hipotesis MA081 STATISTIKA DASAR Utriweni Mukhaiyar 8 Maret 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu diuji kebenarannyaa
Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30
Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga
UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011
Uji Hipotesis UJI RATAAN UJIVARIANSI MA 081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 011 Pengertian Hipotesisadalah i suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lbih lebih
4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah)
4/6/9 Galat (error) Uji Hipotesis H ditolak H benar H salah a P(menolak H H benar) galat tipe I keputusan benar MA 8 Statistika Dasar Kamis, 6 Februari 9 H tidak ditolak keputusan benar P(tidak menolak
PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd
PENGUJIAN HIPOTESIS DESKRIPTIF (Satu sampel) Wahyu Hidayat, M.Pd Definisi Pengujian hipotesis deskriptif pada dasarnya merupakan proses pengujian generalisasi hasil penelitian yang didasarkan pada satu
Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
Sampling Distributions (Distribusi Penarikan Contoh) Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
Praktikum Pengujian Hipotesis
Praktikum Pengujian Hipotesis 1. Pengujian Hipotesis dan Selang Kepercayaan bagi Nilai Tengah untuk Satu Populasi Komputasi untuk pengujian hipotesis dan selang kepercayaan (1-α)% bagi Nilai Tengah di
Dept. Fisheries and Marine Resource Management University of Brawijaya 2012
UJI HIPOTESIS STATISTIK (MAM 4137) Ledhyane Ika Harlyan, M.Sc Dept. Fisheries and Marine Resource Management University of Brawijaya 2012 Tujuan Instruksional Khusus Mahasiswa bisa melakukan pengujian
Statistika Non-Parametrik
Statistika Non-Parametrik STK 511 Analisis Statistika Depertemen Statistika IPB 1 Statistika Non-Parametrik Ciri statistika non-parametrik : o Prosedur non-parametrik -> fokus hanya pada beberapa karakteristik
(ESTIMASI/ PENAKSIRAN)
ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun
Statistik Non Parametrik
Statistik Non Parametrik STATISTIK PARAMETRIK DAN NON PARAMETRIK Statistik parametrik, didasarkan asumsi : - sampel random diambil dari populasi normal atau - ukuran sampel besar atau - sampel berasal
PENS. Probability and Random Process. Topik 6a. Pengujian Hipotesis 1. Prima Kristalina Mei 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 6a. Pengujian Hipotesis 1 Prima Kristalina Mei 2015 1 Outline 1. Pengertian Hipotesis 2. Tingkat
Uji Statistik Hipotesis
Modul 8 Uji Statistik Hipotesis Bambang Prasetyo, S.Sos. D PENDAHULUAN alam Modul 7, Anda sudah diperkenalkan pada inferensi. yang mencakup estimasi dan uji hipotesis. Dalam Modul 7, Anda juga sudah belajar
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 PENDUGAAN PARMETER IV. PENDUGAAN PARAMETER Populasi N Sampling Sampel n Rata-rata : μ Simp. Baku : σ Ragam
UJI HIPOTESIS. Oleh : Riawan Yudi Purwoko
UJI HIPOTESIS Oleh : Riawan Yudi Purwoko A. Konsep Uji Hipotesis Pada bab ini akan dibicarakan salah satu bahasan yang sangat banyak digunakan dalam penelitian, yaitu uji hipotesis. Uji hipotesis merupakan
Dalam estimasi, uji hipotesis adalah prosedur dalam membuat inferensi tentang populasi 11.2
Dalam estimasi, uji hipotesis adalah prosedur dalam membuat inferensi tentang populasi 11.2 Meneliti apakah daya kritis dan kepercayaan diri mahasiswa berpengaruh terhadap IP mahasiswa? Dapatkan anda
STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang
STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1
PENGUJIAN HIPOTESIS (2) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Rata-rata Sampel Berukuran Besar 3 Uji Rata-rata untuk Sampel Berukuran
PENGUJIAN HIPOTESIS. 2,5% (Ho ditolak) 2,5% ( Ho ditolak )
PENGUJIAN HIPOTESIS 1. Pengertian Hipotesis Hypo = Sementara Thesis = Jawaban Jadi hipotesis adalah jawaban sementara dari suatu pernyataan ( pejabat, mahasiswa, pegawai dan lain sebagainya.contoh : 1.
