PERSAMAAN GARIS SINGGUNG LINGKARAN
|
|
|
- Ridwan Sanjaya
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PERSAMAAN GARIS SINGGUNG LINGKARAN Dari gabar orang bersepeda di atas jelas terlihat bahwa jalan yang dilalui sepeda selalu enyinggung roda sepeda, baik depan aupun belakang asing-asing di titik A dan B. Garis dijalan yang dilalui sepeda dapat disebut garis singgung dan titik persentuhan antara roda sepeda dan jalan disebut titik singgung. Perhatikan bahwa jari-jari yang elalui titik singgung A dan B selalu tegak lurus dengan jalan. Garis singgung adalah garis yang eotong lingkaran tepat D>0 g Garis singgung disatu titik. Titik tersebut disebut titik singgung. Jari-jari lingkaran yang elalui titik P(a,b) r singgung selalu tegak lurus dengan garis singung. A(x, y ) Perhatikan gabar berikut : g Garis singgung A(x,y ) titik singung AP g O(0,0)
2 Persaaan garis singgung dapat dinyatakan dala bentuk y = x + c, sehingga secara uu encari Persaaan garis singgung adalah encari nilai dan c tersebut, seperti sudah dibahas sebelunya encari dan c dapat dilakukan dengan cara ensubtitusikan persaaan garis tersebut pada persaaan lingkaran, enyusun persaaan kuadrat, enentukan Diskriinan dan enentukan nilai dari D = 0. Tetapi cara ini sangat elelahkan karena tingkat kesulitannya hapir saa dengan enurunkan ruusnya. Persaaan Garis singgung lingkaran dapat dibedakan dala tiga jenis seperti digabarkan berikut ini : y =x +c T (x,y) y = +c y = x +c y = +c R(x,y ) y = x +c Garis singgung elalui suatu titik pada lingkaran Garis singgung bergradien Garis singgung elalui suatu titik diluar lingkaran r Persaaan Garis singgung elalui suatu titik pada lingkaran Ruus Persaaan Garis Singung ini dapat dirangku sebagai berikut : Persaaan Lingkaran Persaaan garis singgung x + y = r xx + yy = r (x-a) +(y-b) = r (x-a) (x -a)+(y-b)(y -b)=r x +y +Ax + By +C = 0 xx + yy A(x + x ) + B(y + y ) + C = 0 Ruus tersebut hanya berlaku untuk Persaaan Garis singgung elalui titik pada lingkaran, jika ruus ini digunakan untuk titik diluar lingkaran aka persaaan garis yang didapat bukan garis singgung tetapi garis polar, yang akan dibahas keudian.
3 . Tentukan Persaaan Garis Singgung pada lingkaran x + y = 8, dititik A(-,) Jawab Titik A(-,) (-) + = 8 8 = 8, gs y = x + Jadi titik A pada lingkaran Persaaan Garis Singgung, xx + yy = r A(-,) x.(-) + y. = 8 -x + y =8 y = x + O(0,0 L x + y = 8. Tentukan persaaan garis singgung yang elalui titik berabsis - pada lingkaran lingkaran x + y + x -y -5 = 0 Jawab. Berabsis - x = - (-) + y + (-) -y -5 = 0 y + -y - 8 = 0 (y - ) (y + )=0, y = atau y = - Titik singgung (-, ) dan (-,-) persaaan garis singgung (GS) Titik singgung (-, ) xx + yy + (x+x ) -(y+y ) -5 = 0 x.(-) + y. + (x-) -(y+) -5 = 0 -x + y + x - y - -5 = 0 x +y - = 0 persaaan garis singgung (GS) Titik singgung (-,- ) xx + yy + (x+x ) -(y+y ) -5 = 0 x.(-) + y.(-) + (x-) -(y-) -5 = 0 -x -y + x - y + -5 = 0 x +y - 5 = 0 L x + y +x -y -5=0 B(-,) P(-,) O(0,0) C(-,-) Gs x + y -=0
4 Persaaan Garis singgung bergradien Ruus Persaaan Garis Singung ini digunakan untuk encari persaaan garis singgung yang garidenya diketahui, sejajar atau tegak lurus dengan suatu garis atau unsur lain yang berhubungan dengan gradien, ruus-ruus yang digunakan dapat dirangku sebagai berikut : Persaaan Lingkaran Persaaan garis singgung x + y = r y= x ± r (x-a) +(y-b) = r y-b= (x-a) ± r x +y +Ax + By +C = 0 Ubah bentuk persaaan ke (x-a) +(y-b) = r gunakan ruus, y-b= (x-a) ± r Tentukan persaaan garis singgung lingkaran x + y = 0 yang sejajar dengan garis l y+ x = 6 Jawaban Garis y+ x = 6, y = -x +8, =- Gradien Garis singgung ==- ( dua garis sejajar jika gradien saa) = -, r = 0 persaaan garis singgung GS Y= -X-0 GS Y= -X +0 y= x ± r y= -x ± 0 9 y= -x ± 0 GS -x +0 GS -x -0 O(0,0) x + y =0
5 Persaaan Garis Singgung elalui titik diluar lingkaran Ada beberapa etode atauy teknik untuk eyelesaiakan asalah ini antara lain: Menggunakan ruus, enggunakan ruus garis singgung bergradien dan enggunakan persaaan garis polar. Menggunakan ruus Ruus persaaan garis singgung lingkaran elalui titik A(x,y ) pada lingkaran (x-a) +(y-b) = r adalah y-y =(x-x ) ( y dengan = b)( x a) ± ( x ( y a) b) r + ( x a) Ruus ini sangat praktis digunakan tetapi sangat sulit dihafal, sehingga disarankan ruus ini hanya digunakan untuk engecek hasil dari perhitungan cara atau Tentukan persaaaan garis singgung lingkaran, x + y = 5 yang elalui (7,) jawab 7 + = 50>r titik A diluar lingkaran y- = (x-7) y=(x-7) + r x + y = 5, a=0, b=0, r=5, y =, x =7 ( 0)(7 0) ± ( 0) + (7 0) = (7 0) ± 5 = =, =-, L x + y =5 GS x + y = 5 Persaaan garis singgung A(7,) =, O(0, y= (x-7)+ GS x y = 5 y=x-8+ x-y=5
6 Persaaan garis singgung =-, y= - (x-7)+ y=-x+ x+y=5 Menggunakan ruus persaan garis singgung bergradien Teknik ini enggunakan kesaaan garis dari dua persaaan, persaaan (satu) adalah garis elalui A(x,y ) dan persaaan (dua) adalah persaaan garis singgung bergradien. Tentukan persaaaan garis singgung lingkaran, x + y = 5 yang elalui (7,) jawab persaaan y-y = (x-x ) y- = (x-7) y= x 7 + persaaan y= x ± r y= x ± 5 y= x ± 5 y= x = ( )= = =0 (+)(-)=0 = - atau =
7 Persaaan GS = y= x 7 + y= - x 7.( - )+ y=-x+ x+y =5 Persaaan GS = y= x 7 + y= x 7.( )+ y=x-8+ x-y =5 Menggunakan persaaan garis polar Teknik ini enggunakan ruus garis polar xx + yy = r, ruus ini adalah ruus garis singgung tetapi jika yang disubtitusikan adalah titik diluar lingkaran, persaaan garis polar ini eotong lingkaran di dua titik berbeda, garis singgung yang diaksud dapat dicari dengan persaaan garis singgung di suatu titik pada lingkaran, enggunakan dua titik tersebut (T dan T) GS GS Garis polar T A(x,y ) O(0,0) T Tentukan persaaaan garis singgung lingkaran, x + y = 5 yang elalui (7,) jawab Persaaan garis polar xx + yy = r 7x + y = 5 y= 5-7x Titik potong garis polar dengan lingkaran x + (5-7x) = 5 x x +9 x = 5 50x -50x +600 = 0
8 x 7 x + = 0 (x-)(x-)=0 x= atau x= x= y= 5-7., y=, titik potong (,) x= y= 5-7., y= -, titik potong (,-) Persaaan garis singgung Titik singgung (, ) xx + yy = 5 x + y = 5 Persaaan garis singgung Titik singgung (,- ) xx + yy = 5 x - y = 5
(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2
LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu itu
(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2
BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu
(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2
BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu
Persamaan Garis Singgung. Disusun Oleh: Anang Wibowo, S.Pd
ersaaan Garis Singgung Disusun Oleh: Anang Wibowo, S.d www.atikzone.wordpress.co April Download juga Galeri Soal Lingkaran, 7 soal beserta penelesaianna dan soal latihan. Gratis tanpa baar Hana di www.atikzone.co.cc
Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.
PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari
matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran
KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..
LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran
LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu
1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c.
. Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Soal Ujian Nasional tahun
GEOMETRI ANALITIK BIDANG & RUANG
HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan
Modul Matematika XI IPA Semester 1 Lingkaran
Modul Matematika XI IPA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 015 016 SMA Santa Angela Jl. Merdeka No. 4 Bandung Lingkaran XI IPA Sem 1/014-015 4 Peta Konsep Persamaan Lingkaran
4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah.
. Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Langkah : Substitusi
Alternatif jawaban soal uraian
Lapiran Alternatif jawaan soal uraian. Lukislah garis ang elalui pangkal koordinat O(0,0) dan epunai gradien erikut ini! a. -. ) Noor poin a a) Alternatif pertaa langkah pengerjaan pertaa Persaaan garis
King s Learning Be Smart Without Limits
Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM
PERSAMAAN GARIS SINGGUNG HIPERBOLA
1 KEGIATAN BELAJAR 15 PERSAMAAN GARIS SINGGUNG HIPERBOLA Setelah mempelajari kegiatan belajar 15 ini, mahasiswa diharapkan mampu: 1. Menemukan Persamaan Garis Singgung Hiperbola, Titik Singung dan Garis
Pertemuan 2 KOORDINAT CARTESIUS
Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x
RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)
NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.
Modul Matematika XI MIA Semester 1 Lingkaran
Lingkaran XI MIA 017/018 Modul Matematika XI MIA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si 1 Tahun Pelajaran 017/018 SMA Santa Angela Jl. Merdeka No. Bandung Lingkaran XI MIA 017/018 Peta Konsep
RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)
RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Matematika15.wordpress.com NAMA: KELAS: RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut
PERSAMAAN GARIS SINGGUNG PARABOLA
1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada
Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran
2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari
HOME PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI
HOME STANDAR KOMPETENSI PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI Menentukan persamaan lingkaran Menentukan persamaan garis singgung lingkaran Peta konsep lingkaran persamaan
PERSAMAAN GARIS LURUS
PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan
SMAN Bone-Bone, Luwu Utara, Sul-Sel Dan bahwa setiap pengalaman mestilah dimasukkan ke dalam kehidupan, guna memperkaya kehidupan itu sendiri. Karena tiada kata akhir untuk belajar seperti juga tiada kata
A. PERSAMAAN GARIS LURUS
A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam
LINGKARAN. Bab. Di unduh dari : Bukupaket.com
Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis
Bank Soal dan Pembahasan Persamaan Garis Lurus
Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik
Garis Singgung Lingkaran
1 KEGIATAN BELAJAR 8 Garis Singgung Lingkaran Setelah mempelajari kegiatan belajar 8 ini, mahasiswa diharapkan mampu menentukan persamaan garis singgung lingkaran dan kuasa lingkaran. Pernahkah Anda memperhatikan
BAB XI PERSAMAAN GARIS LURUS
BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini
52 Geometri Analitik Datar dan Ruang 4.1. DEFINISI PARABOLA
5 Geetri Analitik Datar dan Ruang 4.. DEFINISI PARABOLA Parabla adalah tepat kedudukan titik (hipunan titik) ang berjarak saa terhadap suatu titik dan suatu garis tertentu. Titik tertentu itu disebut Fkus
BAB I PENDAHULUAN. dalam skala prioritas pembangunan nasional dan daerah di Indonesia
BAB I PENDAHULUAN A. Latar Belakang Masalah Pebangunan ekonoi erupakan asalah penting bagi suatu negara, untuk itu sejak awal pebangunan ekonoi endapat tepat penting dala skala prioritas pebangunan nasional
PERSAMAAN GARIS SINGGUNG ELLIPS
1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan
LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.
/8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran
KURVA DAN PENCOCOKAN KURVA. Matematika Industri 1 TIP FTP UB
KURVA DAN PENCOCOKAN KURVA TIP FTP UB Pokok Bahasan Pendahuluan Kurva-kurva standar Asimtot Penggambaran kurva secara sistematis, jika persamaan kurvanya diketahui Pencocokan kurva Metode kuadrat terkecil
http://meetabied.wordpress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan tertinggi dalam kehidupan adalah kepastian bahwa Anda dicintai apa adanya, atau lebih tepatnya dicintai walaupun Anda seperti
DISTRIBUSI DUA PEUBAH ACAK
0 DISTRIBUSI DUA PEUBAH ACAK Dala hal ini akan dibahas aca-aca fungsi peluang atau fungsi densitas ang berkaitan dengan dua peubah acak, aitu distribusi gabungan, distribusi arginal, distribusi bersarat,
BAB III METODE BEDA HINGGA CRANK-NICOLSON
BAB III METODE BEDA HINGGA CRANK-NICOLSON 3. Metode Beda Hingga Crank-Nicolson (C-N) Metode Crank-Nicolson dikebangkan oleh Crank John dan Phyllips Nicholson pada pertengahan abad ke-, etode ini erupakan
Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!!
Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! LINGKARAN Lingkaran adalah kurva tertutup sederhana yang merupakan tempat
Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya BOLA - definisi Bola adalah lokus sebuah titik yang bergerak sehingga jaraknya
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.
PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.CO MAT 4 materi78.co.nr Penerapan Turunan A. PENDAHULUAN
LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.
LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.
GETARAN PEGAS SERI-PARALEL
1 GETARAN PEGAS SERI-PARALEL I. Tujuan Percobaan 1. Menentukan konstanta pegas seri, paralel dan seri-paralel (gabungan). 2. Mebuktikan Huku Hooke. 3. Mengetahui hubungan antara periode pegas dan assa
Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak
4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,
BEBERAPA FUNGSI KHUSUS
BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan
MODUL 8 FUNGSI LINGKARAN & ELLIPS
MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN
FUNGSI. Riri Irawati, M.Kom 3 sks
FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.
MATEMATIKA BISNIS FUNGSI LINIER
MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain
1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.
1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2
PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan
PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor
Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus
PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis
A. Menentukan Letak Titik
Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis
Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran
Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran
MODUL PERTEMUAN KE 6 MATA KULIAH : FISIKA TERAPAN
43 MODUL PERTEMUAN KE 6 MATA KULIAH : MATERI KULIAH: Mekanika klasik, Huku Newton I, Gaya, Siste Satuan Mekanika, Berat dan assa, Cara statik engukur gaya.. POKOK BAHASAN: DINAMIKA PARTIKEL 6.1 MEKANIKA
BAB 4 PERSAMAAN LINGKARAN
STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan
BAB V PERENCANAAN STRUKTUR
BAB V PERENCANAAN STRUKTUR 5.1. TINJAUAN UMUM Dala perencanaan suatu bangunan pantai harus ditetapkan terlebih dahulu paraeter-paraeter yang berperan dalan perhitungan struktur. Paraeterparaeter tersebut
FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan
FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan
UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]
UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x
PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL
PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran
PENJUMLAHAN MOMENTUM SUDUT
PENJUMAHAN MOMENTUM SUDUT A. Penjulahan Moentu Sudut = + Gabar.9. Penjulahan oentu angular secara klasik. Dua vektor oentu angular dan dijulahkan enghasilkan Jika oentu angular elektron pertaa adalah dan
PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah
PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x
IRISAN DUA LINGKARAN
LINGKARAN IRISAN DUA LINGKARAN Oleh : Saptana Surahmat Konsep hubungan dua lingkaran sangat penting dalam kehidupan kita. Sepasang roda pada sepeda, sepeda motor, kendaraan bermotor, roda gigi pada pengatur
BAB 4. HASIL DAN PEMBAHASAN
BAB 4. HASIL DAN PEMBAHASAN Analisa pelat lantai gedung rawat inap RSUD Surodinawan Kota Mojokerto dengan enggunakan teori garis leleh ebutuhkan beberapa tahap perhitungan dan analsis aitu perhitungan
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
Matematika SMA (Program Studi IPA)
Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Disusun Sesuai Indikator Kisi-Kisi UN 2013 Matematika SMA (Program Studi IPA) Disusun oleh : Pak Anang 2. 5. Menentukan persamaan lingkaran atau
User-Based Collaborative Filtering Dengan Memanfaatkan Pearson- Correlation Untuk Mencari Neighbors Terdekat Dalam Sistem Rekomendasi
User-Based Collaborative Filtering Dengan Meanfaatkan Pearson- Correlation Untuk Mencari Neighbors Terdekat Dala Siste Rekoendasi Arvid Theodorus 1, Djoko Budiyanto Setyohadi 2, Ernawati 3 Magister Teknologi
htt://meetabied.wordress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Urusan kita dalam kehiduan bukanlah untuk melamaui orang lain, tetai untuk melamaui diri sendiri, untuk memecahkan rekor kita sendiri,
PEMBAHASAN TRANSFORMASI KEBALIKAN
PEMBAHASAN TRANSFORMASI KEBALIKAN.` Definisi Suatu transformasi yang didasarkan pada fungsi dengan dinamakan transformasi kebalikan. Secara geometric, transformasi akan memetakan titik-titik yang mendekati
fungsi Dan Grafik fungsi
fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan
KAJI LATIH 1. menutupi daerah seluas 2 cm 2, maka jarijarinya. cm (C) cm (D) 2
0. Diameter sebuah lingkaran cm. Untuk =,4, maka kelilingnya adalah. (),4 cm (),6 cm () 6,8 cm (D) 5, cm 0. Keliling daerah pada gambar di bawah ( = ) () 64 cm () 8 cm () 8 cm (D) 00 cm 0. Luas arsiran
PEDOMAN JAWABAN SOAL UJI COBA TES DIAGNOSTIK. b) Tidak ada
18 LAMPIRAN IV PEDOMAN JAWABAN SOAL UJI COBA TES DIAGNOSTIK No Soal 1 Perhatikan gambar berikut! Pedoman Jawaban Jawaban : a) 1. Lingkaran yang saling berpotongan: (iii). Lingkaran yang saling bersinggungan:
Soal-Soal dan Pembahasan Matematika IPA SBMPTN/SNMPTN 2008
Soal-Soal dan Pebahasan Mateatika IPA SBMPTN/SNMPTN 008. Diketahui fungsi-fungsi f dan g dengan f(x) g(x) x - x untuk setiap bilangan real x. Jika g(), f ' () f(), dan g ' () f(), aka g ' () A. C. 0 E.
KUMPULAN SOAL MATEMATIKA SMP KELAS 8
KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: [email protected] 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah
Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian
Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam
f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}
1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1
CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS
CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelu sapai pada pendefinisian asalah network flow, terlebih dahulu pada bagian ini akan diuraikan engenai konsep-konsep dasar dari odel graph dan representasinya
DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KABUPATEN BANDUNG BARAT UJI KOMPETENSI KENAIKAN KELAS TAHUN PELAJARAN 2010/2011. Mata Pelajaran : Matematika
INS PENIIKN PEMU N OLHRG KUPTEN NUNG RT UJI KOMPETENSI KENIKN KELS THUN PELJRN 2010/2011 Mata Pelajaran : Matematika Kelas : VIII Waktu : 120 menit Hari/tanggal :. Pilihan Ganda 1. entuk sederhana dari
APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2
Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk
(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada
f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn
MODEL MATEMATIKA SISTEM PERMUKAAN ZAT CAIR
MODEL MATEMATIKA SISTEM PEMUKAAN ZAT AI PENGANTA Pada bagian ini kita akan enurunkan odel ateatika siste perukaan zat cair. Dengan eperkenalkan prinsip resistansi dan kapasitansi untuk siste perukaan zat
Bab 1. Irisan Kerucut
Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =
Gambar A.1. Fix Dies.
LAMPIRAN A. Gabar Teknik Dies Salah satu koponen dala esin HPDC yaitu cetakan (dies). Dies yang digunakan pada penelitian ini enggunakan aterial Baja ST 7 yang dibuat di Laboratoriu Proses Produksi Politeknik
Pembelajaran Lingkaran SMA dengan Geometri Analitik
PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator
BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1
BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 A. Pilihan Ganda 1. Bentuk x + x 48 jika difaktorkan adalah A. (x 6)(x 8) B. (x + 8)(x 6) C. (x 4)(x 1)
KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM
KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang
Persamaan Garis Singgung Sekutu 2 Buah Lingkaran
Matei esaaan Gais inggung ekutu Buah Lingkaan Oleh: nang Wibowo.d pil MatikZone s eies Eail : [email protected] Blog : www.atikzone.wodpess.co H : 8 897 897 Hak Cipta Dilindungi Undang-undang. Dilaang engkutip
FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)
FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan
Kelas XI MIA Peminatan
Kelas Disusun : Markus Yuniarto, S.Si Tahun Pelajaran 017 018 Peta Konsep Glosarium Istilah Keterangan Lingkaran Himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik
PERSAMAAN GARIS SINGGUNG SEKUTU DUA LINGKARAN
MN GI INGGUNG KUTU DU LINGKN Oleh: nang Wibowo.d WWW.MTIKZON.WOD.COM pil www.atikzone.wodpess.co [email protected] MN GI INGGUNG KUTU DU LINGKN ail : [email protected] Blog : www.atikzone.wodpess.co www.etung.wodpess.co
Bab III S, TORUS, Sebelum mempelajari perbedaan pada grup fundamental., dan figure eight terlebih dahulu akan dipelajari sifat dari grup
GRUP FUNDAMENTAL PADA Bab III S, TORUS, P dan FIGURE EIGHT Sebelu epelajari perbedaan pada grup fundaental S, Torus, P, dan figure eight terlebih dahulu akan dipelajari sifat dari grup fundaental asing-asing
2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a
Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab
Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius
Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.
MODUL 4 LINGKARAN DAN BOLA
1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.
BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.
TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -
ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR
ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR JAHARUDDIN Departeen Mateatika, Fakultas Mateatika dan Iu Pengetahuan Ala, Institut Pertanian Bogor Jln. Meranti, Kapus IPB Draaga, Bogor 1668,
