MODUL 2 RANGKAIAN RESONANSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL 2 RANGKAIAN RESONANSI"

Transkripsi

1 MODUL 2 RANGKAIAN RESONANSI Jaringan komunikasi secara berkala harus memilih satu band frekuensi dan mengabaikan (attenuasi) frekuensi yang tidak diinginkan. Teori filter modern menyediakan metode untuk mendesain filter sedemikian rupa untuk memenuhi beberapa spesifikasi yang diinginkan Tetapi yang paling umum digunakan pada rangkaian pemilihan frekuensi atau tuning adalah masih agak simple yakni rangkaian resonansi seri dan paralel meskipun rangkaian sederhana ini mengarah persamaan kompleks ketika elemen non linier seperti resistansi non zero dari induktor yang dipertimbangkan.. Melakukan proses tuning berarti rangkaian tersebut beresonansi dengan sinyal tersebut. Dalam keadaan tuning, sinyal bersangkutan dipilih untuk diteruskan ke tahap selanjutnya. Rangkaian tuning dapat digunakan misalnya, Antara sistem antena dan penguat RF satu sistem penerima, Antara tahap-tahap peguat RF, IF pada sistem penerima superheterodyne, dsb. 2.1 Rangkaian RLC serial Impedansi Rangkaian Resonansi Seri Rangkaian resonansi seri terdiri dari sebuah kumparan yang terhubung seri dengan sebuah kapasitor seperti yang ditunjukkan pada Gambar 2.1. resistansi r harus dimasukkan jika pada sebuah rangkaian praktis selalu ada resitansi pada sebagaian besar pada kumparan dari rangkaian. Gambar 2.1 Rangkaian Resonansi Seri

2 Dengan X merupakan resistansi total, sama dengan ωl 1/ωC, maka diperoleh impedansi Besarnya impedansi adalah Sudut phasa impedansi adalah Z s = r + jx (2.1) = r + j(ωl 1 ωc ) Z s = r 2 + X 2 (2.2) s = arctan X r (2.3) Sebuah pengujian dari persamaan impedansi menunjukkan bahwa frekuensi tinggi dengan ωl > 1/ωC bersifat induktif dan X bernilai positif. Pada frekuensi rendah ωl < 1/ωC bersifat kapasitif dimana X bersifat negatif. Gambar 2.2 menunjukkan daerah impedansi untuk rangkaian seri dengan C = 57 pf, L = 263 µh dan r =21.5 Ω. Gambar 2.2 Besarnya impedansi dan sudut phasa Jika X bervariasi dari positif ke negatif. Terdapat frekuensi dimana nilai X berada pada titik nol. Frekuensi ini disebut dengan frekuensi resonansi seri Frekuensi Resonan Seri Resonansi seri terjadi jika bagian reaktif dari impedansi menjadi nol atau setara dengan nol, sudut phasa sama dengan nol sebagaimana yang ditunjukkan

3 pada persamaan 2.3. Besarnya nilai impedansi minimum, sama dengan r, dari persamaan 2.2 Jika frekuensi resonansi seri ω so = 2πf so, sehingga untuk resonansi Dengan demikian diperoleh : ω so L = 1 ω S0 C = 0 (2.3) f so = 1 2π LC..(2.4) Persamaan 2.4 menunjukkan bahwa dengan pengaturan nilai L atau C atau keduanya maka rangkaian dapat dibawa ke keadaan resonansi dengan frekuensi yang digunakan, sebuah proses yang disebut dengan tuning dan rangkaian juga dikenal sebagai rangkaian tuned seri. Kegunaan dari rangkaian tuned seri adalah bahwa ini memungkinkan sinyal pada satu frekuensi dipilih dalam pilihan dari frekuensi lain. Frekuensi yan dipilih dikenal dengan frekuensi selectivity Faktor Q Seri Faktor Q yang disebut dengan quality factor dapat didefenisikan sebagai perbandingan reaktansi pada resonansi dengan resistansi pada rangkaian tuned (konsep pada awalnya diaplikasikan pada kumparan untuk menunjukkan bahwa reaktansi yang tinggi sehubungan dengan resistensi yang diinginkan) Faktor Q dengan demikian dapat diekpresikan sebagai Q s = ω sol (2.5) Jika ω sol = 1/ω soc, factor Q juga dapat diekspresikan sebagai: r Q S = 1 ω so Cr..(2.6) Tanda huruf s menandakan faktor Q seri. Faktor Q merupakan sebuah parameter yang penting digunakan untuk menetapkan perilaku rangkaian resonansi,. Ukuran Q memungkinkan faktor Q dari kumparan dapat diukur pada frekuensi tertentu dan kapasitansi tuning.

4 Dari persamaan sebelumnya pengukuran ukuran Q dihasilkan dari ω so, C dan Q kemudian L dan r ditemukan pada persamaan 2.5 dan 2.6. Dengan menggabungkan persamaan 2.4, 2.4 dan 2.6 sehingga diperoleh: Q s = 1. r L.(2.7) C Maksud dari persamaan 2.7 menunjukkan bahwa Q s konstan terhadap kenaikan L, C dan r konstan. Faktor Q juga dikenal sebagai faktor pembesaran tegangan karena ini memberikan perbandingan besarnya tegangan reaktif terhadap tegangan yang digunakan pada resonansi. Arus pada resonansi adalah V/r, dimana V merupakan tegangan yang digunakan, dan besarnya tegangan yang menuju L adalah V/r.ω sol = VQ dan yang menuju C adalah (V/r).1/ω soc = VQ. Besarnya tegangan reaktif menjadi Q kali tegangan yang digunakan, dan ini dapat mencapat level yang tinggi. Meskipun total tegangan reaktif pada saat resonansi adalah nol, ini dimungkinkan untuk mengalami kenaikan tegangan denagn mengkoplingnya dengan tegangan induktif atau kapasitif secara terpisah. Dan menggunakan pada filter dan rangkaian coupling. Yang perlu diperhatikan bahwa nilai tegangan dari elemen reaktif perlu mempertimbangkan tegangan tinggi yang diharapkan pada resonansi dan juga perlu diperhatikan bahwa tegangan induktif tidak sama sebagaimana tegangan yan melalui induktor, yang memasukkan tegangan yan memallaui r Impedansi yang berhubungan dengan Q Pada persamaan 2.1 untuk impedansi adalah Z s = r (1 + j ( ωl r 1 ωcr )) L dan C dapat dieleminasi dengan menggunakan persamaan 2.5 dan 2.6 sehingga diperoleh : Z s = r (1 + j ( ω ω so ω so ω ) Q s)..(2.8)

5 Dengan frekuensi variabel y y = ω ω so ω so ω..(2.9) Memungkinkan impedansi dapat diekspresikan sebagai : Z s = r(1 + jyq s ).(2.10) Z s = r 1 + jyq s (2.11) s = tan 1 yq s.(2.12) Hubungan impedansi ini memungkinkan performansi rangkaian dapat diukur dalam ini dilihat dari faktor Q. Faktor Q yang paling tinggi merupakan besarnya impedansi yang lebih besar pada frekuensi resonansi yang diberikan dan dan lebih tajam pada perbahan phasa, frequency selectivity dari rangkaian juga sangat tergantung pada nilai Q yang tinggi db Bandwidth Secara umum, rangkaian tuning seri mempunyai kurva karakteristik impedansi sebagai berikut, Gambar 2.3 Karakteristik impedansi rangkaian tuning seri, terlihat 3 db bandwidth yang dibatasi oleh f 2 dan f 1.

6 Terlihat bahwa, pada frekuensi resonansi, impedansi rangkaian tuning seri mencapai nilai minimumnya, yang kemudian di sekitar frekuensi tersebut ( = f o ) terjadi peningkat-an yang relatif simetris. 3dB bandwidth didefinisikan pada nilai 2 nilai minimum ter-sebut di kiri dan kanannya seperti ditunjukkan pada gambar Sebutan 3 db untuk band-width itu muncul dari nilai 20log 2. Dari definisinya jelas, bahwa nilai bandwidth ter-tentu oleh selisih f 2 dan f 1 atau, B = f 2 f 1... (2.13) Yang dinyatakan dalam satuan frekuensi (Hz atau c/s). Berkaitan dengan factor Q rang-kaian tuning, besar nilai bandwidth dinyatakan oleh rumus, B = f o... (2.14) Q Terlihat pada persamaan (2-10), bahwa bandwidth berbanding terbalik dengan faktor kualitas Q. Makin besar nilai Q, makin sempit bandwidth rangkaian tuning. Lebar pita ter-sebut menentukan selektifitas rangkaian tuning, yaitu kemampuan rangkaian untuk menapis satu frekuensi, f o, dan membuang seluruh pita frekuensi yang berada di sebelah kiri dan kanan frekuensi resonansi tersebut. Sehingga dapat dikatakan, bahwa faktor Q menentukan selektifitas. Dengan bentuk karakteristik yang demikian tersebut, suatu rangkaian tuning dapat ber-fungsi sebagai satu bandpass filter (BPF). 2.2 Rangkaian Resonansi Paralel Rangkaian resonansi paralel ditunjukkan pada gambar 2.4. Induktor mempunyai induktansi L dan resistansi r. Kapasitor mempunyai kapasitansi C diasumsikan untuk mempunyai resistansi yang diabaikan.ini menggambarkan

7 keakuratan dari rangkaian resonansi paralel. Sebagaimana akan ditunjukkan, frekuensi resonansi dan faktor Q pada rangkaian resonansi paralel untuk tujuan praktis, sama dengan rangkaian resonansi seri tetapi nilai impedansinya merupakan invers dan akan menjadi sangat tinggi pada resonansi dan menurun sebagai frekuensi yang menyimpan dari nilai resonan. Gambar 2.4 Rangkaian resonansi paralel Impedansi Rangkaiann resonansi paralel Diasumsikan percabangan impedansi kapasitif dengan Z C dan percabangan induktif adalah Z L dan dari gambar 2.4 impedansi paralel diperoleh Z p = Z LZ C Z L +Z C...(2.15) Sekarang, Zc= 1/jωC dan ZL= r+jωl. Jika diasumsikan di sini bahwa reaktansi induktif akan sangat lebih besar daripada resistansi pada frekuensi tinggi dan ini merupakan kasus yang normal. Ini juga dapat dilihat bahwa penyebut sama dengan impedansi dari komponen yang sama yang dihubungkan seri atau Zs = Z L+ Z C, yang berasal dari persamaan 2.10 adalah Zs = r(1+jyqs). Menggabungkan ekspresi ini memberkan, menjadi perkiraan yang lebih dekat. Z p = = L C r(1+jyq s )...(2.16) R D (1 + jyq s ) Dimana R D dikenal sebagai Impedansi dinamik : R D = L C r (2.17) Impedansi parallel Nampak sama dengan impedansi dinamik jika bagian kompleks pada penyebut sama dengan kesatuan. Kesesuaian dengan kondisi

8 resonansi untuk rangkaian resonansi parallel. Huruf D yang berarti dynamic digunakan untuk menekankan bahwa tanda digunakan untuk hanya untuk arus bolak balik pada resonansi dan symbol R digunakan untuk menunjukkan bahwa pada resonansi impedansi akan bersifat murni resistif. Sebelum menguji kondisi resonansi secara detail ini akan meninggalkan sebagai sebuah latihan buat mahasiswa untuk menunjukkan bahwa yang berhubungan dengan factor Q, bentuk bolak balik dari persamaan impedansi dinamik adalah sebagai berikut : R D = ω o L. Q = Q ω o C = Q 2. r Pada lambang ini huruf o digunakan untuk frekuens resonansi, dan huruf s dihilangkan dari Q. Bentuk Q/ωoC secara terutama sekali berguna karena setiap kuantitas yang dilibatkan dapat diperoleh langsung dari pengukuran ukuran Q. Bentuk Q 2 r menarik yang menunjukkan secara jelas hubungan antara impedansi seri dan parallel pada resonansi. Seperti contoh jika Q = 100 dan r = 20Ω dan kemudian ketika dihubungkan sebagai rangkaian seri impedansi pada resonansi akan menjadi 20Ω yang bersifat resistif murni. Ketika dihubungkan sebagai rangkaian parallel impedansi pada resonansi akan menjadi 200 kω yang juga bersifat murni resistif. Perlu dicatat lagi, Perbedaan bagaimanapun bahwa 20 Ω merupakan resistansi fisik dari kumparan berlawanan arus Dc dan AC, ketika 200kΩ merupakan sebuah dynamic resistance yang dapat digunakan hanya untuk arus boalk balik pada resonansi. Pada ringkasan, ini dilihat bahwa rangkaian parallel menawarkan impedansi yang tinggi dan rangkaian seri menghasilakn impedansi yang rendah dan impedansi parallel bervariasi dengan frekuensi yang juga merupakan inverse dari impedansi seri.

9 Selanjutnya, ini mungkin ditunjukkan bahwa jika Io merupakan input arus pada resonansi terhadap rangkaian parallel, besarnya arus pada pada percabangan kapasitif adalah Io.Q dan percabangan induktif IoQ. Dengan demikian perlu diingat bahwa rangkaian resonansi seri memperlihatkan pembesaran pada tegangan sedangkan pada rangkaian resonansi seri memperlihatkan pembesaran arus Frekuensi resonansi Paralel dan factor Q Resonansi parallel terjadi jika bagian reaktif dari impedansi adalah nol. Ini memerlukan bagian imaginer jyqs pada persamaan impedansi yang sama dnegan nol. Jikaini sama sebagaimana yang terjadi pada persamaan impedansi seri, frekuensi resonansi harus sama dnegan kedua rangkaian tersebut dan huruf s dapat dihilangkan. Selanjutnya dengan menentukan factor Q sebagai Q =ωol/r = 1/ωoCr, factor Q dapat digunakan untuk perbandingan ini dimanapun mereka ada dalampersamaan, pakah dalam rangkaian resonansi parallel atau seri dan tidak ada symbol atau huruf yang digunakan. Ini akan digunakan kembali bahwa tanda tanda untuk impedansi parallel melibatkan perkiraan r ωl, ini akan benar untuk sebagian besar kasus untuk kepentingan praktis dan ini merupakan suatu kondisi yang dibutuhkan untuk menyederhanakan hubungan antara rangkaian seri dan parallel untuk menjaga menjadi benar. Contoh Soal 2-1. Suatu rangkaian tuning paralel, mempunyai faktor kualitas Q = 200 pada keadaan resonansi dengan frekuensi kerja f = 10 MHz. Nilai ka-pasitansi tuning adalah 10 picofarad. Hitung : (a) dynamic resistance? (b) nilai resistansi induktor bila dianggap nilai tersebut tidak berubah terhadap frekuensi? Jawaban : Q 200 (a) R D = 7 12 O C 2 x10 x10x10

10 = 318,31 kω (b) R D = Q 2.r r = 2 Q R D 318,31x 2 10 (200) 3 = 7,96 Contoh Soal 2-2. Suatu rangkaian tuning seri, mempunyai induktor dengan nilai 2 μh yang mempunyai nilai resistif sebesar 2 Ω. Rangkaian tersebut bere-sonansi pada frekuensi f = 50 MHz. Pada rangkaian ini diberikan tegangan se-besar 1 volt efektif. Hitung : (a) nilai kapasitansi serinya? (b) faktor kualitas Q rangkaian dan dynamic resistance? (c) tegangan pada ujung-ujung kapasitor? Jawaban : (a) 2 1 LC C = 1 2 L 1 (2 x50x10 ) x2x10 = = 5,066 x farad (b) Q = = 5,07 pf L = 2π x 50 x 10 6 x 2 x 10-6 /2 = 314,16 r R D = r = 2 Ω (c) Tegangan ujung-ujung kapasitor, V C = X C xv R D eff 1 xv = eff 2 xfxcxrd = [1/(2π x 50 x 10 6 x 5,066 x )] x 1 = 6,28 x 10-4 μ volt rms

BAB 1 RESONATOR Oleh : M. Ramdhani

BAB 1 RESONATOR Oleh : M. Ramdhani BAB 1 RESONATOR Oleh : M. Ramdhani Ruang Lingkup Materi : Rangkaian resonator paralel (loss less components) Rangkaian resonator dengan L dan C mempunyai rugirugi/ losses Transformator impedansi (tujuan

Lebih terperinci

BAB 2 RANGKAIAN PENYESUAI IMPEDANSI Oleh : M. Ramdhani

BAB 2 RANGKAIAN PENYESUAI IMPEDANSI Oleh : M. Ramdhani BAB 2 RANGKAIAN PENYESUAI IMPEDANSI Oleh : M. Ramdhani Ruang Lingkup Materi : Impedance Matching Circuit (IMC) bentuk L Impedance Matching Circuit (IMC) bentuk T atau Π Impedance Matching Circuit (IMC)

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

Nama : Taufik Ramuli NIM :

Nama : Taufik Ramuli NIM : Nama : Taufik Ramuli NIM : 1106139866 Rangkaian RLC merupakan rangkaian baik yang dihubungkan dengan paralel pun secara seri, namun rangkaian tersebut harus terdiri dari kapasitor; Induktor; dan resistor.

Lebih terperinci

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif Resonansi paralel sederhana (rangkaian tank ) Kondisi resonansi akan terjadi pada suatu rangkaian tank (tank circuit) (gambar 1) ketika reaktansi dari kapasitor dan induktor bernilai sama. Karena rekatansi

Lebih terperinci

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Rangkaian RLC merupakan suatu rangkaian elektronika yang terdiri dari Resistor, Kapasitor dan Induktor yang dapat disusun seri ataupun paralel. Rangkaian RLC ini merupakan

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS 1.1 Tinjauan Teoritis Nama lain dari Rangkaian Resonansi adalah Rangkaian Penala. Dalam bahasa Inggris-nya adalah Tuning Circuit, yaitu satu rangkaian

Lebih terperinci

RESONANSI PADA RANGKAIAN RLC

RESONANSI PADA RANGKAIAN RLC ESONANSI PADA ANGKAIAN LC A. Tujuan 1. Mengamati adanya gejala resonansi dalam rangkaian arus bolaik-balik.. Mengukur resonansi pada rangkaian seri LC 3. Menggambarkan lengkung resonansi pada rangkaian

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

ANALISIS RANGKAIAN RLC

ANALISIS RANGKAIAN RLC ab Elektronika ndustri Fisika. AUS A PADA ESSTO ANASS ANGKAAN Jika sebuah resistor dilewati arus A sebesar maka pada resistor akan terdapat tegangan sebesar r. Sehingga jika arus membesar maka tegangan

Lebih terperinci

RANGKAIAN PENYESUAI IMPEDANSI. Oleh: Team Dosen Elkom

RANGKAIAN PENYESUAI IMPEDANSI. Oleh: Team Dosen Elkom RANGKAIAN PENYESUAI IMPEDANSI Oleh: Team Dosen Elkom 1 Fungsi : Digunakan untuk menghasilkan impendansi yang tampak sama dari impedansi beban maupun impedansi sumber agar terjadi transfer daya maksimum.

Lebih terperinci

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK

INDUKSI EM DAN HUKUM FARADAY; RANGKAIAN ARUS BOLAK BALIK MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-1 : Dr. Budi Mulyanti, MSi Pertemuan ke-13 CAKUPAN MATERI 1. INDUKTANSI. ENERGI TERSIMPAN DALAM MEDAN MAGNET 3. RANGKAIAN AC DAN IMPEDANSI 4. RESONANSI

Lebih terperinci

CIRCUIT DASAR DAN PERHITUNGAN

CIRCUIT DASAR DAN PERHITUNGAN CIRCUIT DASAR DAN PERHITUNGAN Oleh : Sunarto YB0USJ ELEKTROMAGNET Listrik dan magnet adalah dua hal yang tidak dapat dipisahkan, setiap ada listrik tentu ada magnet dan sebaliknya. Misalnya ada gulungan

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

Elektronika Telekomunikasi Modul 2

Elektronika Telekomunikasi Modul 2 Elektronika Telekomunikasi Modul 2 RANGKAIAN PENYESUAI IMPEDANSI (Impedance Matching Circuit) Prodi D3 Teknik Telekomunikasi Yuyun Siti Rohmah, MT Fungsi : Digunakan untuk menghasilkan impendansi yang

Lebih terperinci

RANGKAIAN RESONATOR (Resonator Circuit / Tune Circuit) By : Team Dosen Elkom

RANGKAIAN RESONATOR (Resonator Circuit / Tune Circuit) By : Team Dosen Elkom RANGKAIAN RENATOR (Resonator Circuit / Tune Circuit) By : Team Dosen Elkom Fungsi : Memilih / meloloskan sinyal pada rekuensi tertentu, meredam secara signiicant di luar rekuensi yang diinginkan. Jadi

Lebih terperinci

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor

Lebih terperinci

PERCOBAAN 6 RESONANSI

PERCOBAAN 6 RESONANSI PERCOBAAN 6 RESONANSI TUJUAN Mempelajari sifat rangkaian RLC Mempelajari resonansi seri, resonansi paralel, resonansi seri paralel PERSIAPAN Pelajari keseluruhan petunjuk praktikum untuk modul rangkaian

Lebih terperinci

ARUS DAN TEGANGAN BOLAK- BALIK

ARUS DAN TEGANGAN BOLAK- BALIK AUS DAN TEGANGAN BOLAK- BALK FSKA SMK PEGUUAN CKN Formulasi arus dan tegangan bolak-balik e e sin wt or v v sin wt Persamaan e and v di atas sesuai dengan persamaan simpangan pada gerak harmonik sederhanan,

Lebih terperinci

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK

09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 09. Pengukuran Besaran Listrik JEMBATAN ARUS BOLAK BALIK 9.1 Pendahuluan Jembatan arus bolak balik bentuk dasarnya terdiri dari : - empat lengan jembatan - sumber eksitasi dan - sebuah detektor nol Pada

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Listrik Arus Bolak Balik - Latihan Soal Doc. Name: AR12FIS0699 Version: 2011-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi: v =140

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA 2.1. Teori Filter Secara umum, filter berfungsi untuk memisahkan atau menggabungkan sinyal informasi yang berbeda frekuensinya. Mengingat bahwa pita spektrum elektromagnetik adalah

Lebih terperinci

Arus dan Tegangan Listrik Bolak-balik

Arus dan Tegangan Listrik Bolak-balik Arus dan Tegangan Listrik Bolak-balik Arus dan tegangan bolak-balik (AC) yaitu arus dan tegangan yang besar dan arahnya berubah terhadap waktu secara periodik. A. Nilai Efektif, Nilai Maksimum dan Nilai

Lebih terperinci

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tersebut. 1.5. Manfaat Penelitian Adapun manfaat dari penelitian ini dapat memberikan konsep mengenai penggunaan single

Lebih terperinci

V L V R V C. mth 2011

V L V R V C. mth 2011 Percobaan 6 Resonansi EL2193 Praktikum Rangkaian Elektrik Tujuan Mempelajari perilaku rangkaian RLC Mempelajari resonansi seri, paralel, dan resonansi seri paralel Review Rangkaian Resonansi Rangkaian

Lebih terperinci

ELEKTRONIKA TELEKOMUNIKASI

ELEKTRONIKA TELEKOMUNIKASI ELEKTRONIKA TELEKOMUNIKASI RANGKAIAN PENYESUAI IMPEDANSI IMPEDANCE MATCHING CIRCUIT OLEH : HASANAH PUTRI ELEKTRONIKA TELEKOMUNIKASI - RANGKAIAN PENYESUAI IMPEDANSI 1 Fungsi : Digunakan untuk menghasilkan

Lebih terperinci

ELEKTRONIKA. Bab 1. Pengantar

ELEKTRONIKA. Bab 1. Pengantar ELEKTRONIKA Bab 1. Pengantar DR. JUSAK Mengingat Kembali Segitiga Ohm ( ) V(Volt) = I R I(Ampere) = V R R(Ohm) = V I 2 Ilustrasi 3 Teori Aproksimasi (Pendekatan) Dalam kehidupan sehari-hari kita sering

Lebih terperinci

Modul 1. Elektronika Komunikasi. RANGKAIAN RESONATOR (Resonator Circuit / Tune Circuit)

Modul 1. Elektronika Komunikasi. RANGKAIAN RESONATOR (Resonator Circuit / Tune Circuit) Modul Elektronika Komunikasi ANGKAIAN ENATO (esonator ircuit / Tune ircuit) Program Studi D3 Teknik Telekomunikasi Fakultas Ilmu Terapan 06 Fungsi : Memilih / meloloskan sinyal pada rekuensi tertentu,

Lebih terperinci

Elektronika Telekomunikasi Modul 2

Elektronika Telekomunikasi Modul 2 Elektronika Telekomunikasi Modul ANGKAIAN ENATO (esonator ircuit / Tune ircuit) Prodi D3 Teknik Telekomunikasi Yuyun Siti ohmah, MT Fungsi Memilih / meloloskan sinyal pada rekuensi tertentu, meredam secara

Lebih terperinci

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI 1 LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI A. TUJUAN 1. Mempelajari watak kumparan jika dialiri arus listrik searah (DC).. Mempelajari watak kumparan jika dialiri arus listrik bolak-balik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan BAB 2 TINJAUAN PUSTAKA 2.1. Sumber Harmonisa Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan elektronik yang didalamnya banyak terdapat penggunaan komponen semi konduktor pada

Lebih terperinci

ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK

ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK ANALISIS RANGKAIAN RLC ARUS BOLAK-BALIK 1. Tujuan Menera skala induktor variabel, mengamati keadaan resonansi dari rangkaian seri RLC arus bolak-balik, dan menera kapasitan dengan metode jembatan wheatstone.

Lebih terperinci

RANGKAIAN RLC. I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC.

RANGKAIAN RLC. I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC. Jln. Bioteknologi No.1 Kampus USU, Medan 155 I. TUJUAN 1. Untuk mengetahui sifat rangkaian RLC. RANGKAIAN RLC 2. Untuk mengetahui aplikasi dari rangkaian RLC 3. Untuk mengetahui pengertian dari induktansi,

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

Arus & Tegangan bolak balik(ac)

Arus & Tegangan bolak balik(ac) Arus & Tegangan bolak balik(ac) Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Pendahuluan Arus dan Tegangan AC Arus dan tegangan bolak balik adalah arus yang dihasilkan oleh sebuah

Lebih terperinci

BAB IV ARUS BOLAK BALIK. Vef = 2. Vrt = Vsb = tegangan sumber B = induksi magnet

BAB IV ARUS BOLAK BALIK. Vef = 2. Vrt = Vsb = tegangan sumber B = induksi magnet BAB IV AUS BOLAK BALIK A. TEGANGAN DAN AUS Vsb Vsb = Vmax. sin. t Vmax = B. A. N. Vef = V max. V max Vrt = Vsb = tegangan sumber B = induksi magnet Vmax = tegangan maksimum A = luas penampang Vef = tegangan

Lebih terperinci

Filter Orde Satu & Filter Orde Dua

Filter Orde Satu & Filter Orde Dua Filter Orde Satu & Filter Orde Dua Asep Najmurrokhman Jurusan eknik Elektro Universitas Jenderal Achmad Yani 8 November 3 EI333 Perancangan Filter Analog Pendahuluan Filter orde satu dan dua adalah bentuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Bandpass Filter Filter merupakan blok yang sangat penting di dalam sistem komunikasi radio, karena filter menyaring dan melewatkan sinyal yang diinginkan dan meredam sinyal yang

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya 9 BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Catu Daya Listrik dan Distribusi Daya Pada desain fasilitas penunjang Bandara Internasional Kualanamu adanya tuntutan agar keandalan sistem tinggi, sehingga kecuali

Lebih terperinci

ELEKTRONIKA TELEKOMUNIKASI

ELEKTRONIKA TELEKOMUNIKASI DTG2D3 ELEKTONIKA TELEKOMUNIKASI MATCHING IMPEDANCE NETWOK By : Dwi Andi Nurmantris PENDAHULUAN MATCHING IMPEDANCE NETWOK Apa Fungsi matching impedance network (IMC)??? Digunakan untuk menghasilkan impendansi

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatn Sudirham nalisis Rangkaian Listrik Jilid ii Sudaryatn Sudirham, nalsis Rangkaian Listrik () BB Fasr, Impedansi, dan Kaidah Rangkaian Dalam teknik energi listrik, tenaga listrik dibangkitkan,

Lebih terperinci

Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 2006

Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 2006 7 AUS DAN TEGANGAN LISTIK BOLAK-BALIK Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 006 Sebagian besar energi listrik yang digunakan sekarang dihasilkan oleh generator listrik dalam

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah 24 BAB 2 TINJAUAN PUSTAKA 2.1. Pembangkit Harmonisa Beban Listrik Rumah Tangga Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah tangga diantaranya, switch-mode power suplay pada TV,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Daya 2.1.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan

Lebih terperinci

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 1,2 Departemen Fisika, Institut Teknologi Bandung, Bandung, 40132 latifah_zamzami@yahoo.co.id

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

PRAKTIKUM RANGKAIAN RLC DAN FENOMENA RESONANSI

PRAKTIKUM RANGKAIAN RLC DAN FENOMENA RESONANSI PRAKIKUM RANGKAIAN RC DAN FENOMENA RESONANSI (Oleh : Sumarna, ab-elins, Jurdik Fisika FMIPA UNY) E-mail : sumarna@uny.ac.id 1. UJUAN Praktikum ini bertujuan untuk menyelidiki terjadinya fenomena resonansi

Lebih terperinci

ARUS BOLAK BALIK. I m v. Gambar 1. Diagram Fasor (a) arus, (b) tegangan. ωt X(0 o )

ARUS BOLAK BALIK. I m v. Gambar 1. Diagram Fasor (a) arus, (b) tegangan. ωt X(0 o ) ARUS BOLAK BALIK Dalam kehidupan sehari-hari kita jumpai alat-alat seperti dinamo sepeda dan generator. Kedua alat tersebut merupakan sumber arus dan tegangan listrik bolak-balik. Arus bolak-balik atau

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan

BAB 2 TINJAUAN PUSTAKA. yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan BAB 2 TINJAUAN PUSTAKA Sistem distribusi dalam sitem tenaga listrik dikenal dua jenis beban, yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan bentuk gelombang tegangan

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

PERTEMUAN 1 ANALISI AC PADA TRANSISTOR

PERTEMUAN 1 ANALISI AC PADA TRANSISTOR PERTEMUAN 1 ANALISI AC PADA TRANSISTOR Analisis AC atau sering disebut dengan analisa sinyal kecil pada penguat adalah analisa penguat sinyal kecil, dengan memblok sinyal DC yaitu dengan memberikan kapasitor

Lebih terperinci

PENDAHULUAN. - Persiapan :

PENDAHULUAN. - Persiapan : RANGKAIAN LISTRIK LABORATORI UM TEKNI K ELEKTRO JURUSAN TEKNI K ELEKTRO FAKULTAS TEKNI K UNI VERSI TAS I SLAM KADI RI KEDI RI PENDAHULUAN A. UMUM Sesuai dengan tujuan pendidikan di UNISKA, yaitu : - Pembinaan

Lebih terperinci

1.KONSEP SEGITIGA DAYA

1.KONSEP SEGITIGA DAYA Daya Aktif, Daya Reaktif dan Dan Pasif 1.KONSEP SEGITIGA DAYA Telah dipahami dan dianalisa tentang teori daya listrik pada arus bolak-balik, bahwa disipasi daya pada beban reaktif (induktor dan kapasitor)

Lebih terperinci

RANGKAIAN SERI-PARALEL

RANGKAIAN SERI-PARALEL RANGKAIAN SERI-PARALEL 1. Contoh Rangkaian Seri-Paralel Contoh 1 Rangkaian pada Gambar 1, hitunglah : a. arus pada setiap elemen b. tegangan pada setiap elemen c. gunakan hukum tegangan Kirchhoff Contoh

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika 8 BAB 2 TINJAUAN PUSTAKA 2.1. Pembangkit Tegangan Tinggi DC Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika terapan dan tes instalasi kabel pada aplikasi industri. Unit pembangkit

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

drimbajoe.wordpress.com 1

drimbajoe.wordpress.com 1 drimbajoe.wordpress.com STK AUS SEAAH A. KUAT AUS STK Konsep Materi Kuat Arus istrik () Banyaknya muatan (Q) yang mengalir dalam selang (t). Besarnya Kuat arus listrik () sebanding dengan banyak muatan

Lebih terperinci

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan BAB 3 METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian yang dilakukan adalah studi kasus pada pabrik pengolahan plastik. Penelitian direncanakan selesai dalam waktu 6 bulan dan lokasi penelitian berada

Lebih terperinci

20 kv TRAFO DISTRIBUSI

20 kv TRAFO DISTRIBUSI GENERATOR SINKRON Sumber listrik AC dari Pusat listrik PEMBANGKIT 150 k INDUSTRI PLTA PLTP PLTG PLTU PLTGU TRAFO GI 11/150 k TRAFO GI 150/20 k 20 k 20 k 220 BISNIS RUMAH TRAFO DISTRIBUSI SOSIAL PUBLIK

Lebih terperinci

ANALISIS FILTER INDUKTIF DAN KAPASITIF PADA CATU DAYA DC

ANALISIS FILTER INDUKTIF DAN KAPASITIF PADA CATU DAYA DC ANAISIS FITE INDUKTIF DAN KAPASITIF PADA CATU DAYA DC Tan Suryani Sollu* * Abstract One of the main component of DC power supply is filter, which consist of inductor and capacitor, that has function to

Lebih terperinci

The Forced Oscillator

The Forced Oscillator The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)

Lebih terperinci

PENGUKURAN INDUKTANSI SALURAN KOAKSIAL

PENGUKURAN INDUKTANSI SALURAN KOAKSIAL LAPORAN PRAKTIKUM SALURAN TRANSMISI RF PENGUKURAN INDUKTANSI SALURAN KOAKSIAL Disusun Oleh : Angga Setyawan NIM. 1041160015 JURUSAN TEKNIK ELEKTRO PRODI JARINGAN TELEKOMUNIKASI DIGITAL POLITEKNIK NEGERI

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

BAB II SISTEM DAYA LISTRIK TIGA FASA

BAB II SISTEM DAYA LISTRIK TIGA FASA BAB II SISTEM DAYA LISTRIK TIGA FASA Jaringan listrik yang disalurkan oleh PLN ke konsumen, merupakan bagian dari sistem tenaga listrik secara keseluruhan. Secara umum, sistem tenaga listrik terdiri dari

Lebih terperinci

EL2005 Elektronika PR#03

EL2005 Elektronika PR#03 EL005 Elektronika P#03 Batas Akhir Pengumpulan : Jum at, 10 Februari 017, Jam 16:00 SOAL 1 Sebuah alat las listrik (DC welder) membutuhkan suatu penyearah yang dapat menangani arus besar dan tegangan tinggi.

Lebih terperinci

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI Renny Rakhmawati, ST, MT Jurusan Teknik Elektro Industri PENS-ITS Kampus ITS Sukolilo Surabaya Phone 03-5947280

Lebih terperinci

RANCANG BANGUN PENGUAT DAYA RF

RANCANG BANGUN PENGUAT DAYA RF Berkala Fisika ISSN : 141-966 Vol. 6, No. 3, Juli 3, hal. 55-6 RANCANG BANGUN PENGUAT DAYA RF Sapto Nugroho 1, Dwi P. Sasongko, Isnaen Gunadi 1 1. Lab. Elektronika dan Instrumentasi, Jurusan Fisika, UNDIP

Lebih terperinci

Filter Frekuensi. f 50

Filter Frekuensi. f 50 Filter Frekuensi Dalam kehidupan kita sehari-hari kita banyak menjumpai filter, filter dari kata itu sendiri adalah penyaring. Filter sendiri bermacam-macam, ada filter udara untuk menyaring udara kotor

Lebih terperinci

INDUKTANSI DIRI. 1. Menentukan nilai hambatan murni induktor

INDUKTANSI DIRI. 1. Menentukan nilai hambatan murni induktor 3 INDUKTANSI DIRI 1. Menentukan nilai hambatan murni induktor Andri memiliki 3 buah komponen yaitu kawat lurus yang panjangnya 1 meter, hambatan bangku dan kumparan. Andri bingung bagaimana cara menentukan

Lebih terperinci

POLITEKNIK NEGERI JAKARTA

POLITEKNIK NEGERI JAKARTA LAPORAN PRAKTIKUM LABORATORIUM KOMUNIKASI RADIO SEMESTER V TH 2013/2014 JUDUL REJECTION BAND AMPLIFIER GRUP 06 5B PROGRAM STUDI TEKNIK TELEKOMUNIKASI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI JAKARTA PEMBUAT

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Motor Induksi Tiga Fasa Motor induksi adalah suatu mesin listrik yang merubah energi listrik menjadi energi gerak dengan menggunakan gandengan medan listrik dan mempunyai slip

Lebih terperinci

Penerapan Bilangan Kompleks pada Rangkaian RLC

Penerapan Bilangan Kompleks pada Rangkaian RLC Penerapan Bilangan Kompleks pada Rangkaian RLC Hishshah Ghassani - 354056 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 403, Indonesia

Lebih terperinci

TEGANGAN DAN ARUS BOLAK-BALIK

TEGANGAN DAN ARUS BOLAK-BALIK TEGANGAN DAN ARUS BOLAK-BALIK 1.Pengertian Tegangan dan Arus Listrik Bolak-Balik Yang dimaksud dengan arus bolsk-balik ialah arus listrik yang arah serta besarnya berubah berkala,menurut suatu cara tertentu.hal

Lebih terperinci

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 8 A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC B. Sub Kompetensi 1. Mengukur besarnya arus dan daya pada beban RLC pada sumber tenaga tegangan

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS Pada bab ini akan dibahas teori yang menunjang perancangan sistem. Pada bab ini juga akan dibahas secara singkat komponen - komponen yang digunakan serta penjelasan mengenai metoda

Lebih terperinci

BAB I FILTER I. 1. Judul Percobaan. Rangkaian Band Pass Filter. 2. Tujuan Percobaan

BAB I FILTER I. 1. Judul Percobaan. Rangkaian Band Pass Filter. 2. Tujuan Percobaan BAB I FILTER I 1. Judul Percobaan Rangkaian Band Pass Filter 2. Tujuan Percobaan - Menentukan Frekuensi Cut Off dari suatu rangkaian Band Pass Filter. - Menentukan besar Induktansi dari suatu kumparan.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Harmonisa Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban tidak linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran

Lebih terperinci

Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik

Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik Desain Konverter DC/DC Zero Voltage Switching dengan Perbaikan Faktor Daya sebagai Charger Baterai untuk Kendaraan Listrik BAGUS PRAHORO TRISTANTIO, MOCHAMAD ASHARI, SOEDIBJO JURUSAN TEKNIK ELEKTRO, FAKULTAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya BAB TINJAUAN PUSTAKA.. Faktor Daya Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya aktif (P) dan daya reaktif (Q), maka besarnya daya semu (S) adalah sebanding dengan arus (I)

Lebih terperinci

MODUL 1 PRINSIP DASAR LISTRIK

MODUL 1 PRINSIP DASAR LISTRIK MODUL 1 PINSIP DASA LISTIK 1.Dua Bentuk Arus Listrik Penghasil Energi Listrik o o Arus listrik bolak-balik ( AC; alternating current) Diproduksi oleh sumber tegangan/generator AC Arus searah (DC; direct

Lebih terperinci

PERENCANAAN DAN ANALISIS PENENTUAN LETAK FILTER HARMONIK PADA SISTEM TENAGA LISTRIK

PERENCANAAN DAN ANALISIS PENENTUAN LETAK FILTER HARMONIK PADA SISTEM TENAGA LISTRIK PERENCANAAN DAN ANALISIS PENENTUAN LETAK FILTER HARMONIK PADA SISTEM TENAGA LISTRIK Andi Syofian ), Anju Martulesi ), Nining Nadya 3) Dosen Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi

Lebih terperinci

PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI. Islamiani Safitri* dan Neny Kurniasih

PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI. Islamiani Safitri* dan Neny Kurniasih PENENTUAN FREKUENSI OSILASI LC DARI KURVA TEGANGAN INDUKTOR DAN KAPASITOR TERHADAP FREKUENSI Islamiani Safitri* dan Neny Kurniasih STKIP Universitas Labuhan Batu Email: islamiani.safitri@gmail.com Abstrak

Lebih terperinci

Rangkaian RLC Arus AC (E7)

Rangkaian RLC Arus AC (E7) 1 Rangkaian RLC Arus AC (E7) Puji Kumala Pertiwi, Andy Agusta, Drs. Bachtera Indarto Jurusan Fisika, Fakultas MIPA Institut Teknologi Sepuluh Nopember Jl. Arief Rahman Hakim, Surabaya 60111 E-mail: pujikumala15@gmail.com

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Ignition Coil Ignition Coil adalah alat yang digunakan untuk menghasilkan tegangan tinggi diperlukan untuk menciptakan percikan yang memicu bahan bakar dalam mesin pembakaran internal,

Lebih terperinci

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t)

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t) Mengapa AC? Dapat diproduksi secara langsung dari generator Dapat dikontrol oleh komponen elektronika seperti resistor, kapasitor, dan induktor Tegangan maksimumdapat diubah secara mudah dengan trafo Frekuensi

Lebih terperinci

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik. BAB I PENDAHULUAN 1.1. Latar Belakang Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang sudah diketahui

Lebih terperinci

BAB 8 HIGH FREQUENCY ANTENNA. Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk

BAB 8 HIGH FREQUENCY ANTENNA. Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk BAB 8 HIGH FREQUENCY ANTENNA Kompetensi: Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai jenis-jenis frekuensi untuk komunikasi, salah satunya pada rentang band High Frequency (HF). Mahasiswa

Lebih terperinci

SOAL SOAL TERPILIH 1. maksimum dan arus efektif serta frekuensinya?

SOAL SOAL TERPILIH 1. maksimum dan arus efektif serta frekuensinya? SOAL SOAL TERPILIH 1 1. Amplitudo arus dalam sebuah elemen pesawat radio adalah 250 A bila amplitudo tegangannya 3,6 V pada frekuensi 1,6 MHz. Berapakah besarnya arus dan tegangan efektifnya? 2. Hair dryer

Lebih terperinci

Pergeseran Transmission Zeros Akibat Perubahan Komponen Penggandeng Silang

Pergeseran Transmission Zeros Akibat Perubahan Komponen Penggandeng Silang 45 Pergeseran Transmission Zeros Akibat Perubahan Komponen Penggandeng Silang Mudrik Alaydrus Teknik Elektro, Universitas Mercu Buana, Jakarta mudrikalaydrus@yahoo.com Abstrak Filter memainkan peranan

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012)

Gambar 2.1 Perangkat UniTrain-I dan MCLS-modular yang digunakan dalam Digital Signal Processing (Lucas-Nulle, 2012) BAB II TINJAUAN PUSTAKA 2.1 Digital Signal Processing Pada masa sekarang ini, pengolahan sinyal secara digital yang merupakan alternatif dalam pengolahan sinyal analog telah diterapkan begitu luas. Dari

Lebih terperinci

I. PENDAHULUAN. Oleh : Yusron Feriadi ( ) dan Dianto ( ) Abstrack

I. PENDAHULUAN. Oleh : Yusron Feriadi ( ) dan Dianto ( ) Abstrack Oleh : Yusron Feriadi (07384004) dan Dianto (07384007) Abstrack Have been done by experiment as a mean to know relation between current strength with angular frequency and relation between impedance with

Lebih terperinci

JEMBATAN SCHERING. Cx C 3 Rx

JEMBATAN SCHERING. Cx C 3 Rx JEMBATAN SHEING x x Jembatan Schering, salah satu jembatan arus bolak-balik yang paling penting, di pakai secara luas untuk pengukuran kapasitor. Dia memberikan beberapa keuntungan nyata atas jembatan

Lebih terperinci