Analisis Rangkaian Listrik

Ukuran: px
Mulai penontonan dengan halaman:

Download "Analisis Rangkaian Listrik"

Transkripsi

1 Sudaryatno Sudirham Analisis Rangkaian Listrik Jilid Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

2 BAB Analisis Rangkaian Menggunakan Transformasi Fourier Dengan pembahasan analisis rangkaian dengan menggunakan transformasi Fourier, kita akan mampu melakukan analisis rangkaian menggunakan transformasi Fourier. mampu mencari tanggapan frekuensi... Transformasi Fourier dan Hukum Rangkaian Kelinieran dari transformasi Fourier menjamin berlakunya relasi hukum Kirchhoff di kawasan frekuensi. Relasi HTK misalnya, jika ditransformasikan akan langsung memberikan hubungan di kawasan frekuensi yang sama bentuknya dengan relasinya di kawasan waktu. Misalkan relasi HTK jika ditransformasikan : v( v ( v3( : V V3 V3( Hal inipun berlaku untuk KCL. Dengan demikian maka transformasi Fourier dari suatu sinyal akan mengubah pernyataan sinyal di kawasan waktu menjadi spektrum sinyal di kawasan frekuensi tanpa mengubah bentuk relasi hukum Kirchhoff, yang merupakan salah satu persyaratan rangkaian yang harus dipenuhi dalam analisis rangkaian listrik. Persyaratan rangkaian yang lain adalah persyaratan elemen, yang dapat kita peroleh melalui transformasi hubungan tegangan-arus (karakteristik i-v elemen). Dengan memanfaatkan sifat diferensiasi dari transformasi Fourier, kita akan memperoleh relasi di kawasan frekuensi untuk resistor, induktor, dan kapasitor sebagai berikut. Resistor Induktor Kapasitor : VR RI R : VL jωli L : IC jωcvc Relasi diatas mirip dengan relasi hukum Ohm. Dari relasi di atas kita dapatkan impedansi elemen, yaitu perbandingan antara tegangan dan arus di kawasan frekuensi

3 Z R R ; Z L jωl ; ZC (.) jωc Bentuk-bentuk (.) telah kita kenal sebagai impedansi arus bolakbalik. Dari uraian di atas dapat kita simpulkan bahwa transformasi Fourier suatu sinyal akan tetap memberikan relasi hukum Kirchhoff di kawasan frekuensi dan hubungan tegangan-arus elemen menjadi mirip dengan relasi hukum Ohm jika elemen dinyatakan dalam impedansinya. Dengan dasar ini maka kita dapat melakukan transformasi rangkaian, yaitu menyatakan elemen-elemen rangkaian dalam impedansinya dan menyatakan sinyal dalam transformasi Fouriernya. Pada rangkaian yang ditransformasikan ini kita dapat menerapkan kaidah-kaidah rangkaian dan metoda-metoda analisis rangkaian. Tanggapan rangkaian di kawasan waktu dapat diperoleh dengan melakukan transformasi balik. Uraian di atas paralel dengan uraian mengenai transformasi Laplace, kecuali satu hal yaitu bahwa kita tidak menyebut-nyebut tentang kondisiawal. Hal ini dapat difahami karena batas integrasi dalam mencari transformasi Fourier adalah dari sampai. Hal ini berbeda dengan transformasi Laplace yang batas integrasinya dari ke. Jadi analisis rangkaian dengan menggunakan transformasi Fourier mengikut sertakan seluruh kejadian termasuk kejadian untuk t <. Oleh karena itu cara analisis dengan transformasi Fourier tidak dapat digunakan jika kejadian pada t < dinyatakan dalam bentuk kondisi awal. Pada dasarnya transformasi Fourier diaplikasikan untuk sinyal-sinyal non-kausal sehingga metoda Fourier memberikan tanggapan rangkaian yang berlaku untuk t sampai t. CO TOH-.: Pada rangkaian seri antara resistor R dan kapasitor C diterapkan tegangan v. Tentukan tanggapan rangkaian v C. Penyelesaian: Persoalan rangkaian orde pertama ini telah pernah kita tangani pada analisis transien di kawasan waktu maupun kawasan s (menggunakan transformasi Laplace). Di sini kita akan menggunakan transformasi Fourier. v R C v C Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

4 Transformasi Fourier dari rangkaian ini adalah : tegangan masukan V (, impedansi resistor R terhubung seri dengan impedansi kapasitor. jωc Dengan kaidah pembagi tegangan kita dapatkan tegangan pada kapasitor adalah ZC / jωc / RC VC V V V R ZC R (/ jωc) jω (/ RC) Tegangan kapasitor tergantung dari V (. Misalkan tegangan masukan v ( berupa sinyal anak tangga dengan amplitudo. Dari tabel.. tegangan ini di kawasan frekuensi adalah V ( πδ(. Dengan demikian maka jω V C / RC ( ) j (/ RC) πδ ω j ω ω jω / RC πδ( / RC ( jω / RC) ( jω / RC) Fungsi impuls δ( hanya mempunyai nilai untuk ω, sehingga pada umumnya F(δ( F()δ(. Dengan demikian suku kedua πδ( / RC ruas kanan persamaan di atas πδ(. Suku pertama ( jω / RC ) dapat diuraikan, dan persamaan menjadi V C πδ( jω jω / RC Dengan menggunakan Tabel.. kita dapat mencari transformasi balik v C ( sgn( (/ RC) t (/ RC) t [ e ] u( [ e ] u( Pemahaman : Hasil yang kita peroleh menunjukkan keadaan transien tegangan kapasitor, sama dengan hasil yang kita peroleh dalam analisis transien di kawasan waktu di Bab-4 contoh 4.5. Dalam menyelesaikan persoalan ini kita tidak menyinggung sama sekali mengenai kondisi awal pada kapasitor karena transformasi Fourier telah mencakup keadaan untuk t <. V R /jωc V C 3

5 CO TOH-.: Bagaimanakah v C pada contoh.. jika tegangan yang diterapkan adalah v ( sgn(? Penyelesaian: Dari Tabel.. kita peroleh F [ sgn( ] maka V C ( dan uraiannya adalah. Dengan demikian jω V C / RC jω / RC Transformasi baliknya memberikan jω jω jω / RC Pemahaman: v C ( sgn( e (/ RC) t u( Persoalan ini melibatkan sinyal non-kausal yang memerlukan penyelesaian dengan transformasi Fourier. Suku pertama dari v C ( memberikan informasi tentang keadaan pada t <, yaitu bahwa tegangan kapasitor bernilai karena suku kedua bernilai nol untuk t <. Untuk t >, v C ( bernilai e (/RC) t u( yang merupakan tegangan transien yang nilai akhirnya adalah. Di sini terlihat jelas bahwa analisis dengan menggunakan transformasi Fourier memberikan tanggapan rangkaian yang mencakup seluruh sejarah rangkaian mulai dari sampai. Gambar v C ( adalah seperti di bawah ini. v C -4-4 sgn( - - sgn(e (/RC) t u( t e (/RC) t u( 4 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

6 .. Konvolusi dan Fungsi Alih Jika h( adalah tanggapan rangkaian terhadap sinyal impuls dan x( adalah sinyal masukan, maka sinyal keluaran y( dapat diperoleh melalui integral konvolusi yaitu y ( t h( τ) x( tτ) dτ (.) Dalam integral konvolusi ini batas integrasi adalah τ sampai τ t karena dalam penurunan formulasi ini h( dan x( merupakan bentuk gelombang kausal. Jika batas integrasi tersebut diperlebar mulai dari τ sampai τ, (.) menjadi ( h( τ) x( tτ dτ (.3) τ y ) Persamaan (.3) ini merupakan bentuk umum dari integral konvolusi yang berlaku untuk bentuk gelombang kausal maupun non-kausal. Transformasi Fourier untuk kedua ruas (.3) adalah F ( Y F [ y ] t τ τ h( τ) x( tτ) dτ h( τ) x( tτ) dτ e Pertukaran urutan integrasi pada (.4) memberikan jωt dt (.4) Y τ τ t h( τ) h( τ) x( tτ) e t x( tτ) e jωt jωt dt dτ dt dτ (.5) Mengingat sifat pergeseran waktu pada transformasi Fourier, maka (.5) dapat ditulis Y τ τ h( τ) e h( τ) e jωτ jωτ X dτ dτ X H( X (.6) 5

7 Persamaan (.6) menunjukkan hubungan antara transformasi Fourier sinyal keluaran dan masukan. Hubungan ini mirip bentuknya dengan persamaan yang memberikan hubungan masukan-keluaran melalui fungsi alih T(s) di kawasan s yaitu Y(s) T(s) X(s). Oleh karena itu H( disebut fungsi alih bentuk Fourier. CO TOH-.3: Tanggapan impuls suatau sistem adalah α α t h( e. Jika sistem ini diberi masukan sinyal signum, sgn(, tentukanlah tanggapan transiennya. Penyelesaian: Dengan Tabel.. didapatkan H( untuk sistem ini α α t α α H F e α ω Sinyal masukan, menurut Tabel.. adalah Sinyal keluaran adalah X F α Y H X α ω yang dapat diuraikan menjadi k k k 3 jωy jω ( α j Y ( α j Y [ sgn( ] jω jω k k k3 Y jω α jω α jω α ( α j( α j jωα jωα α jω( α j α jω( α j α α ω α jω( α j( α j jω jωα jωα α α( αα) α α( αα) 6 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

8 Jadi Y jω α jω α j( sehingga y( sgn( e [ e α t αt u( e α( ] u( [ e α t u( ] u( ] Gambar dari hasil yang kita peroleh adalah seperti di bawah ini. CO TOH-.4: Tentukan tanggapan frekuensi dari sistem pada contoh-.3. Penyelesaian : Fungsi alih sistem tersebut adalah -4 4 [e α t ] u( y( - α H. α ω Kurva H( kita gambarkan dengan ω sebagai absis dan hasilnya adalah seperti gambar di bawah ini. H( [e α t ] u( t - - ω 7

9 Pada ω, yaitu frekuensi sinyal searah, H( bernilai sedangkan untuk ω tinggi H( menuju nol. Sistem ini bekerja seperti lowpass filter. Frekuensi cutoff terjadi jika H ( ω ) H () α α ωc ωc α α.644α.3. Energi Sinyal Energi total yang dibawa oleh suatu bentuk gelombang sinyal didefinisikan sebagai W total p( dt dengan p( adalah daya yang diberikan oleh sinyal kepada suatu beban. v ( Jika beban berupa resistor maka p( i ( R ; dan jika R bebannya adalah resistor Ω maka WΩ f ( dt (.7) dengan f ( berupa arus ataupun tegangan Persamaan (.7) digunakan sebagai definisi untuk menyatakan energi yang dibawa oleh suatu bentuk gelombang sinyal. Dengan kata lain, energi yang diberikan oleh suatu gelombang sinyal pada resistor Ω menjadi pernyataan kandungan energi gelombang tersebut. Teorema Parseval menyatakan bahwa energi total yang dibawa oleh suatu bentuk gelombang dapat dihitung baik di kawasan waktu maupun kawasan frekuensi. Pernyataan ini dituliskan sebagai W Ω f d π ( dt F ω (.8) Karena F( merupakan fungsi genap, maka (.8) dapat dituliskan π W Ω F dω (.9) 8 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

10 Jadi di kawasan waktu energi gelombang adalah integral untuk seluruh waktu dari kuadrat bentuk gelombang, dan di kawasan frekuensi energinya adalah (/π) kali integrasi untuk seluruh frekuensi dari kuadrat besarnya (nilai mutlak) transformasi Fourier dari sinyal. Penurunan teorema ini dimulai dari (.7). W jωt e dω dt π Ω f ( dt f ( F Integrasi yang berada di dalam tanda kurung adalah integrasi terhadap ω dan bukan terhadap t. Oleh karena itu f( dapat dimasukkan ke dalam integrasi tersebut menjadi W jωt e dω π dt Ω f ( F Dengan mempertukarkan urutan integrasi, akan diperoleh W Ω π π π F f ( F( e jωt dt dω f ( e F( F( dω π j( ω F dt dω dω Teorema Parseval menganggap bahwa integrasi pada persamaan (.8) ataupun (.9) adalah konvergen, mempunyai nilai berhingga. Sinyal yang bersifat demikian disebut sinyal energi; sebagai contoh: sinyal kausal eksponensial, eksponensial dua sisi, pulsa persegi, sinus teredam. Jadi tidak semua sinyal merupakan sinyal energi. Contoh sinyal yang mempunyai transformasi Fourier tetapi bukan sinyal energi adalah sinyal impuls, sinyal anak tangga, signum, dan sinus (tanpa henti). Hal ini bukan berarti bahwa sinyal ini, anak tangga dan sinyal sinus misalnya, tidak dapat digunakan untuk menyalurkan energi bahkan penyaluran energi akan berlangsung sampai tak hingga; justru karena itu ia tidak disebut sinyal energi melainkan disebut sinyal daya. 9

11 CO TOH-.5: Hitunglah energi yang dibawa oleh gelombang t v( e u( t V Penyelesaian: [ ] ) Kita dapat menghitung di kawasan waktu WΩ t t [ e ] dt [ e ] t e Untuk menghitung di kawasan frekuensi, kita cari lebih dulu V(/(j. ω W Ω ω tan 6 π d ω π() π π π Pemahaman: Kedua cara perhitungan memberikan hasil yang sama. Fungsi F( menunjukkan kerapatan energi dalam spektrum sinyal. Persamaan (.4) adalah energi total yang dikandung oleh seluruh spektrum sinyal. Jika batas integrasi adalah ω dan ω maka kita memperoleh persamaan J ω W F dω (.) π ω yang menunjukkan energi yang dikandung oleh gelombang dalam selang frekuensi ω dan ω. Jika hubungan antara sinyal keluaran dan masukan suatu pemroses sinyal adalah Y H X maka energi sinyal keluaran adalah W Ω H X dω (.) π Dengan hubungan-hubungan yang kita peroleh ini, kita dapat menghitung energi sinyal langsung menggunakan transformasi Fouriernya tanpa harus mengetahui bentuk gelombang sinyalnya. J dt Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

12 CO TOH-.6: Tentukan lebar pita yang diperlukan agar 9% dari t total energi gelombang exponensial v( [ e ] u( V dapat diperoleh. Penyelesaian: Bentuk gelombang t [ e ] u( v( V jω Energi total : ω W Ω tan 6 ω π d ω π() π J π Misalkan lebar pita yang diperlukan untuk memperoleh 9% energi adalah β, maka β β ω W9% tan 6 ω π d ω π() β tan π Jadi 9 tan β β π.9 tan π β 63 rad/s

13 Soal-Soal. Saklar S pada rangkaian berikut telah berada di posisi mulai t. Pada t ia dipindahkan keposisi dan tetap pada posisi sampai t. Jika v V, v V, tentukan v in, V in (, V o (, v o. S µf v v v in kω. Saklar S pada rangkaian berikut telah berada di posisi mulai t. Pada t ia dipindahkan keposisi dan tetap pada posisi sampai t. Tentukan v in, V in (, V o (, v o, jika v V, v 5 V. S v v v in kω µf 3. Saklar S pada rangkaian berikut telah berada di posisi mulai t. Pada t ia dipindahkan keposisi dan tetap pada posisi sampai t. Tentukan v in, V in (, V o (, v o, jika v e t V, v e t V. S v v v in H,5 kω 4. Saklar S pada rangkaian berikut telah berada di posisi mulai t. Pada t ia dipindahkan keposisi dan tetap pada posisi sampai t. Tentukan v in, V in (, V o (, v o, jika v e t V, v e t V. v o v o v o Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

14 v S v v in,5 kω H v o 5. Saklar S pada rangkaian berikut telah berada di posisi mulai t. Pada t ia dipindahkan keposisi dan tetap pada posisi sampai t. Tentukan v in, V in (, V o (, v o, jika v V, v e t V. S v v v in H Ω 6. Pada sebuah rangkaian seri L H, C µf, dan R kω, diterapkan tegangan v s sgn( V. Tentukan tegangan pada resistor. 7. Tanggapan impuls sebuah rangkaian linier adalah h( sgn(. Jika tagangan masukan adalah v s ( δ(e t u( V, tentukan tegangan keluarannya. 8. Tentukan tanggapan frekuensi rangkaian yang mempunyai tanggapan impuls h( δ(e t u(. 9. Tentukan tegangan keluaran rangkaian soal 8, jika diberi masukan v s ( sgn(.. Jika tegangan masukan pada rangkaian berikut adalah v cost V, tentukan tegangan keluaran v o. µf kω kω v v o v o 3

15 . Ulangi soal untuk sinyal yang transformasinya V ( ω 4. Tentukan enegi yang dibawa oleh sinyal t v( 5 t e u( V. Tentukan pula berapa persen energi yang dikandung dalam selang frekuensi ω rad/s. 3. Pada rangkaian filter RC berikut ini, tegangan masukan adalah 5 t v e u( V. v kω µf kω v o Tentukan energi total masukan, persentase energi sinyal keluaran v o terhadap energi sinyal masukan, persentase energi sinyal keluaran dalam selang passband-nya. 4. Pada rangkaian berikut ini, tegangan masukan adalah 5 t v e u( V. µf kω kω v Tentukan energi total masukan, persentase energi sinyal keluaran v o terhadap energi sinyal masukan, persentase energi sinyal keluaran dalam selang passband-nya. v o 4 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

16 Daftar Pustaka. Sudaryatno Sudirham, Analisis Rangkaian Listrik, Penerbit ITB, ISBN Sudaryatno Sudirham, Pengembangan Metoda Unit Output Untuk Perhitungan Susut Energi Pada Penyulang Tegangan Menengah, Monograf, 5, limited publication. 3. Sudaryatno Sudirham, Pengantar Rangkaian Listrik, Catatan Kuliah El, Penerbit ITB, Sudaryatno Sudirham, Analisis Harmonisa Dalam Permasalahan Kualitas Daya, Catatan Kuliah El 64, P. C. Sen, Power Electronics McGraw-Hill, 3rd Reprint, 99, ISBN Ralph J. Smith & Richard C. Dorf : Circuits, Devices and Systems ; John Wiley & Son Inc, 5 th ed, David E. Johnson, Johnny R. Johnson, John L. Hilburn : Electric Circuit Analysis ; Prentice-Hall Inc, nd ed, Vincent Del Toro : Electric Power Systems, Prentice-Hall International, Inc., Roland E. Thomas, Albert J. Rosa : The Analysis And Design of Linier Circuits,. Prentice-Hall Inc, Douglas K Lindner : Introduction to Signals and Systems, McGraw-Hill,

17 Daftar otasi v atau v( : tegangan sebagai fungsi waktu. V : tegangan dengan nilai tertentu, tegangan searah. V rr : tegangan, nilai rata-rata. V rms : tegangan, nilai efektif. V maks : tegangan, nilai maksimum, nilai puncak. V : fasor tegangan dalam analisis di kawasan fasor. V : nilai mutlak fasor tegangan. V(s) : tegangan fungsi s dalam analisis di kawasan s. i atau i( : arus sebagai fungsi waktu. I : arus dengan nilai tertentu, arus searah. I rr : arus, nilai rata-rata. I rms : arus, nilai efektif. I maks : arus, nilai maksimum, nilai puncak. I : fasor arus dalam analisis di kawasan fasor. I : nilai mutlak fasor arus. I(s) : arus fungsi s dalam analisis di kawasan s. p atau p( : daya sebagai fungsi waktu. p rr : daya, nilai rata-rata. S : daya kompleks. S : daya kompleks, nilai mutlak. P : daya nyata. Q : daya reaktif. q atau q( : muatan, fungsi waktu. w : energi. R : resistor; resistansi. L : induktor; induktansi. C : kapasitor; kapasitansi. Z : impedansi. Y : admitansi. T V (s) : fungsi alih tegangan. T I (s) : fungsi alih arus. T Y (s) : admitansi alih. T Z (s) : impedansi alih. µ : gain tegangan. β : gain arus. r : resistansi alih, transresistance. g : konduktansi; konduktansi alih, transconductance. 6 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

18 I DEKS a akar kompleks 4 akar riil 36, 38 anak tangga, 43, 56, 3 analisis transien arus mesh 99 b Bode plot 3 c cutoff 6 d decibel 7 diagram blok 69, 7, 74, 77, 89 diferensiasi 6, 6 dinamis 8 e eksponensial 57, energi sinyal 8 f Fourier 95 fungsi alih 6, 9, 7, 66, 5 fungsi fasa 4 fungsi gain 4 fungsi jaringan 5 fungsi masukan 5 fungsi pemaksa 7 g gain 6 gain, band-pass 9, 4, 43 gain, high-pass 6, 9, 37, 46 gain, low-pass 6, 9, 49 h hubungan bertingkat 4 i impedansi 86 impuls induktor 86 integrasi 6, 6 integrator 86, 88 k kaidah 9 kaidah rantai 4 kapasitor 86, 7 kaskade 68 Kirchhoff 89 komponen mantap 7 komponen transien 7 kondisi awal 6 konvolusi 75, 7, 67, 5 l linier 6 m metoda-metoda 93 n nilai akhir 65 nilai awal 65 Norton 9 o orde ke-dua 3, 33, 4 orde pertama,, 4, 6, p paralel 69 Parseval 9 passband 6 pembalikan pen-skalaan 65, 5 pole 68, 7, 7, 73, 56 proporsionalitas 9 7

19 r reduksi rangkaian 96 resistor 85 ruang status 87, 89 s simetri 98,, sinyal 63 sinyal sinus, 46, 57, sistem 64, 65, 65, 85 spektrum kontinyu 3 statis 8 stopband 6 sub-sistem 8 superposisi 8, 9, 94 t tanggapan alami 4, 5, 6, 34 tanggapan frekuensi, 4, 4, 5 tanggapan lengkap 4, 6, 35 tanggapan masukan nol 4, 6 tanggapan paksa 4, 6, 6, 35 tanggapan status nol 4, 6 tegangan simpul 98 teorema 9 Thévenin 97 transformasi balik 55, 59, 6 transformasi Fourier 95, 3, 8,, 3 transformasi Laplace 55, 56,, 58, 59, 67, 78, 85, translasi s 64 translasi t 63 u umpan balik 69 unik 59 unit output 93 z zero 68, 5, 5 8 Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

20 Biodata Nama: Sudaryatno Sudirham Lahir: di Blora pada 6 Juli 943 Istri: Ning Utari Anak: Arga Aridarma Aria Ajidarma. 97 : Teknik Elektro Institut Teknologi Bandung : Dosen Institut Teknologi Bandung. 974 : Tertiary Education Research Center UNSW Australia. 979 : EDF Paris Nord dan Fontainbleu Perancis. 98 : INPT - Toulouse Perancis; 98 DEA; 985 Doktor. Kuliah yang pernah diberikan: Pengukuran Listrik, Pengantar Teknik Elektro, Pengantar Rangkaian Listrik, Material Elektroteknik, Phenomena Gas Terionisasi, Dinamika Plasma, Dielektrika, Material Biomedika. Buku: Analisis Rangkaian Listrik, Penerbit ITB, Bandung, ; Metoda Rasio TM/TR Untuk Estimasi Susut Energi Jaringan Distribusi, Penerbit ITB, Bandung, 9; Fungsi dan Grafik, Diferensial Dan Integral, Penerbit ITB, Bandung, 9; Analisis Rangkaian Listrik (), Darpublic, e-book, Bandung, ; Analisis Rangkaian Listrik (), Darpublic, e-book, Bandung, ; Mengenal Sifat Material (), Darpublic, e-book, Bandung, ; Analisis Keadaan Mantap Rangkaian Sistem Tenaga, Darpublic, Bandung,. 9

21 Analisis Rangkaian Listrik () Analisis Transien, Transformasi Laplace, Fungsi Jaringan, Tanggapan Frekuensi, Pengenalan Pada Sistem, Persamaan Ruang Status, Transformasi Fourier. Sudaryatno Sudirham, Analisis Rangkaian Listrik ()

Analisis Rangkaian Listrik Jilid 2

Analisis Rangkaian Listrik Jilid 2 Sudaryatno Sudirham Analisis Rangkaian Listrik Jilid Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 7 Tanggapan Frekuensi Rangkaian Orde Ke-Dua 7.. Rangkaian Orde Kedua Dengan Pole Riil Pole dari

Lebih terperinci

Analisis Rangkaian Listrik Jilid 2

Analisis Rangkaian Listrik Jilid 2 Sudaryatno Sudirham Analisis Rangkaian Listrik Jilid Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 6 Tanggapan Frekuensi Rangkaian Orde Pertama Sebagaimana kita ketahui, kondisi operasi normal

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Tanggapan Frekuensi Rangkaian Orde Pertama Sebagaimana kita ketahui, kondisi operasi

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatn Sudirham nalisis Rangkaian Listrik Jilid ii Sudaryatn Sudirham, nalsis Rangkaian Listrik () BB Fasr, Impedansi, dan Kaidah Rangkaian Dalam teknik energi listrik, tenaga listrik dibangkitkan,

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham nalisis angkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, nalisis angkaian Listrik () 7 Kaidah dan Teorema angkaian Kaidah rangkaian merupakan konsekuensi dari hukum-hukum rangkaian

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 5 Tanggapan Frekuensi Rangkaian Orde Ke-Dua 5.1. Rangkaian Orde Kedua Dengan Pole Riil

Lebih terperinci

UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO

UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO RENCANA PEMBELAJARAN SEMESTER (RPS) MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Rangkaian Listrik TKE1251-4 2 Dosen Pengembang

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu 1-2 Sudaryatno Sudirham, Analisis Rangkaian Listrik (1) BAB 1 Pendahuluan Dua dari sekian banyak kebutuhan manusia adalah kebutuhan akan

Lebih terperinci

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif Resonansi paralel sederhana (rangkaian tank ) Kondisi resonansi akan terjadi pada suatu rangkaian tank (tank circuit) (gambar 1) ketika reaktansi dari kapasitor dan induktor bernilai sama. Karena rekatansi

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham nalisis Rangkaian Listrik Di Kawasan Waktu 2 Sudaryatno Sudirham, nalisis Rangkaian Listrik (1) BB 6 Hukum-Hukum Dasar Pekerjaan analisis pada suatu rangkaian linier yang parameternya

Lebih terperinci

KONVERTER AC-DC (PENYEARAH)

KONVERTER AC-DC (PENYEARAH) KONVERTER AC-DC (PENYEARAH) Penyearah Setengah Gelombang, 1- Fasa Tidak terkontrol (Uncontrolled) Beban Resistif (R) Beban Resistif-Induktif (R-L) Beban Resistif-Kapasitif (R-C) Terkontrol (Controlled)

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu 2 Sudaryatno Sudirham, Analisis Rangkaian Listrik () A 8 Metoda Analisis Dasar Metoda analisis dikembangkan berdasarkan teorema rangkaian

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.

Lebih terperinci

penulisan ini dengan Perancangan Anti-Aliasing Filter Dengan Menggunakan Metode Perhitungan Butterworth. LANDASAN TEORI 2.1 Teori Sampling Teori Sampl

penulisan ini dengan Perancangan Anti-Aliasing Filter Dengan Menggunakan Metode Perhitungan Butterworth. LANDASAN TEORI 2.1 Teori Sampling Teori Sampl PERANCANGAN ANTI-ALIASING FILTER DENGAN MENGGUNAKAN METODE PERHITUNGAN BUTTERWORTH 1 Muhammad Aditya Sajwa 2 Dr. Hamzah Afandi 3 M. Karyadi, ST., MT 1 Email : muhammadaditya8776@yahoo.co.id 2 Email : hamzah@staff.gunadarma.ac.id

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham Analisis Rangkaian Listrik Mnggunakan Transformasi Fourir - Sudaryatno Sudirham, Analisis Rangkaian Listrik (4) BAB Analisis Rangkaian Mnggunakan Transformasi Fourir Dngan pmbahasan

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL Mempelajari hub

Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL Mempelajari hub Percobaan 5 Rangkaian RC dan RL EL2193 Praktikum Rangkaian Elektrik Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL

Lebih terperinci

MODUL 5 RANGKAIAN AC

MODUL 5 RANGKAIAN AC MODUL 5 RANGKAIAN AC Kevin Shidqi (13213065) Asisten: Muhammad Surya Nugraha Tanggal Percobaan: 05/11/2014 EL2101-Praktikum Rangkaian Elektrik Laboratorium Dasar Teknik Elektro - Sekolah Teknik Elektro

Lebih terperinci

ANALISIS RANGKAIAN. Oleh: Pujiono. Edisi Pertama Cetakan Pertama, 2013

ANALISIS RANGKAIAN. Oleh: Pujiono. Edisi Pertama Cetakan Pertama, 2013 ANALISIS RANGKAIAN Oleh: Pujiono Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH TEKNIK RANGKAIAN LISTRIK DAN SISTEM LINIER KODE : IT014230/D3 TK

SATUAN ACARA PERKULIAHAN MATA KULIAH TEKNIK RANGKAIAN LISTRIK DAN SISTEM LINIER KODE : IT014230/D3 TK Perte muan ke 1 02-03-2009 Pokok Bahasan dan Pendahuluaan Mengetahui dan memahami secara umum tentang satuan dasar dan turunannya Mengetahui dan memahami secara umum tentang penulisan beasran berpangkat

Lebih terperinci

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN 1. PENDAHULUAN 1.1 Rencana Perkuliahan Mata Kuliah : Rangkaian Listrik 2 Dosen : Trie Maya Kadarina ST, MT. Perkuliahan : PKK Semester

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2013 PERCOBAAN I DASAR KELISTRIKAN, LINEARITAS ANALISA MESH DAN SIMPUL I. TUJUAN

Lebih terperinci

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor

Lebih terperinci

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 TUJUAN PERKULIAHAN Memahami berbagai pernyataan gelombang sinyal Memahami konsep harmonisa

Lebih terperinci

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 1,2 Departemen Fisika, Institut Teknologi Bandung, Bandung, 40132 latifah_zamzami@yahoo.co.id

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO

STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN II. PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO STUDI PEMODELAN ELECTRONIC LOAD CONTROLLER SEBAGAI ALAT PENGATUR BEBAN PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO Anggi Muhammad Sabri Saragih 13204200 / Teknik Tenaga Elektrik Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti

Lebih terperinci

Rangkaian Listrik II

Rangkaian Listrik II Rangkaian Listrik II OLEH : Ir. Rachman Hasibuan dan Naemah Mubarakah,ST file:///d /E-Learning/Rangkaian%20listrik%20II/Bahan%20Buku/Rangkaian%20Listrik.htm (1 of 216)5/8/2007 3:26:21 PM Departemen Teknik

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 00 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika + 4 KAPASITOR, INDUKTOR DAN RANGKAIAN A 4. Bentuk Gelombang lsyarat (signal) Isyarat adalah merupakan informasi dalam bentuk perubahan arus atau tegangan. Perubahan bentuk isyarat terhadap fungsi waktu

Lebih terperinci

V L V R V C. mth 2011

V L V R V C. mth 2011 Percobaan 6 Resonansi EL2193 Praktikum Rangkaian Elektrik Tujuan Mempelajari perilaku rangkaian RLC Mempelajari resonansi seri, paralel, dan resonansi seri paralel Review Rangkaian Resonansi Rangkaian

Lebih terperinci

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-1 : Dr. Budi Mulyanti, MSi Pertemuan ke-13 CAKUPAN MATERI 1. INDUKTANSI. ENERGI TERSIMPAN DALAM MEDAN MAGNET 3. RANGKAIAN AC DAN IMPEDANSI 4. RESONANSI

Lebih terperinci

Modul VIII Filter Aktif

Modul VIII Filter Aktif Modul VIII Filter Aktif. Tujuan Praktikum Praktikan dapat mengetahui fungsi dan kegunaan dari sebuah filter. Praktikan dapat mengetahui karakteristik sebuah filter. Praktikan dapat membuat suatu filter

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2014 PERCOBAAN I BRIEFING PRAKTIKUM Briefing praktikum dilaksanakan hari Selasa

Lebih terperinci

KATA PENGANTAR. Bandung, Februari Penyusun. Janulis P.Purba. iii

KATA PENGANTAR. Bandung, Februari Penyusun. Janulis P.Purba. iii KATA PENGANTAR Sajian materi Rangkaian Listrik 1 atau Rangkaian Elektrik 1 ini diharapkan dapat membantu dan melengkapi perkuliahan Rangkaian Elektrik 1, di samping dapat digunakan oleh mahasiswa untuk

Lebih terperinci

ANALISIS RANGKAIAN RLC

ANALISIS RANGKAIAN RLC ab Elektronika ndustri Fisika. AUS A PADA ESSTO ANASS ANGKAAN Jika sebuah resistor dilewati arus A sebesar maka pada resistor akan terdapat tegangan sebesar r. Sehingga jika arus membesar maka tegangan

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017 Phasor dan Slide-09 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Phasor Frekuensi Komplex Definisi Phasor Transformasi Phasor Hubungan Tegangan-Arus Hukum Ohm dan Kirchhoff Rangkaian

Lebih terperinci

Bilangan Kompleks dan Fasor

Bilangan Kompleks dan Fasor Bilangan Kmpleks dan Fasr leh: Sudaryatn Sudirham. Bilangan Kmpleks.. Definisi Dalam buku Erwin Kreyszig kita baca definisi bilangan bilangan kmpleks sebagai berikut [] Bilangan kmpleks z ialah suatu pasangan

Lebih terperinci

Analisis Kelakuan Sistem Orde Dua

Analisis Kelakuan Sistem Orde Dua Program Studi Teknik Telekomunikasi - Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Praktikum Pengolahan Sinyal Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 3 : Analisis

Lebih terperinci

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK 1 Last Time Induktansi Diri 2 Induktansi Diri Menghitung: 1. Asumsikan arus I mengalir 2. Hitung B akibat adanya I tersebut 3. Hitung fluks akibat adanya B tersebut

Lebih terperinci

MODUL 05 FILTER PASIF PRAKTIKUM ELEKTRONIKA TA 2017/2018

MODUL 05 FILTER PASIF PRAKTIKUM ELEKTRONIKA TA 2017/2018 MODUL 05 FILTER PASIF PRAKTIKUM ELEKTRONIKA TA 2017/2018 LABORATORIUM ELEKTRONIKA DAN INSTRUMENTASI PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN PENGETAHUAN ALAM INSTITUT TEKNOLOGI BANDUNG Riwayat Revisi

Lebih terperinci

Sudaryatno Sudirham. Analisis Rangkaian Listrik Di Kawasan Fasor

Sudaryatno Sudirham. Analisis Rangkaian Listrik Di Kawasan Fasor Sudaryatn Sudirham Analisis Rangkaian Listrik Di Kawasan Fasr ii A 3 Analisis Daya Dengan mempelajari analisis daya di bab ini, kita akan memahami pengertian pengertian daya nyata, daya reaktif, daya kmpleks,

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham nalisis Rangkaian Listrik Jilid arpublic Hak cipta pada penulis, SURHM, SURYTNO nalisis Rangkaian Listrik () arpublic, andung are-7 edisi Juli http://ee-cafe.org lamat pos: Kanayakan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatn Sudirham nalisis Rangkaian Listrik Jilid ii 3 Terema dan Metda nalisis di Kawasan Fasr Setelah mempelaari bab ini, kita akan memahami aplikasi terema rangkaian dan metda analisis rangkaian di

Lebih terperinci

Rangkaian RL dan RC Dengan Sumber

Rangkaian RL dan RC Dengan Sumber Rangkaian RL dan RC Dengan Sumber Slide-07 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 32 Materi Kuliah 1 Pengantar Rangkaian Sebelumnya Fungsi Undak Satuan Sumber Ekivalen Fungsi Pulsa 2 Rangkaian

Lebih terperinci

BAB 1 RESONATOR Oleh : M. Ramdhani

BAB 1 RESONATOR Oleh : M. Ramdhani BAB 1 RESONATOR Oleh : M. Ramdhani Ruang Lingkup Materi : Rangkaian resonator paralel (loss less components) Rangkaian resonator dengan L dan C mempunyai rugirugi/ losses Transformator impedansi (tujuan

Lebih terperinci

The Forced Oscillator

The Forced Oscillator The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)

Lebih terperinci

RANGKAIAN LISTRIK. Kuliah 4 ( Analisa Arus Cabang dan Simpul DC )

RANGKAIAN LISTRIK. Kuliah 4 ( Analisa Arus Cabang dan Simpul DC ) RANGKAIAN LISTRIK Kuliah 4 ( Analisa Arus Cabang dan Simpul DC ) ANALISA ARUS CABANG DAN SIMPUL DC Metoda analisis rangkaian sebenarnya merupakan salah satu alat bantu untuk menyelesaikan suatu permasalahan

Lebih terperinci

KAPASITOR : ANTARA MODEL DAN REALITA oleh : Sugata Pikatan

KAPASITOR : ANTARA MODEL DAN REALITA oleh : Sugata Pikatan Kristal no.11/desember/1994 1 KAPASITOR : ANTARA MODEL DAN REALITA oleh : Sugata Pikatan Kita semua tahu bahwa kapasitor merupakan salah satu piranti elektronika yang terpenting. Rasanya tak ada untai

Lebih terperinci

ANALISIS SISTEM KENDALI

ANALISIS SISTEM KENDALI ANALISIS SISTEM KENDALI PENDAHULUAN ANALISIS WAKTU ALIH Tanggapan Waktu Alih Orde 1 Tanggapan Waktu Alih Orde Spesifikasi Tanggapan Waktu Alih Penurunan Rumus Spesifikasi Tanggapan Waktu Alih Orde Tinggi

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham nalisis Rangkaian Listrik Jilid Sudaryatno Sudirham, nalisis Rangkaian Listrik () 9 Metoda nalisis Umum engan mempelajari metoda analisis umum kita akan memahami dasar-dasar metoda

Lebih terperinci

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian

Lebih terperinci

Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor

Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Alexander Sadiku edited by Agus Virgono Ir. MT. & Randy E. Saputra Prodi S1-Sistem Komputer Fakultas Teknik Elektro Universitas Telkom - 2016

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN 15-08-26 Pengesahan Nama Dokumen : SILABUS RANGKAIAN LISTRIK No Dokumen : FIK/TK/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 6 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto,

Lebih terperinci

PENDAHULUAN. - Persiapan :

PENDAHULUAN. - Persiapan : RANGKAIAN LISTRIK LABORATORI UM TEKNI K ELEKTRO JURUSAN TEKNI K ELEKTRO FAKULTAS TEKNI K UNI VERSI TAS I SLAM KADI RI KEDI RI PENDAHULUAN A. UMUM Sesuai dengan tujuan pendidikan di UNISKA, yaitu : - Pembinaan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

RANGKAIAN RLC. I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC.

RANGKAIAN RLC. I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC. Jln. Bioteknologi No.1 Kampus USU, Medan 155 I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC. RANGKAIAN RLC 2. Untuk mengetahui aplikasi dari rangkaian RLC 3. Untuk mengetahui pengertian dari induktansi,

Lebih terperinci

Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed

Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Analisis nodal dan mesh. Kita membutuhkan

Lebih terperinci

LEMBAR TUGAS MAHASISWA ( LTM )

LEMBAR TUGAS MAHASISWA ( LTM ) LEMBAR TUGAS MAHASISWA ( LTM ) TEORI RANGKAIAN LISTRIK Program Studi Teknik Komputer Jenjang Pendidikan Program Diploma III Tahun AMIK BSI NIM NAMA KELAS :. :.. :. Akademi Manajemen Informatika dan Komputer

Lebih terperinci

Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga

Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga Sudaryatno Sudirham Analisis Keadaan Mantap Rangkaian Sistem Tenaga ii BAB Transformator.. Transformator Satu Fasa Transformator banyak digunakan dalam teknik elektro. Dalam sistem komunikasi, transformator

Lebih terperinci

FORMULIR RANCANGAN PERKULIAHAN PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK

FORMULIR RANCANGAN PERKULIAHAN PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK FORMULIR RANCANGAN PERKULIAHAN PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK Q No.Dokumen 061.423.4.70.00 Distribusi Tgl. Efektif 1 November 2011 Judul Mata Kuliah : Rangkaian Listrik 2 Semester : 2 Sks

Lebih terperinci

Modul 1 : Respons Impuls

Modul 1 : Respons Impuls Praktikum Pengolahan Sinyal Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 1 : Respons Impuls Program Studi Teknik Telekomunikasi Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

PEMBENTUKAN MODEL RANGKAIAN LISTRIK

PEMBENTUKAN MODEL RANGKAIAN LISTRIK PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatn Sudirham Analisis angkaian Listrik Di Kawasan Waktu Sudaryatn Sudirham, Analisis angkaian Listrik () BAB angkaian Pemrses Sinyal (angkaian Dida dan OPAMP) Dalam bab ini kita akan melihat beberapa

Lebih terperinci

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan. Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis

Lebih terperinci

Modul 02: Elektronika Dasar

Modul 02: Elektronika Dasar Modul 02: Elektronika Dasar Alat Ukur, Rangkaian Thévenin, dan Rangkaian Tapis Reza Rendian Septiawan February 4, 2015 Pada praktikum kali ini kita akan mempelajari tentang beberapa hal mendasar dalam

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

GAYA GERAK LISTRIK KELOMPOK 5

GAYA GERAK LISTRIK KELOMPOK 5 GAYA GERAK LISTRIK KELOMPOK 5 Tujuan Dapat memahami prinsip kerja ggl dan fungsinya dalam suatu rangkaian tertutup. Dapat mencari arus dan tegangan dalam suatu rangkaian rumit dengan memakai hukum kirchoff

Lebih terperinci

SILABUS. Konsep rangkaian listrik yang diaplikasikan untuk memecahkan masalahmasalah

SILABUS. Konsep rangkaian listrik yang diaplikasikan untuk memecahkan masalahmasalah SILABUS NAMA SEKOLAH : SMK Ma arif 1 Piyungan Bantul MATA PELAJARAN : Rangkaian Listrik KELAS/SEMESTER : 1/1 STANDAR KOMPETENSI : Memahami Rangkaian Listrik KODE KOMPETENSI : 012DKK1 : 4 45 menit KOMPETENSI

Lebih terperinci

Daya Rangkaian AC [1]

Daya Rangkaian AC [1] Daya Rangkaian AC [1] Slide-10 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 21 Materi Kuliah 1 Daya Sesaat Definisi Daya Input Undak Daya Input Sinusoidal 2 Definisi Daya Input Sinusoidal Daya Resistif

Lebih terperinci

MODUL 2 RANGKAIAN RESONANSI

MODUL 2 RANGKAIAN RESONANSI MODUL 2 RANGKAIAN RESONANSI Jaringan komunikasi secara berkala harus memilih satu band frekuensi dan mengabaikan (attenuasi) frekuensi yang tidak diinginkan. Teori filter modern menyediakan metode untuk

Lebih terperinci

hubungan frekuensi sumber tegangan persegi dengan konstanta waktu ( RC )?

hubungan frekuensi sumber tegangan persegi dengan konstanta waktu ( RC )? 1. a. Gambarkan rangkaian pengintegral RC (RC Integrator)! b. Mengapa rangkaian RC diatas disebut sebagai pengintegral RC dan bagaimana hubungan frekuensi sumber tegangan persegi dengan konstanta waktu

Lebih terperinci

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Mochammad Abdillah, Endro Wahyono,SST, MT ¹, Ir.Hendik Eko H.S., MT ² 1 Mahasiswa D4 Jurusan Teknik Elektro Industri Dosen

Lebih terperinci

RESONANSI PADA RANGKAIAN RLC

RESONANSI PADA RANGKAIAN RLC ESONANSI PADA ANGKAIAN LC A. Tujuan 1. Mengamati adanya gejala resonansi dalam rangkaian arus bolaik-balik.. Mengukur resonansi pada rangkaian seri LC 3. Menggambarkan lengkung resonansi pada rangkaian

Lebih terperinci

BAB I TEORI RANGKAIAN LISTRIK DASAR

BAB I TEORI RANGKAIAN LISTRIK DASAR BAB I TEORI RANGKAIAN LISTRIK DASAR I.1. MUATAN ELEKTRON Suatu materi tersusun dari berbagai jenis molekul. Suatu molekul tersusun dari atom-atom. Atom tersusun dari elektron (bermuatan negatif), proton

Lebih terperinci

Respons Sistem dalam Domain Waktu. Dasar Sistem Kontrol, Kuliah 4

Respons Sistem dalam Domain Waktu. Dasar Sistem Kontrol, Kuliah 4 Respons Sistem dalam Domain Waktu Respons sistem dinamik Respons alami Respons output sistem dinamik + Respons paksa = Respons sistem Zero dan Pole Sistem Dinamik Pole suatu sistem dinamik : akar-akar

Lebih terperinci

MODUL I RANGKAIAN SERI-PARALEL RESISTOR

MODUL I RANGKAIAN SERI-PARALEL RESISTOR MODUL I ANGKAIAN SEI-PAALEL ESISTO A. TUJUAN Mempelajari berbagai fungsi multimeter analog, khususnya sebagai ohm-meter. a. Mengitung rangkaian pengganti suatu rangkaian listrik dan mengukur rangkaian

Lebih terperinci

RANGKAIAN PENYESUAI IMPEDANSI. Oleh: Team Dosen Elkom

RANGKAIAN PENYESUAI IMPEDANSI. Oleh: Team Dosen Elkom RANGKAIAN PENYESUAI IMPEDANSI Oleh: Team Dosen Elkom 1 Fungsi : Digunakan untuk menghasilkan impendansi yang tampak sama dari impedansi beban maupun impedansi sumber agar terjadi transfer daya maksimum.

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM SISTEM ELEKTRONIKA TELKOM UNIVERSITY

MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM SISTEM ELEKTRONIKA TELKOM UNIVERSITY MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM SISTEM ELEKTRONIKA TELKOM UNIVERSITY 1 MODUL I HUKUM OHM DAN HUKUM KIRCHHOFF I. PENDAHULUAN Hukum Ohm dan Hukum Kirchhoff merupakan hukum dasar dalam rangkaian

Lebih terperinci

Elektronika Telekomunikasi Modul 2

Elektronika Telekomunikasi Modul 2 Elektronika Telekomunikasi Modul 2 RANGKAIAN PENYESUAI IMPEDANSI (Impedance Matching Circuit) Prodi D3 Teknik Telekomunikasi Yuyun Siti Rohmah, MT Fungsi : Digunakan untuk menghasilkan impendansi yang

Lebih terperinci

RANGKAIAN SERI-PARALEL

RANGKAIAN SERI-PARALEL RANGKAIAN SERI-PARALEL 1. Contoh Rangkaian Seri-Paralel Contoh 1 Rangkaian pada Gambar 1, hitunglah : a. arus pada setiap elemen b. tegangan pada setiap elemen c. gunakan hukum tegangan Kirchhoff Contoh

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun

BAB 4 IMPLEMENTASI DAN EVALUASI. perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Implementasi Perangkat Ajar Dalam perancangan dan pembuatan perangkat ajar ini membutuhkan perangkat pendukung yang berupa piranti lunak dan perangkat keras. Adapun

Lebih terperinci

ELEKTRONIKA TELEKOMUNIKASI

ELEKTRONIKA TELEKOMUNIKASI ELEKTRONIKA TELEKOMUNIKASI RANGKAIAN PENYESUAI IMPEDANSI IMPEDANCE MATCHING CIRCUIT OLEH : HASANAH PUTRI ELEKTRONIKA TELEKOMUNIKASI - RANGKAIAN PENYESUAI IMPEDANSI 1 Fungsi : Digunakan untuk menghasilkan

Lebih terperinci

SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT

SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT 1 SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT List Of Content 2 Pengertian Sinyal Pengertian Sistem Jenis-Jenis Sinyal dan Aplikasinya Pengertian Sinyal 3 sinyal adalah suatu isyarat

Lebih terperinci

Osilator dan Sumber Sinyal

Osilator dan Sumber Sinyal EL317 Sistem Instrumentasi 11-1 Osilator dan Sumber Sinyal Prinsip Kerja Osilator memanfaatkan feedback positif Pengelompokan Osilator RC Wien Bridge (sbg α) Bridged-T (sbg β) Twin-T (sbg β) Penggeser

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Arus Netral pada Sistem Tiga Fasa Empat Kawat Jaringan distribusi tegangan rendah adalah jaringan tiga fasa empat kawat, dengan ketentuan, terdiri dari kawat tiga fasa (R, S,

Lebih terperinci

RANGKAIAN SETARA THEVENIN DAN RANGKAIAN AC. Abstrak

RANGKAIAN SETARA THEVENIN DAN RANGKAIAN AC. Abstrak Modul 1 RANGKAIAN SETARA THEVENIN DAN RANGKAIAN AC Nama : Muhammad Ilham NIM : 121178 Email : ilham_atlantis@hotmail.com Shift/Minggu : III/2 Asisten : Widyo Jatmoko (12838) : Derina Adriani (12943) Tanggal

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN : Sistem Tiga Phasa Tujuan Pembelajaran Umum : Mahasiswa dapat menganalisis hubungan tegangan / arus phasa dalam ( Kompetensi ) sistem bintang dan delta dalam sistem tiga phasa. buku sumber 1. 1.1. Mahasiswa

Lebih terperinci

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t)

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t) Mengapa AC? Dapat diproduksi secara langsung dari generator Dapat dikontrol oleh komponen elektronika seperti resistor, kapasitor, dan induktor Tegangan maksimumdapat diubah secara mudah dengan trafo Frekuensi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp )

BAB I PENDAHULUAN. 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp ) BAB I PENDAHULUAN 1.1 Tujuan Percobaan Mempelajari karakteristik statik penguat opersional (Op Amp ) 1.2 Alat Alat Yang Digunakan Kit praktikum karakteristik opamp Voltmeter DC Sumber daya searah ( DC

Lebih terperinci

Arus Searah (Direct Current) Fundamental of Electronics

Arus Searah (Direct Current) Fundamental of Electronics Arus Searah (Direct Current) Fundamental of Electronics Presented by Muchammad Chusnan Aprianto STT Dr.KHEZ Muttaqien Pendahuluan O Arus listrik adalah jumlah total muatan yang melewati suatu medium per

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

KARAKTERISTIK KAPASITOR. Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 2014

KARAKTERISTIK KAPASITOR. Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 2014 KARAKTERISTIK KAPASITOR Ayu Deshiana(20020008) Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 204. Pendahuluan. Kapasitor adalah komponen elektronika yang dapat

Lebih terperinci