5. Aplikasi Sederhana Mekanika Statistik
|
|
|
- Hadi Sudjarwadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pngtahuan tntang sistm mikroskoik 5. Alikasi Sdrhana Mkanika Statistik mngtahui sifat-sifat makroskoik sistm dalam ksimbangan. 5.. Fungsi Partisi Prosdur untuk mngtahui sifat-sifat makroskoik dngan mkanika statistik tidaklah bgitu sukar. Yang harus dilakukan hanyalah mnghitung fungsi artisi Z. E,, S dan (ΔE) daat dihitung scara langsung dngan drivatif ln Z. Prumusan fungsi artisi adalah sbagai brikut: Z= - E β (5.) Jumlah ini dibuat untuk smua kadaan. r Scara rinsi tidak ada ksulitan untuk mmformulasikan roblm, bagaimana un komlksnya. Ksulitan yang muncul ada ada nylsaian matmatik untuk roblm yang tlah diformulasikan. Sangat mudah untuk mncari kadaan kuantum dan fungsi artisi gas idal tidak brintraksi, ttai mruakan tugas yang sangat brat untuk mlakukan hal yang sama ada suatu liquid yang dalam hal ini smua molkul saling brintraksi kuat satu sama lain. Pada ndkatan klassik: Enrgi sistm E(q,q,...q f,,,... f ) Ruang fas daat dibagi kcil-kcil olh sl dngan volum h f, fungsi artisi dalam rsamaan (5.) daat dihitung rtama-tama dngan sumasi jumlah (dq dq...dq f d d...d f )/h f ada titik (q,q,...q f,,,... f ) Dalam ndkatan klassik daat dirolh: dq... d - E( f... β q,... q f ) (5.) f ho Tinjau skarang nrgi sistm digsr dngan ε o, maka fungsi artisi mnjadi β( E ) * r+ εo βεo β E Z r βε = = = oz (5.) r r ln Z* = ln Z βε o Jadi fungsi artisi juga brubah. Enrgi rata-rata yang baru mnjadi: M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 48
2 * * ln Z ln Z E = = + ε = E+ ε β β disini nrgi rata-rata digsr sbsar ε o (ssuai dngan yang kita harakan), namun ntroi tidak brubah: * ln * * S =k( Z +β E )= k( ln Z+βE)=S Hal yang sama, smua gaya dirumum (dalam rsamaan kadaan) tidak brubah, karna bsaran-bsaran hanya trgantung dari drivatif ln Z trhada suatu aramtr kstrnal. Hal kdua, ada dkomosisi fungsi artisi sistm A yang trdiri dari A' dan A" yang brintraksi lmah satu sama lain. Aabila kadaan A' dan A" masing-masing dibri labl r dan s, maka nrgi E rs (ada sistm A) mruakan jumlah masing-masing nrgi: Ers = Er ' + E s" (5.4) hal yang cuku nting disini, fungsi artisi sistm total A mruakan adisi smua kadaan dngan labl rs. Z= - β( Er+ Er") = -βer - βer" = -β Er - βer" r,s r,s r r jadi Z =ZZ" (5.5) dan ln Z = ln Z + ln Z" (5.6) dngan Z' dan Z" masing-masing mruakan fungsi artisi A' dan A". Fungsi artisi total mruakan hasil rkalian sdrhana masing-masing fungsi artisi komonnnya. 5.. Prhitungan Bsaran Trmodinamika ada Gas Idal Monatomik Kita tinjau suatu gas trdiri dari N molkul monatomik idntik dngan massa m brada ada volum V. Enrgi total gas ini: N i P E = +U ( r, r, K, rn) (5.7) i= m Bila U mndkati, kita tmui kondisi gas idal. d rkd rn d x Kd Z = -β ( N + K+ N )+U( r, K, rn ) m (5.8) N h Z = -( β/ m) -( / m) N - U( r,, rn ) N d K β d N β K d rk d rn (5.9) h Karna nrgi kintik mruakan suatu jumlah dari suku-suku, satu untuk tia-tia molkul, maka fungsi artisinya mruakan rkalian N intgral: M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 49
3 - -( β / m) Sdangkan bagian U tidak mruakan njumlahan sdrhana. Disinilah nybab rhitungan gas non-idal sangat susah. Ttai aabila gas cuku rnggang, kondisi idal daat dinuhi, U=, intgral mnjadi: N d rd rkd rn= d r d rk d rn= V Shingga Z mruakan multilikasi sdrhana: N Z = ξ ln Z = N ln ξ (5.) dngan V ξ -( β / m) d (fungsi artisi sbuah molkul). Evaluasi intgral ini h - πm mnghasilkan ξ = V hβ, shingga: πm ln Z = N ln V - ln β + ln h d (5.) Dari fungsi artisi ini, bsaran-bsaran fisika yang lain daat dihitung. Tkanan gas dibrikan olh rsamaan: ln Z N = = β V β V shingga V = NkT (5.) yang mruakan rsamaan kadaan gas idal yang sudah kita knal. Enrgi rata-rata gas: N E = ln Z = = Nε (5.) β β dngan ε = kt mruakan nrgi rata-rata r molkul. Panas jnis gas ada volum konstant daat dihitung: E CV = = Nk = R (5.4) T V Entroi juga daat dihitung: πm S = k( ln Z + βe ) = Nk ln V - ln β + ln + h M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 5
4 π mk dngan σ = ln + h S = Nk ( ln V + ln T + σ ) (5.5) mruakan konstanta yang tidak trgantung T, V N. 5.. Paradoks Gibbs Prsamaan ntroi (5.5) tidak snuhnya bnar karna trlihat ntroi tidak brrilaku srti bsaran kstnsif. dngan S' dan S" mruakan ntroi bagian. S = S' + S" (5.6) Prsamaan (5.5) tidak mnunjukkan njumlahan sdrhana yang dirlukan olh (5.6). Bukti untuk kasus nykat mmbagi sama. Paradoks smacam ini rtama-tama diamati olh Gibbs, shingga sring disbut "aradoks Gibbs". Paradoks ini muncul karna dalam nurunan rumus (5.5) kita mngangga bahwa artikl-artikl smuanya daat dibdakan. fungsi artisi harus mngandung faktor N! rmutasi antar molkul. N Z ξ Z = = (5.7) N! N! Korksi ini akan mnghasilkan ntroi yang brsifat srti bsaran kstnsif: S = kn( ln V + ln T + σ) + k( -N ln N + N ) V S = kn (ln + ln T + σ o) (5.8) N πmk 5 dngan σ = σ + = ln + h 5.4. Torma Equiartisi Dalam mkanika klassik kita knal torma quiartisi yang sangat brguna untuk brbagai nydrhanaan rhitungan. Enrgi suatu sistm: E = E ( q, q, K, q,, K, ) (5.9) f Situasi brikut ini sring dijumai: a) Enrgi total daat diisah scara aditif: E = ε i ( i ) + E (q, q,..., f ) (5.) f M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 5
5 b) Fungsi ε i mruakan fungsi kuadrat dari i, dalam bntuk: ε i( i) = bi (5.) dngan b mruakan konstanta Dari asumsi a) dan b), rata-rata k-i adalah: ε i = kt (5.) Hal ini yang disbut dngan torma quiartisi yang brarti bahwa ada nrgi, harga rata-rata stia bagian suku kuadrat adalah ½ kt. Torma ini daat digunakan ada gas idal. Enrgi kintik sbuah molkul: ( Ek = x + y+ z ) m scara cat daat kita ktahui nrgi kintik rata-rata: (5.) E k = kt (5.4) Kalau ada N a molkul r-mol, nrgi mnjadi: E = N a ( kt) = RT dari sini anas jnis molar daat dihitung: E cv= = R T v (5.5) Dari hal ini kcatan kuadrat rata-rata molkul daat dihitung: kt mv x= kt vx= m Torma yang sama juga daat digunakan untuk mmbahas grak osilator harmonis satu dimnsi: E = + kx (5.6) m Harga rata-rata nrgi kintik = = k B T m Harga rata-rata nrgi otnsial = k x = k B T Jadi harga rata-rata nrgi total: E = kt (5.7) Skarang kita tinjau scara mkanika kuantum ada kasus yang sama untuk mlihat batas validitas mkanika klassik. Lvl-lvl nrgi ssuai dngan osilator harmonik: E = ( n + )hω n (5.8) M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 5
6 dngan n =,,,,4,... dan k ω = mruakan frkunsi angular klassik. m Enrgi rata-rata osilator: disini Z = n= βe n = n= E = β ( n+ ) hω n= βen En ln Z = (5.9) βe β n n= = βhω nβhω n= βhω βhω βhω βhω βhω h = ( ) = β ω shingga: ln Z ln( β h = βh ω ω ) (5.) strusnya: w ln Z β h hω E = = h ω β β hω E = h ω + β ω (5.) h Skarang kita lihat ada kondisi-kondisi kstrim: hω Kalau βh ω = <<< kt (yakni kalau suhu sangat tinggi, shingga nrgi trmal jauh lbih tinggi dariada sarasi h ω antar lvl) Didaat: E = hω + hω + hω ( + β hω+...) βhω βhω E = = kt jadi ssuai dngan hasil klassik. β Sbaliknya ada suhu rndah: M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 5
7 hω βh ω = >>> kt didaat karna β hω sangat bsar: ( E β h = h ω + ω ) trlihat bahwa hasil ini SANGAT BERBEDA dngan torma quiartisi. Nilai E akan mndkati hω (ground stat) ktika T. Plajari sndiri mngnai: - Kaasitas anas zat adat (Rif 5) - Paramagntism 5.5. Distribusi Kcatan Maxwll Suatu molkul m brada brsama-sama molkul-molkul yang lain mmbntuk gas. Bila gaya luar tidak ada (srti gravitasi), nrgi molkul mnjadi: ε strusnya: (int) βε s = + m ε (intrmol) (int) β m+ ε [ / ] P (, ) s s r d rd d rd adalah konstanta, shingga: β /m P (, r ) d rd d rd s (int) s β /m βε d rd Arti fisis rsamaan trakhir: kmungkinan mnmukan molkul dngan usat massa dalam jangkauan (r ; dr) dan ( ; d). Aabila rsamaan ini dikalikan dngan N (jumlah ksluruhan molkul) maka hasilnya mnunjukkan nilai rata-rata jumlah molkul ada jangkauan osisi dan momntum trsbut. Prsamaan trakhir ini kalau ditrjmahkan dalam bahasa kcatan, mngingat v = /m akan mnjadi: f (r, v) d r d v yang brarti jumlah molkul yang mmiliki usat massa antara r dan r+ dr dngan kcatan antara v dan v+ dv β mv / f (, r v) d rd v = C d rd v N βm Stlah dinormalisasi mnghasilkan C = V π, tulis N n =, maka: V M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 54
8 βm mv / β f (, rv) d rd v= n d rd v π r dan v saling indndn β m mv / β f ( v) d v = n d v π Skarang kalau kita lihat bsar kcatan saja (tana mlihat arah). Jumlah artikl (dn v ) yang mmiliki bsar kcatan antara v dan v + Δv. : F v dv = 4πv f (v) dv / 4n m mv dnv = Fvdv = v x dv π kt kt F V ara = ΔN =F v Δv Δv Gbr.: Distribusi kcatan laju,v Dari rsamaan ini daat dicari jumlah artikl yang mmiliki darah kcatan trtntu. Juga daat dicari: vdn kcatan artikl rata-rata v = dn v v kcatan artikl yang aling banyak dimiliki olh molkul, yaitu kondisi = v F v M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 55
9 v dnv kcatan rms: vrms = v, dngan v = dnv Dngan mnggunakan fungsi Gamma: t z Γ ( z) = t dt; Γ ( ) = π dan Γ(n) = (n-)γ(n-) didaat: kt vm = m 8 kt kt v =,55 π m = m v rms = kt m Jadi vm : v : v rms = :,8:, 4 Diantara ktiga jnis kcatan trsbut, mana yang mmunyai arti fisis? Fatur lain: T F V T T < T < T T laju, v Dskrisikan grafik ini! M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 56
10 Soal-soal Latihan:. Prkirakan nilai numris kcatan rms untuk udara! Udara daat diangga sbagian bsar trdiri gas nitrogn (N ), massa satu atom nitrogn:,4x -6 kg. Konstanta lain k =,8x - SI N A = 6,x. (Rif 7.9) A gas of molculs, ach of mass m, is in thrmal quilibrium at th absolut tmratur T. Dnot th vlocity of a molcul by v, its thr Cartsian comonnts by v x, v y, and v z and its sd. What ar th following man valus: (a) v x (d) vxv x (b) (c) v x v vx () ( v x + bv y ) (f) v xv y M. Hikam, Fisika Statistik, Alikasi Sdrhana Mkanika Statistik 57
Ensembel Kanonik Klasik
nsmbl Kanonik Klasik Mnghitung Banyak Status Kaaan Sistm Misal aa ua sistm A an B yang bolh brtukar nrgi tai tiak bolh tukar artikl. Misal status kaaan an nrgi masing-masing sistm aalah sbb: Status A nrgi
Aplikasi Integral. Panjang sebuah kurva w(y) sepanjang selang dapat ditemukan menggunakan persamaan
Aplikasi Intgral Intgral dapat diaplikasikan k dalam banyak hal. Dari yang sdrhana, hingga aplikasi prhitungan yang sangat komplks. Brikut mrupakan aplikasi-aplikasi intgral yang tlah diklompokkan dalam
IX. Aplikasi Mekanika Statistik
IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi
Analisis Rangkaian Listrik
Sudaryatno Sudirham Analisis Rangkaian Listrik Mnggunakan Transformasi Fourir - Sudaryatno Sudirham, Analisis Rangkaian Listrik (4) BAB Analisis Rangkaian Mnggunakan Transformasi Fourir Dngan pmbahasan
Tinjauan Termodinamika Pada Sistem Partikel Tunggal Yang Terjebak Dalam Sebuah Sumur Potensial
injauan rmodinamika ada Sistm artikl unggal Yang rjbak Dalam Sbua Sumur otnsial Dngan mngmbangkan ubungan trmodinamik yang sdrana untuk pngumpulan partikl yang tunggal yang ditmpatkan pada dara potnsial.
Tinjauan Termodinamika Sistem Partikel Tunggal Yang Terjebak Dalam Sebuah Sumur Potensial. Oleh. Saeful Karim
Tinjauan Trmodinamika Sistm artikl Tunggal Yang Trjbak Dalam Sbua Sumur otnsial Ol Saful Karim Jurusan ndidikan Fisika Fakultas ndidikan Matmatika dan Ilmu ngtauan Alam Univrsitas ndidikan Indonsia 00
Pada gambar 2 merupakan luasan bidang dua dimensi telah mengalami regangan. Salah satu titik yang menjadi titik acuan adalah titik P.
nurunan Kcpatan Glombang dan Glombang S Glombang sismik mrupakan gtaran yang mrambat pada mdium batuan dan mnmbus lapisan bumi. njalaran mnybabkan dformasi batuan.strss atau tkanan didfinisikan gaya prsatuan
8. Fungsi Logaritma Natural, Eksponensial, Hiperbolik
8. Fungsi Logaritma Natural, Eksponnsial, Hiprbolik 8.. Fungsi Logarithma Natural. Sudaratno Sudirham Dfinisi. Logaritma natural adalah logaritma dngan mnggunakan basis bilangan. Bilangan ini, sprti halna
HASIL DAN PEMBAHASAN. Gambar 3 Proses penentuan perilaku api.
6 yang diharapkan. Msin infrnsi disusun brdasarkan stratgi pnalaran yang akan digunakan dalam sistm dan rprsntasi pngtahuan. Msin infrnsi yang digunakan dalam pngmbangan sistm pakar ini adalah FIS. Implmntasi
Pertemuan XIV, XV VII. Garis Pengaruh
ahan jar Statika ulyati, ST., T rtmuan X, X. Garis ngaruh. ndahuluan danya muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksi disbut bban brgrak. isalkan ada sbuah kndaraan mlalui
IDE - IDE DASAR MEKANIKA KUANTUM
IDE - IDE DASAR MEKANIKA KUANTUM A. Radiasi Bnda Hitam 1. Hasil-Hasil Empiris Gambar 1. Grafik fungsi radiasi spktral bnda hitam smpurna a. Hukum Stfan Hukum Stfan dapat dituliskan sbagai total = f df
Integral Fungsi Eksponen, Fungsi Trigonometri, Fungsi Logaritma
Modul Intgral Fungsi Eksponn, Fungsi Trigonomtri, Fungsi Logaritma Dr. Subanar D PENDAHULUAN alam mata kuliah Kalkulus I Anda tlah mngnal bahwa intgrasi adalah pross balikan dari difrnsiasi. Jadi untuk
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Data penelitian diperoleh dari siswa kelas XII Jurusan Teknik Elektronika
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. DESKRIPSI DATA Data pnlitian diprolh dari siswa klas XII Jurusan Tknik Elktronika Industri SMK Ma arif 1 kbumn. Data variabl pngalaman praktik industri, kmandirian
PENENTUAN NILAI e/m ELEKTRON
Pnntuan Nilai E/m Elktron 013 PENENTUAN NILAI /m ELEKTRON Intan Masruroh S, Anita Susanti, Rza Ruzuqi, Zaky Alam Laboratorium Fisika Radiasi, Dpartmn Fisika Fakultas Sains Dan Tknologi, Univrsitas Airlangga
Oleh : Bustanul Arifin K BAB IV HASIL PENELITIAN. Nama N Mean Std. Deviation Minimum Maximum X ,97 3,
Kpdulian trhadap sanitasi lingkungan diprdiksi dari tingkat pndidikan ibu dan pndapatan kluarga pada kluarga sjahtra I klurahan Krtn kcamatan Lawyan kota Surakarta Olh : Bustanul Arifin K.39817 BAB IV
UJI KESELARASAN FUNGSI (GOODNESS-OF-FIT TEST)
UJI CHI KUADRAT PENDAHULUAN Distribusi chi kuadrat mrupakan mtod pngujian hipotsa trhadap prbdaan lbih dari proporsi. Contoh: manajr pmasaran suatu prusahaan ingin mngtahui apakah prbdaan proporsi pnjualan
Muatan Bergerak. Muatan hidup yang bergerak dari satu ujung ke ujung lain pada suatu
Muatan rgrak Muatan hidup yang brgrak dari satu ujung k ujung lain pada suatu konstruksik disbut bb bban brgrak Sbuah kndaraan mlalui suatu jmbatan, maka akan timbul prubahanbh nilai i raksi kimaupun gaya
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde I
Univrsitas Indonusa Esa Unggul Fakultas Ilmu Komputr Tknik Informatika Prsamaan Difrnsial Ord I Dfinisi Prsamaan Difrnsial Prsamaan difrnsial adalah suatu prsamaan ang mmuat satu atau lbih turunan fungsi
BAB I METODE NUMERIK SECARA UMUM
BAB I METODE NUMERIK SECARA UMUM Aplikasi modl matmatika banyak muncul dalam brbagai disiplin ilmu pngtahuan, sprti isika, kimia, konomi, prsoalan rkayasa (tknik msin, sipil, lktro). Modl matmatika yang
MODEL STATISTIKA UNTUK FERTILITAS PERKAWINAN DENGAN PENDEKATAN EKSPONENSIAL. Abstrak
MODEL STATISTIKA UTUK FERTILITAS PERKAWIA DEGA PEDEKATA EKSPOESIAL Endang Sri Krsnaati Jurusan Matmatika FMIPA Univrsitas Sriiaa [email protected] Abstrak Frtilitas rkainan dingaruhi olh faktor
Bab 6 Sumber dan Perambatan Galat
Mtod Pnlitian Suradi Sirgar Bab 6 Sumbr dan Prambatan Galat 6. Sumbr galat. Data masukan, misal hasil pngukuran (galat bawaan). Slama komputasi (galat pross), galat ang timbul akibat komputasi 3. Galat
II. LANDASAN TEORI. digunakan sebagai landasan teori pada penelitian ini. Teori dasar mengenai graf
II. LANDASAN TEORI 2.1 Konsp Dasar Graf Pada bagian ini akan dibrikan konsp dasar graf dan dimnsi partisi graf yang digunakan sbagai landasan tori pada pnlitian ini. Tori dasar mngnai graf yang akan digunakan
APLIKASI METODE STATED PREFERENCE PADA PEMILIHAN MODA ANGKUTAN UMUM PENUMPANG (RUTE MAKASSAR MAJENE)
APLIKASI METODE STATED PREFERENCE PADA PEMILIHAN MODA ANGKUTAN UMUM PENUMPANG (RUTE MAKASSAR MAJENE) Abdul Gaus Program Studi Tknik Siil Fakultas Tknik Univrsitas Khairun Trnat Tl/Fax (091) 38049 Irnawaty
BAB II TINJAUAN PUSTAKA. berbagai macam seperti gambar dibawah (Troitsky M.S, 1990).
BAB II TINJAUAN USTAKA 2.1 Struktur Rangka Baja Extrnal rstrssing Scara toritis pningkatan kkuatan pada rangka baja untuk jmbatan dapat dilakukan dngan pmasangan prkuatan pratkan kstrnal pada rangka trsbut.
Partial Least Squares (PLS) Generalized Linear dalam Regresi Logistik
Partial Last Squars (PLS) Gnralizd Linar dalam Rgrsi Logistik Rtno Subkti Jurusan Pndidikan Matmatika FMIPA UNY Abstrak Kasus multikoliniritas sringkali diumai dalam rgrsi yang mngakibatkan salah intrrtasi
Skripsi. Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Fisika. Oleh: Margareta Inke Mayasari NIM :
PLAGIA MRUPAKAN INAKAN IAK RPUJI PRHIUNGAN BAAS RNAH NILAI PRBANINGAN ANARA SUHU BY AN SUHU KRISAL SCARA NUMRIK UNUK MNNUKAN PNGARUH SUHU RHAAP PANAS JNIS KRISAL Skripsi iajukan untuk Mmnuhi Salah Satu
BAB VI MODEL ELEKTRON BEBAS ( GAS FERMI )
A VI MODL LKRON AS GAS RMI MARI 6.1. ltron bbas dalam satu dimnsi. 6.1.1.tingat nrgi 6.1..distribusi rmi-dirac 6.1..nrgi rmi 6.. ltron bbas dalam tiga dimnsi. 6..1.nrgi rmi untu tiga dimnsi. 6...cpatan
MODUL PERKULIAHAN REKAYASA FONDASI 1. Penurunan Tanah pada Fondasi Dangkal. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh
MODUL PERKULIAHAN REKAYASA FONDASI 1 Pnurunan Tanah pada Fondasi Dangkal Fakultas Program Studi Tatap Muka Kod MK Disusun Olh Tknik Prnanaan Tknik A41117AB dan Dsain Sipil 9 Abstrat Modul ini brisi bbrapa
Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 7
Mata Kuliah : Matmatika Diskrit Program Studi : Tknik Informatika Minggu k : 7 MATRIK GRAPH Sbuah graph dapat kita sajikan dalam bntuk matrik, yaitu : a. Matrik titik (Adjacnt Matrix) b. Matrik rusuk (Edg
1. Proses Normalisasi
BAB IV PEMBAHASAN A. Pr-Procssing Pross pngolahan signal PCG sblum dilakukan kstaksi dan klasifikasi adalah pr-procssing. Signal PCG untuk data training dan data tsting trdapat dalam lampiran 5 (halaman
METODE ITERASI TANPA TURUNAN BERDASARKAN EKSPANSI TAYLOR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
METODE ITERASI TANPA TURUNAN BERDASARKAN EKSPANSI TAYLOR UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR E. Yuliani, M. Imran, S. Putra Mahasiswa Program Studi S Matmatika Laboratorium Matmatika Trapan, Jurusan
Presentasi 2. Isi: Solusi Persamaan Diferensial pada Saluran Transmisi
Prsntasi Isi: Solusi Prsamaan Difrnsial pada Saluran Transmisi Rprsntasi sinyal dalam bntuk phasor Pmikiran Dasar Sinyal harmonis mudah untuk diturunkan dan diintgralkan Smua sinyal fungsi waktu bisa dirprsntasikan
Materike April 2014
Matrik-6 Pnggunaan Intgral Tak Tntu 10 April 014 Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna ( difrnsial Contoh ' ' '' ' Prsamaan Difrnsial dan Pnggunaanna
Materi ke - 6. Penggunaan Integral Tak Tentu. 30 Maret 2015
Matri k - 6 Pnggunaan Intgral Tak Tntu 30 Mart 015 Industrial Enginring UNS [email protected] Prsamaan Difrnsial dan Pnggunaanna Prsamaan difrnsial mngaitkan suatu fungsi dngan turunanna difrnsial Contoh '
RANCANG BANGUN PATCH RECTANGULAR ANTENNA 2.4 GHz DENGAN METODE PENCATUAN EMC (ELECTROMAGNETICALLY COUPLED)
RANCANG BANGUN PATCH RECTANGULAR ANTENNA 2.4 GHz DENGAN METODE PENCATUAN EMC (ELECTROMAGNETICALLY COUPLED) Winny Friska Uli,Ali Hanafiah Ramb Konsntrasi Tknik Tlkomunikasi, Dpartmn Tknik Elktro Fakultas
Pembahasan Soal. Pak Anang SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Disusun Oleh :
Pmbahasan Soal SELEKSI MASUK UNIVERSITAS INDONESIA Disrtai TRIK SUPERKILAT dan LOGIKA PRAKTIS Disusun Olh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pmbahasan Soal SIMAK UI 2011 Matmatika
PELABELAN TOTAL SISI ANTI AJAIB SUPER (PTSAAS) PADA GABUNGAN GRAF BINTANG GANDA DAN LINTASAN
JIMT ol. 9 No. 1 Juni 01 (Hal. 16 8) Jurnal Ilmiah Matmatika dan Trapan ISSN : 450 766X PELABELAN TOTAL SISI ANTI AJAIB SUPER (PTSAAS) PADA GABUNGAN GRAF BINTANG GANDA DAN LINTASAN Nurainun 1, S. Musdalifah,
IV. Konsolidasi. Pertemuan VII
Prtmuan VII IV. Konsolidasi IV. Pndahuluan. Konsolidasi adalah pross brkurangnya volum atau brkurangnya rongga pori dari tanah jnuh brpmabilitas rndah akibat pmbbanan. Pross ini trjadi jika tanah jnuh
Debuging Program dengan EasyCase
Modul asyc 1 Dbuging Program dngan EasyCas Di susun Olh : Di dukung olh : Portal dukasi Indonsia Opn Knowlodg and Education http://ok.or.id Modul asyc 2 KATA PENGANTAR Puji syukur kpada guru sjatiku Gusti
MINAT SISWA TERHADAP EKSTRAKURIKULER OLAHRAGA BOLA VOLI DI SMA N 2 KABUPATEN PACITAN
Artikl Skripsi MINAT SISWA TERHADAP EKSTRAKURIKULER OLAHRAGA BOLA VOLI DI SMA N 2 KABUPATEN PACITAN SKRIPSI Diajukan Untuk Mmnuhi Sbagian Syarat Guna Mmprolh Glar Sarjana Pndidikan (S.Pd.) Pada Jurusan
PROFIL DATA PENGOBATAN DALAM USADA TENUNG TANYALARA
PROFIL DATA PENGOBATAN DALAM USADA TENUNG TANYALARA Wahyuni, N.N.S 1, Warditiani, N.K. 1, Lliqia, N.P.E. 1 1 Jurusan Farmasi Fakultas Matmatika Dan Ilmu Pngtahuan Alam Univrsitas Udayana Korspondnsi: Ni
VI. Teori Kinetika Gas
VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk
TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER
TINJAUAN ULANG EKSPANSI ASIMTOTIK UNTUK MASALAH BOUNDARY LAYER HannaA Parhusip Cntr of Applid Mathmatics Program Studi Matmatika Industri dan Statistika Fakultas Sains dan Matmatika Univrsitas Kristn Sata
Hendra Gunawan. 29 November 2013
MA1101 MATEMATIKA 1A Hndra Gunawan Smstr I, 013/014 9 Novmbr 013 Latihan (Kuliah yang Lalu) Ssorangygtingginya~1,60 m brdiri ditpiatastbing, mlihat lh k laut yang brada ~18,40 m di bawahnya. Pada saatitu
KAJIAN AWAL MEKANISME REAKSI ELEKTROLISIS NaCl MENJADI NaClO 4 UNTUK MENENTUKAN TAHAPAN REAKSI YANG EFEKTIF DARI PROSES ELEKTROLISIS NaCl
KAJIAN AWAL MEKANISME REAKSI ELEKTROLISIS NaCl MENJADI NaClO 4 UNTUK MENENTUKAN TAHAPAN REAKSI YANG EFEKTIF DARI PROSES ELEKTROLISIS NaCl Bayu Prianto Pnliti Bidang Matrial Dirgantara Abstrak Amonium prklorat
Fisika Dasar II Listrik, Magnet, Gelombang dan Fisika Modern
Fisika Dasar II Listrik, Magnt, Glombang dan Fisika Modrn Pokok Bahasan Mdan Listrik dan Dipol Listrik Abdul Waris Rizal Kurniadi Novitrian Sparisoma Viridi Mdan Listrik Artinya daripada ini... Mrka lbih
BAB II TINJAUAN KEPUSTAKAAN
BAB II TINJAUAN KEPUTAKAAN II.1 PENDAHULUAN Yild lin adalah suatu pmcahan yang dapat digunakan dalam plat bton dimana trjadinya tgangan llh dan rotasi scara plastis muncul. Tori ini dapat digunakan dalam
ANALISIS NOSEL MOTOR ROKET RX LAPAN SETELAH DILAKUKAN PEMOTONGAN PANJANG DAN DIAMETER
Analisis Nosl Motor Rokt RX-1 LAPAN... (Ahmad Jamaludin Fitroh, Sari) ANALISIS NOSEL MOTOR ROKET RX - 1 LAPAN SETELAH DILAKUKAN PEMOTONGAN PANJANG DAN DIAMETER Ahmad Jamaludin Fitroh, Sari Pnliti Pnliti
BAB II TEORI DASAR 2.1 Pengertian Pasang Surut
BAB II TEORI DASAR 2.1 Pngrtian Pasang Surut Pasang surut air laut (pasut) adalah pristiwa naik turunnya muka air scara priodik dngan rata-rata priodnya 12,4 jam (di bbrapa tmpat 24,8 jam) (Pond dan Pickard,
Deret Fourier, Transformasi Fourier dan DFT
Drt Fourir, Transformasi Fourir dan DFT A. Drt Fourir Drt fourir adalah drt yang digunakan dalam bidang rkayasa. Drt ini prtama kali ditmukan olh sorang ilmuan prancis Jan-Baptist Josph Fourir (1768-18).
Reduksi data gravitasi
Modul 5 Rduksi data gravitasi Rduksi data gravitasi trdiri dari:. Rduksi g toritis. Rduksi fr air 3. Rduksi Bougur 4. Rduksi mdan/trrain. Rduksi g toritis Pnlaahan tntang konsp rduksi data gravitasi lbih
Energi total sistem A dan tandon A`
Ensambl dan Sistm Intaktif Ensambl dan Sistm Intaktif Tpik-tpik ang akan dibahas: Ensambl Mikkannik (tanpa intaksi, bab IV Ensambl Kannik (intaksi tmal Ensambl Kannik Bsa (intaksi difusif Ensambl Kannik
IV. HASIL DAN PEMBAHASAN
IV. HASIL DAN PEMBAHASAN A. KARAKTERISTIK MUTU DAN REOLOGI CPO AWAL Minyak sawit kasar (crud palm oil/cpo) mrupakan komoditas unggulan Indonsia yang juga brpran pnting dalam prdagangan dunia. Mngingat
Analisis Dinamis Portal Bertingkat Banyak Multi Bentang Dengan Variasi Tingkat (Storey) Pada Tiap Bentang
Analisis Dinamis Portal Brtingkat Banyak Multi Bntang Dngan Variasi Tingkat (Story) Pada Tiap Bntang Hiryco Manalip Rky Stnly Windah Jams Albrt Kaunang Univrsitas Sam Ratulangi Fakultas Tknik Jurusan Sipil
model pengukuran yang menunjukkan ukur Pengukuran dalam B. Model Mode sama indikator dan 1 Pag
Modl Modl Pngukuran dalam Pmodlan Prsamaan Struktural Wahyu Widhiarso Fakultas Psikologi UGM Tulisan ini akan mmbahas bbrapa modl dalam SEM yang unik. Dikatakan unik karna jarang dipakai. Tulisan hanya
Konsolidasi http://www.pwri.go.jp/ http://www.ashirportr.org Pmbbanan tanah jnuh brprmabilitas rndah akan mnaikkan tkanan air pori Air akan mngalir k lapisan tanah dngan tkanan pori yg lbih rndah Prmabilitas
PERKEMBANGAN TEORI ATOM & PENEMUAN PROTON, NEUTRON, ELEKTRON. Putri Anjarsari, S.Si., M.Pd
PERKEMBANGAN TEORI ATOM & PENEMUAN PROTON, NEUTRON, ELEKTRON Putri Anjarsari, S.Si., M.Pd [email protected] PERKEMBANGAN TEORI ATOM Dmokritus Dalton Thomson Ruthrford Bohr Mkanika glombang Dmokritus
BAB 2. TURUNAN PARSIAL
BAB TURUNAN PARSIAL PENDAHULUAN Pada bagian ini akan dilajari rlasan kons trnan ngsi sat bah k trnan ngsi da bah ata lbih Stlah mmlajari bab ini anda akan daat: - Mnntkan trnan arsial ngsi da bah ata lbih
BAB 2 DISTRIBUSI INDUK DAN DISTRIBUSI SAMPEL
BAB DISTRIBUSI IDUK DA DISTRIBUSI SAMEL.. EDAHULUA Jika suatu bsaran mmiliki nilai ssungguhnya sdangkan hasil ukurnya adalah maka kita mngharapkan hasil pngamatan mndkati, namun knyataannya tidak slalu
BAB VII SISTEM DAN JARINGAN PIPA
BAB VII SISTEM AN JARINGAN PIPA Tujuan Intruksional Umum (TIU) Maasiswa diarapkan dapat mrncanakan suatu bangunan air brdasarkan konsp mkanika luida, tori idrostatika dan idrodinamika. Tujuan Intruksional
STUDI KONSUMSI ENERGI LISTRIK MOTOR INDUKSI SATU FASA PENGGERAK POMPA AIR PADA PENGISIAN TANDON SECARA BERTINGKAT
STUDI KONSUMSI ENERGI LISTRIK MOTOR INDUKSI SATU FASA PENGGERAK POMPA AIR PADA PENGISIAN TANDON SECARA BERTINGKAT Radityo Kusumo A LF 00 603 Jurusan Elktro Fakultas Tknik Univrsitas Diongoro Smarang Astrak
PELABELAN PRIME CORDIAL UNTUK GRAF BUKU DAN GRAF MATAHARI YANG DIPERUMUM
JIMT Vol. 4 No. Juni 07 (Hal 56-69) ISSN : 450 766X PELABELAN PRIME CORDIAL UNTUK GRAF BUKU DAN GRAF MATAHARI YANG DIPERUMUM S.Pranata, I. W. Sudarsana dan S.Musdalifah 3,,3 Program Studi Matmatika Jurusan
Model Statistika untuk Fertilitas Perkawinan dengan Pendekatan Eksponenesial
PROSIDIG ISB : 978 979 6353 6 3 Modl Statistika untuk Frtilitas Prkainan dngan Pndkatan Eksonnsial S 3 Endang Sri Krsnaati Jurusan Matmatika FMIPA Univrsitas Sriiaa [email protected] Abstrak
METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yuli Syafti Purnama 1 ABSTRACT
METODE ITERASI KELUARGA CHEBYSHEV-HALLEY UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yuli Syafti Purnama Mahasiswa Program Studi S Matmatika Fakultas Matmatika dan Ilmu Pngtahuan Alam Univrsitas Riau Kampus
METODE KLASIFIKASI BERSTRUKTUR POHON DENGAN ALGORITMA CRUISE, QUEST, DAN CHAID
Forum Statistika dan Komutasi, Aril 2006, :20-28 Vol. 11 No. 1 ISSN : 0853-8115 METODE KLASIFIKASI BERSTRUKTUR POHON DENGAN ALGORITMA CRUISE, QUEST, DAN CHAID Yasmin Erika F. Jurusan Tknik Msin Politknik
METODE EKSTRAKSI FITUR PADA PENGKLASIFIKASIAN DATA MICROARRAY BERBASIS INFORMASI PASANGAN GEN. Nopember, Surabaya, Indonesia.
METODE EKSTRAKSI FITUR PADA PENGKLASIFIKASIAN DATA MICROARRAY BERBASIS INFORMASI PASANGAN GEN Rully Solaiman,, Sha Agustianty, Yudhi Purwananto, dan I K Eddy Purnama Jurusan Tknik Informatika, Fakultas
BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH
BAB 4 MODEL MATEMATIKA PENGARUH TERAPI OBAT TERHADAP DINAMIKA VIRUS HIV DALAM TUBUH Sjak bbrapa ahun yang lalu, ilmuwan asal Amrika Marin Nowak dan Sbasian Bonhoffr mncoba mmplo daa dari pnliian oba ani-hiv.
ROKET AIR SMA NEGERI 21 MAKASSAR
ALAT PERAGA FISIKA ROKET AIR SMA NEGERI 21 MAKASSAR I. PENDAHULUAN 1. Latar Blakang Trkadang di waktu snggang srang siswa tatkala kbanyakan mrka mnggunakannya untuk brmalas-malasan, mlakukan hal yang tak
+ = R R γ P II.3 Beberapa Percobaan dengan Soap Films Soap film yang diregangkan sepanjang kawat. Berbentuk planar, karena tekanan di kedua
Bab II KAPILAITAS (CAPILLAITY) (CAPILLAITY) Olh : NISA NUINA VALEIE 1406 01 809 Bab II. Kapilaritas (Capillarity) II.1 Tgangan Prmukaan dan Enrgi Bbas Prmukaan II. Prsamaan Young dan Laplac II.3 Bbrapa
KARAKTERISASI ELEMEN IDEMPOTEN CENTRAL
Jurnal Barkng Vol 5 No Hal 33 39 (0) KAAKTEISASI ELEMEN IDEMPOTEN CENTAL HENY W M PATTY, ELVINUS ICHAD PESULESSY, UDI WOLTE MATAKUPAN 3,,3 Staf Jurusan Matmatika FMIPA UNPATTI Jl Ir M Putuhna, Kampus Unpatti,
KIMIA FISIKA (Kode : C-10) PENGOLAHAN LIMBAH CAIR TEMBAGA DENGAN MEMANFAATKAN ADSORBEN ZEOLIT ALAM YANG TERIMPREGNASI
MAKALAH PEDAMPIG KIMIA FISIKA (Kod : C-10) ISB : 978-979-1533-85-0 PEGOLAHA LIMBAH CAIR TEMBAGA DEGA MEMAFAATKA ADSORBE ZEOLIT ALAM YAG TERIMPREGASI Danil Indrayana Satyautra* *Staf Pngajar Program Studi
BAB 2 LANDASAN TEORI
6 BAB LANDASAN TEORI Pada bab ini akan diuraikan mngnai tori dan trminologi graph, yaitu bntuk-bntuk khusus suatu graph. Di sini uga akan dilaskan mngnai minimum spanning tr, pmrograman 0-, dan aplikasi
8. FUNGSI TRANSENDEN MA1114 KALKULU I 1
8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Fungsi Invrs Misalkan : D R a y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi
Bab 1 Ruang Vektor. I. 1 Ruang Vektor R n. 1. Ruang berdimensi satu R 1 = R = kumpulan bilangan real Menyatakan suatu garis bilangan;
Bab Ruang Vktor I. Ruang Vktor R n. Ruang brdimnsi satu R = R = kumpulan bilangan ral Mnyatakan suatu garis bilangan; -3 - - 0. Ruang brdimnsi dua R = bidang datar ; Stiap vktor di R dinyatakan sbagai
ISOMORFISMA PADA GRAF P 4
ISOMORFISMA PADA GRAF P Eka Adhistiasari, I Ktut Budayasa 2 Jurusan Matmatika, Fakultas Martmatika dan Ilmu Pngtahuan Alam, UNESA Kampus Ktintang 6023,Surabaya Email : tias-adhis@yahoocoid, ktutbudayasa@yahoocom
Ensembel Grand Kanonik (Kuantum) Gas IDeal
Ensembel Grand Kanonik (Kuantum) Gas IDeal Fungsi Partisi Grand Kanonik: Gas Ideal Seerti di Klasik fungsi artisi Grand Kanonik : ζ z, V, T = N=0 z N Q N (V, T) dengan Q N adalah fungsi artisi kanonik,
FUNGSI DOMINASI ROMAWI PADA LINE GRAPH
Bultin Ilmiah Mat. Stat. dan Trapannya (Bimastr) Volum 04, No. 2 (2015), hal 119 126. FUNGSI DOMINASI ROMAWI PADA LINE GRAPH Ysi Januarti, Mariatul Kiftiah, Nilamsari Kusumastuti INTISARI Himpunan D disbut
8. FUNGSI TRANSENDEN MA1114 KALKULU I 1
8. FUNGSI TRANSENDEN MA4 KALKULU I 8. Invrs Fungsi Misalkan : D R! y dngan () Dinisi 8. Fungsi y () disbut satu-satu jika (u) (v) maka u v atau jika u v maka ( u) ( v) y y y u v ungsi y satu-satu ungsi
2. Deskripsi Statistik Sistem Partikel
. Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum
SAMBUNGAN BALOK PENDUKUNG MOMEN
BAB VI SABUNGAN BALOK ENDUKUNG OEN 1. TUJUAN ERKULIAHAN A. TUJUAN UU ERKULIAHAN (TU) Stlah mmplajari matri tntang sambungan balok pndukung momn, scara umum anda diharapkan : 1. ampu mnjlaskan pngrtian
3. Termodinamika Statistik
3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika
MODEL PERAMBATAN PANAS ARAH RADIAL BENDA-BENDA SILINDRIK MULTILAYER
MODEL PERAMBATAN PANAS ARAH RADIAL BENDA-BENDA SILINDRIK MULTILAYER Tomi Tristono 1 1 adalah Dosn Fakultas Tknik Univrsitas Mrdka Madiun Abstract A hat transfr modl of a-multilayrs cylindrical shap with
2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi
BAB DASAR TEOR. Prsamaan Grak Rok dalam Ruang Tiga Dimnsi Prsamaan grak rok di bidang ruang iga dimnsi pada Taa Acuan Koordina Bnda diurunkan dari Prsamaan Dinamik Rok [Rf. ] sbagai briku: Grak Translasi
Ringkasan Materi Kuliah METODE-METODE DASAR PERSAMAAN DIFERENSIAL ORDE SATU
Ringkasan atri Kuliah ETODE-ETODE DASAR PERSAAAN DIFERENSIAL ORDE SATU Pndahuluan Prsamaan dirnsial adalah prsamaan ang mmuat turunan satu atau bbrapa) ungsi ang takdiktahui skipun prsamaan sprti itu harusna
BAB 2 DASAR TEORI 2.1 TEORI GELOMBANG LINIER. Bab 2 Teori Dasar
BAB 2 DASAR TEORI Glombang air mrupakan manifstasi dari suatu rambatan nrgi yang mmiliki frkunsi dan priod. Glombang air yang trjadi di laut dapat disbabkan olh angin, grakan kapal, gmpa atau gaya gravitasi
ANALISIS SAMBUNGAN PAKU
4 ANALISIS SAMBUNGAN PAKU Alat sambung paku masih sring ijumpai paa struktur atap, ining, atau paa struktur rangka rumah. Tbal kayu yang isambung biasanya tiak trlalu tbal brkisar antara 0 mm sampai ngan
BAB IV KEADAAN/KONDISI PEMONDOKAN DAN KEBERADAAN MAHASISWA DI PEMONDOKAN MARGOSARI
BAB IV KEADAAN/KONDISI PEMONDOKAN DAN KEBERADAAN MAHASISWA DI PEMONDOKAN MARGOSARI Pada bab ini akan dipaparkan scara singkat tntang gambaran umum kbradaan sklompok mahasiswa pada sbuahindkos ataupmondokan
Kata kunci : Probabilitas pemilihan bus, Logit binner, Stated Preference
PROBABILITAS PENGGUNAAN BUS ANGKUTAN ALTERNATIF PADA RUTE JAYAPURA BANDAR UDARA SENTANI AMIRUDDIN Mahasiswa Magistr Bidang Kahlian Manajmn Dan Rkayasa Transortasi Fakultas Tknik Siil dan Prncanaan Institut
Chap. 8 Gas Bose Ideal
Chap. 8 Gas Bose Ideal Model: Gas Foton Foton adalah Boson yg tunduk kepada distribusi BE. Model: Foton memiliki frekuensi ω, rest mass=0, spin 1ħ Energi E=ħω dan potensial kimia =0 Momentum p = ħ k, dengan
PENGARUH KONSELING KELOMPOK TERHADAP PENINGKATAN SELF REGULATION SISWA KELAS X JURUSAN TEKNIK KOMPUTER DAN JARINGAN SMK MUHAMMADIYAH 2 PEKANBARU
PENGARUH KONSELING KELOMPOK TERHADAP PENINGKATAN SELF REGULATION SISWA KELAS X JURUSAN TEKNIK KOMPUTER DAN JARINGAN SMK MUHAMMADIYAH 2 PEKANBARU Novi Frlinita Sari 1, Tri Umari 2, Abu Asyari 3 Email :
Susunan Antena. Oleh : Eka Setia Nugraha S.T., M.T. Sumber: Nachwan Mufti Adriansyah, S.T., M.T.
Susunan Antna Olh : ka Stia Nugraha S.T., M.T. Sumbr: Nachwan Mufti Adriansyah, S.T., M.T. A. Pndahuluan Dalam kuliah Mdan lktromantika Tlkomunikasi kita sudah mngnal pnjumlahan/ suprposisi mdan. Tlah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. MICRO BUBBLE GENERATOR Micro Bubbl Gnrator (MBG) mrupakan suatu alat yang difungsikan untuk mnghasilkan glmbung udara dalam ukuran mikro, yaitu glmbung dngan diamtr 00 μm []. Aplikasi
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN. Solusi Numri Modl H-R dngan RKF Modl H-R ang trbntu dari tiga prsamaan diffrnsial ord satu ang saling brhubungan atau tropl. Prsamaan trsbut brsifat autonomous ang brarti brdiri
PROSES PEMANENAN DENGAN MODEL LOGISTIK STUDI KASUS PADA PTP. NUSANTARA IX
Prosiding SPMIPA. pp. 3-39, 006 ISBN : 979.704.47.0 PROSES PEMANENAN DENGAN MODEL LOGISTIK STUDI KASUS PADA PTP. NUSANTARA IX Eka Ariani, Agus Rusgiyono Jurusan Matmatika FMIPA Univrsitas Dipongoro Jl.
BAB 3 METODOLOGI PERANCANGAN. 35 orang. Setiap orang diambil sampel sebanyak 15 citra wajah dengan
BAB 3 METODOLOGI PERANCANGAN 3.1 Input Data Citra Wajah Pada pnlitian ini, digunakan sbanyak 525 citra ajah yang trdiri dari 35 orang. Stiap orang diambil sampl sbanyak 15 citra ajah dngan pncahayaan yang
3. PEMODELAN SISTEM. Data yang diperoleh pada saat survey di lokasi potensi tersebut adalah sebagai berikut :
3. PEMODELAN SISTEM 3.1. Kondisi Darah Studi Kabupatn Solok Slatan trltak di bagian slatan Propinsi Sumatra Barat pada posisi 0 43 1 43 Lintang Slatan 101 01 101 30 Bujur Timur dngan luas wilayah 3.346,20
HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS
18Novmbr 17 Tma 7: Ilmu-Ilmu Murni (Matmatika, Fisika, Kimia dan Biologi) HUBUNGAN ANTARA KELOMPOK UMUR, JENIS KELAMIN DAN JENIS PEKERJAAN PADA PENDERITA HIV/AIDS DI KABUPATEN BANYUMAS Olh Agung Prabowo
PENDUGAAN SEBARAN LAMA PERAWATAN NASABAH ASURANSI KESEHATAN (STUDI KASUS: ASURANSI KESEHATAN P.T. ASURANSI JIWA BRINGIN JIWA SEJAHTERA) NOVALIA
PENDUGAAN SEBARAN LAMA PERAWATAN NASABAH ASURANSI KESEHATAN (STUDI KASUS: ASURANSI KESEHATAN P.T. ASURANSI JIWA BRINGIN JIWA SEJAHTERA) NOVALIA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 211 PERNYATAAN
Hubungan antara K dengan koefisien fugasitas:
Hubungan antara K dngan kofsn fugastas: fˆ f K Kadaan standar untuk gas adalah gas murn pada kadaan gas dal pada tkanan kadaan standar sbsar 1 bar. (1) Karna fugastas gas dal sama dngan tkanannya, f =
