Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor"

Transkripsi

1 Rangkaian Listrik Arus dan Tegangan AC Sinusoidal dan Phasor Alexander Sadiku edited by Agus Virgono Ir. MT. & Randy E. Saputra Prodi S1-Sistem Komputer Fakultas Teknik Elektro Universitas Telkom

2 Sinusoidal dan Phasor 9.1 Latar Belakang 9.2 Fitur Sinusoidal 9.3 Phasor 9.4 Hubungan Phasor untuk elemen rangkaian 9.5 Impedansi dan admittansi 9.6 Hukum Kirchhoff di domain frequensi 9.7 Impedansi kombinasi 2

3 Sine wave..? Why? Latar Belakang 3

4 Latar Belakang Bagaimana cara menyatakan v(t) dan i(t)? v s (t) = 10V??? 4

5 Sinusoidal Sinyal sinusoidal mempunyai bentuk fungsi sinus atau cosinus. Persamaan umum dari sinusoidal, v( t) V sin( t ) m dengan V m = amplituda dari sinusoidal ω = frekuensi angular dalam rad/s Ф = phasa 5

6 Sinusoidal Sebuah fungsi periodik adalah yang memenuhi v(t) = v(t + nt), untuk semua t dan semua n integer. T 2 f 1 T Hz 2f Hanya dua sinusoidal dengan frekuensi yang sama yang dapat dibandingkan perbedaan amplituda dan phasanya. Jika beda phasa nol, berarti mereka se-phasa; jika beda phasa tidak nol, berarti tidak se-phasa. 6

7 Sinusoidal Sebuah fungsi periodik adalah yang memenuhi v(t) = v(t + nt), untuk semua t dan semua n integer. Hanya dua sinusoidal dengan frekuensi yang sama yang dapat dibandingkan perbedaan amplituda dan phasanya. Jika beda phasa nol, berarti mereka se-phasa; jika beda phasa tidak nol, berarti tidak se-phasa. 7

8 Sinusoidal Contoh 1 Diketahui sebuah sinusoid 5 sin(4t 60). Hitung amplituda, phasa, frekuensi angular, perioda, dan frekuensinya. Jawab: Amplituda = 5 Phasa = 60 o Frekuensi angular = 4 rad/s Perioda = 0.5 s Frekuensi = 2 Hz 8

9 Sinusoidal Sinus vs Cosinus 2 rad = rad = sin ωt = cos(ωt 90 o ) cos ωt = sin(ωt + 90 o ) 9

10 Sinusoidal Contoh 2 Cari sudut phasa antara i 1 = 4 sin(377t + 25) dan i 2 = 5 cos(377t 40), apakah i 1 leading atau lag i 2? Jawab: Leading = mendahului (phasa lebih besar) Lag = tertinggal (phasa lebih kecil) cos ωt = sin(ωt + 90 o ) i 1 i 2 4sin(377t 5sin(377t 25 o 40 o 90 o ) 4sin(377t ) 5sin(377t 180 o 25 o 50 o ) ) 4sin(377t 205 o ) Maka i 1 leading i o 10

11 Phasor Sebuah phasor adalah bilangan kompleks yang menyatakan amplitudo dan phasa dari sinusoidal. Bisa dinyatakan dalam 3 bentuk dasar : j 1 a. Rectangular z x jy r(cos jsin) b. Polar c. Exponential z r j z re dengan r x 2 tan 1 y y x 2 11

12 Phasor Operasi Matematika dari bilangan kompleks: 1. Penjumlahan 2. Pengurangan 3. Perkalian 4. Pembagian z z z 1 z2 y z ( x1 x2) j( y1 2) ( x1 x2) j( y1 2) 1 2 y z r r z z r r Rectangular Polar 5. Reciprocal 1 1 z r 6. Akar z r 2 7. Konjugasi kompleks z x jy r re j 8. Identitas Euler e j cos jsin 12

13 Phasor Contoh 3 Hitunglah bilangan kompleks berikut: a. b. [(5 j2)( 1 10 j j4 j4) 560 o 1030 o o ] j 2 = 1 Jawaban : a j13.67 b j2.2 13

14 Mentransformasikan sinusoidal dari domain waktu ke domain phasor dan sebaliknya : v( t) V cos( t m ) V V m (domain waktu) Phasor (domain phasor) Amplituda dan perbedaan phasa adalah dua hal yang paling diperhatikan dalam menyatakan sinusoidal tegangan dan arus Phasor akan didefinisikan sebagai fungsi cosinus dalam mata kuliah ini. Jika sebuah pernyataan arus atau tegangan dinyatakan dalam bentuk sinus, maka akan diubah jadi cosinus dengan mengurangi phasanya 90 14

15 Contoh 4 Ubah sinusoidal ini ke phasor: i(t) = 6 cos(50t 40) A v(t) = 4 sin(30t + 50) V Jawaban : sin ωt = sin(ωt o ) cos ωt = cos(ωt o ) a. I = 6 40 A b. Ubah menjadi bentuk positif : 4 sin(30t + 50) = 4 sin(30t ) = 4 sin(30t + 230) Ubah menjadi cos : 4 sin(30t + 50) = 4 cos(30t ) = 4 cos(30t + 140) Bentuk phasor V = 4140 V 15

16 Phasor Contoh 5: Ubah phasor ini ke sinusoidal : a. V 1030 V b. I j(5 j12) A j 2 = 1 Jawab: a) v(t) = 10 cos(ωt o ) V b) Bentuk polar : I 12 j5 i(t) = 13 cos(ωt o ) A tan

17 Phasor Perbedaan v(t) dan V: v(t) adalah representasi domain-waktu V adalah representasi domain frekuensi atau domainphasor v(t) adalah waktu tak bebas, V bebas. v(t) selalu riil tidak dalam bentuk kompleks, V kompleks. Catatan : analisa Phasor hanya bisa dilakukan ketika frekuensi konstan; untuk dua atau lebih sinyal sinusoidal hanya ketika mempunyai frekuensi yang sama saja 17

18 Phasor Hubungan antara operasi differential dan integral di phasor : v(t) V V dv dt vdt jv V j 18

19 Phasor Contoh 6 Gunakan pendekatan phasor untuk menentukan arus i(t) di sebuah rangkaian yang dinyatakan sebagai persamaan integral-differential : Jawab : 4i 8 idt 3 (4 10 ( ) i di 4i 8 idt 3 50 cos(2t 75) dt di dt j) i 8 4i i (3 2 2 j i j) i 4i ji 6 ji (4 10 j) i 19

20 Phasor Turunkan persamaan differential untuk rangkaian berikut untuk mencari v o (t) di domain phasa V o. d v dt 2 o dv dt 0 20v 0 Sepertinya cara ini cukup sulit sin(4t 15 o ) Ada cara yang lebih mudah? 20

21 Phasor YA! Ada Daripada mengubah persamaan differential dan mengubahnya ke phasor untuk mencari V o, bisa dilakukan transformasi semua komponen RLC ke phasor terlebih dahulu, baru menerapkan hukum KCL laws dan teorema lainnya untuk mendapatkan persamaan phasor V o secara langsung. 21

22 Hubungan Phasor pada Elemen Rangkaian Resistor: Induktor: Kapasitor: 22

23 Hubungan Phasor pada Elemen Rangkaian Hubungan arus-tegangan Elemen Domain waktu Domain Frequensi R v Ri V RI L C v i L C di dt dv dt V jli I jcv 23

24 Hubungan Phasor pada Elemen Rangkaian Contoh 7 Jika tegangan v(t) = 6 cos(100t 30 o ) diterapkan ke kapasitor 50 μf, hitunglah arus i(t) yang melalui kapasitor. Jawab : V I 6 30 jcv j(10050μ 6 30) j(30m 30) 19030m 30 30m60 i(t) = 30 cos(100t + 60 o ) ma 24

25 Soal Latihan 1. Diketahui tegangan sinusoid v(t) = 50 cos(30t + 10) V. Hitung amplituda V m, frekuensi f, perioda T, dan besar tegangan v(t) pada t = 10 ms. 2. Diketahui arus sinusoid i(t) = 8 cos(500t 25) A. Hitung amplituda I m, frekuensi angular, frekuensi f, dan besar arus i(t) pada t = 2 ms. 3. Ubah sinusoidal berikut ke dalam bentuk cosinus : a) 4 sin(t 30) b) 2 sin(6t) c) 10 sin(t + 20) d) 10 sin(3t 85) 25

26 Soal Latihan 4. Untuk tiap pasangan sinusoid v(t) dan i(t) berikut, tentukan apakah i(t) leading atau lag terhadap v(t) dan berapa beda phasa-nya : a) v(t) = 20 sin(t + 60) dan i(t) = 60 cos(t 10) b) v(t) = 4 sin(4t + 50) dan i(t) = 10 cos(4t 60) c) v(t) = 4 cos(377t + 10) dan i(t) = 20 cos(377t) d) v(t) = 15 cos(2t 11) dan i(t) = 13 cos(2t) + 5 sin(2t) 5. Jika diketahui tiga phasor yaitu z 1 = 6 j8, z 2 = 10 30, dan z 3 = 8 120, hitunglah : 26

27 Soal Latihan 6. Hitunglah operasi phasor berikut dan tuliskan hasilnya dalam bentuk rectangular : 7. Hitunglah operasi phasor berikut dan tuliskan hasilnya dalam bentuk polar : 27

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017 Phasor dan Slide-09 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Phasor Frekuensi Komplex Definisi Phasor Transformasi Phasor Hubungan Tegangan-Arus Hukum Ohm dan Kirchhoff Rangkaian

Lebih terperinci

Analisis Sinusoida. Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto

Analisis Sinusoida. Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto Analisis Sinusoida Dibuat Oleh : Danny Kurnianto Diedit oleh : Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto 1. Fungsi Pemaksa Sinusoida 1.1 Karakteristik sinusoida Kita

Lebih terperinci

Analisis Ajeg dari Sinusoidal

Analisis Ajeg dari Sinusoidal Analisis Ajeg dari Sinusoidal Slide-08 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Karakteristik Sinusoid Bentuk Umum Pergeseran Fase Sinus Kosinus 2 Tanggapan Paksaan thdp Sinusoid

Lebih terperinci

Setelah mempelajari bab ini mahasiswa mampu dan kompeten, mengenai : Bilangan kompleks Operasi bilangan kompleks Aplikasi bilangan kompleks dalam

Setelah mempelajari bab ini mahasiswa mampu dan kompeten, mengenai : Bilangan kompleks Operasi bilangan kompleks Aplikasi bilangan kompleks dalam BILANGAN KOMPLEKS 1 Setelah mempelajari bab ini mahasiswa mampu dan kompeten, mengenai : Bilangan kompleks Operasi bilangan kompleks Aplikasi bilangan kompleks dalam rangkaian elektronika Tegangan, arus

Lebih terperinci

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan. Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

Fungsi dan Sinyal. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS

Fungsi dan Sinyal. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS Fungsi dan Sinyal Slide : Tri Harsono PENS - ITS 1 Kelas Fungsi (Jenis Fungsi) Ada3 kelas dari fungsi: A. Fungsi Periodik, B. Fungsi Non Periodik, C. Fungsi Random 2 A. Fungsi Periodik Suatu fungsi f(t)

Lebih terperinci

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

TEGANGAN DAN ARUS BOLAK-BALIK

TEGANGAN DAN ARUS BOLAK-BALIK TEGANGAN DAN ARUS BOLAK-BALIK 1.Pengertian Tegangan dan Arus Listrik Bolak-Balik Yang dimaksud dengan arus bolsk-balik ialah arus listrik yang arah serta besarnya berubah berkala,menurut suatu cara tertentu.hal

Lebih terperinci

OPTIMISASI Minimisasi Rugi-rugi Daya pada Saluran

OPTIMISASI Minimisasi Rugi-rugi Daya pada Saluran OPTIMISASI Minimisasi ugi-rugi Daya pada Saluran Oleh : uriman Anthony, ST. MT ugi-rugi daya pada saluran ugi-rugi pada saluran transmisi dan distribusi dipengaruhi oleh besar arus pada beban yang melewati

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti

Lebih terperinci

By. Risa Farrid Christianti, S.T.,M.T.

By. Risa Farrid Christianti, S.T.,M.T. * By. Risa Farrid Christianti, S.T.,M.T. * Fasor tegangan dan arus pada resistor Perhatikan Gabar 1 dibawah ini Gabar 1.a. Dala daerah waktu Gabar 1.b. Dala daerah frekuensi Kita ulai dari persaaan daerah

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

KAPASITOR DAN INDUKTOR

KAPASITOR DAN INDUKTOR KAPASITOR DAN INDUKTOR Oleh : Risa Farrid Christianti, ST.,MT. Sekolah Tinggi Teknologi Telematika Telkom Purwokerto PENDAHULUAN Kapasitor dan Induktor merupakan komponen/elemen pasif dari rangkaian elektronik

Lebih terperinci

Penerapan Bilangan Kompleks pada Rangkaian RLC

Penerapan Bilangan Kompleks pada Rangkaian RLC Penerapan Bilangan Kompleks pada Rangkaian RLC Hishshah Ghassani - 354056 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 0 Bandung 403, Indonesia

Lebih terperinci

Fasor adalah bilangan kompleks yang merepresentasikan besaran atau magnitude dan fasa fungsi sinusoidal dari waktu. Sebuah rangkaian yang dapat dijelaskan dengan menggunakan fasor disebut berada dalam

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

MODUL 1 PRINSIP DASAR LISTRIK

MODUL 1 PRINSIP DASAR LISTRIK MODUL 1 PINSIP DASA LISTIK 1.Dua Bentuk Arus Listrik Penghasil Energi Listrik o o Arus listrik bolak-balik ( AC; alternating current) Diproduksi oleh sumber tegangan/generator AC Arus searah (DC; direct

Lebih terperinci

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I.

Untai Elektrik I. Untai Orde Tinggi & Frekuensi Kompleks. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Untai Elektrik I Untai Orde Tinggi & Frekuensi Kompleks Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Pada bagian sebelumnya, dibahas untai RC dan RL dengan hanya satu elemen penyimpan

Lebih terperinci

Arus & Tegangan bolak balik(ac)

Arus & Tegangan bolak balik(ac) Arus & Tegangan bolak balik(ac) Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Pendahuluan Arus dan Tegangan AC Arus dan tegangan bolak balik adalah arus yang dihasilkan oleh sebuah

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

Tanggapan Alih (Transient Respond) dan Kestabilan System

Tanggapan Alih (Transient Respond) dan Kestabilan System Tanggapan Alih (Transient Respond) dan Kestabilan System Indrazno Siradjuddin April 8, 2017 1 Bilangan Kompleks (a) Koordinat cartesian (b) Koordinat polar Gambar 1: Representasi bilangan kompleks dalam

Lebih terperinci

Daya Rangkaian AC [1]

Daya Rangkaian AC [1] Daya Rangkaian AC [1] Slide-10 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 21 Materi Kuliah 1 Daya Sesaat Definisi Daya Input Undak Daya Input Sinusoidal 2 Definisi Daya Input Sinusoidal Daya Resistif

Lebih terperinci

Daya Rangkaian AC [2]

Daya Rangkaian AC [2] Daya Rangkaian AC [2] Slide-11 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 16 Materi Kuliah 1 Nilai Efektif Tegangan & Arus Efektif Nilai Efektif Gelombang Berkala Nilai RMS Gelombang Sinusoidal Nilai

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengaruh Frekuensi Terhadap Beban Semester I

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengaruh Frekuensi Terhadap Beban Semester I Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 5 A. Kompetensi Menggambarkan pengaruh frekuensi terhadap beban R-L, R-C parallel. B. Sub Kompetensi 1. Menyebutkan pengaruh frekuensi terhadap arus I R, I L,

Lebih terperinci

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK

OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK OSILASI ELEKTROMAGNETIK & ARUS BOLAK-BALIK 1 Last Time Induktansi Diri 2 Induktansi Diri Menghitung: 1. Asumsikan arus I mengalir 2. Hitung B akibat adanya I tersebut 3. Hitung fluks akibat adanya B tersebut

Lebih terperinci

BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4)

BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4) BILANGAN KOMPLEKS A. Pengertian Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan komleks. Himpunan bilangan riil yang kita pakai sehari-hari merupakan himpunan

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017

SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A. Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 SIGNAL & SPECTRUM O L E H : G U TA M A I N D R A Rangkaian Elektrik Prodi Teknik Elektro Fakultas Teknik 2017 TUJUAN PERKULIAHAN Memahami berbagai pernyataan gelombang sinyal Memahami konsep harmonisa

Lebih terperinci

PEMBENTUKAN MODEL RANGKAIAN LISTRIK

PEMBENTUKAN MODEL RANGKAIAN LISTRIK PEMBENTUKAN MODEL RANGKAIAN LISTRIK Pada sub bab ini akan membahas tentang sistem listrik. Pembahasan ini berperan sebagai suatu contoh yang mengesankan dari kenyataan penting, bahwa sistem fisis yang

Lebih terperinci

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam)

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam) Kumpulan Soal Fisika Dasar II Universitas Pertamina (16-04-2017, 2 jam) Materi Hukum Biot-Savart Hukum Ampere GGL imbas Rangkaian AC 16-04-2017 Tutorial FiDas II [Agus Suroso] 2 Hukum Biot-Savart Hukum

Lebih terperinci

ARUS DAN TEGANGAN BOLAK- BALIK

ARUS DAN TEGANGAN BOLAK- BALIK AUS DAN TEGANGAN BOLAK- BALK FSKA SMK PEGUUAN CKN Formulasi arus dan tegangan bolak-balik e e sin wt or v v sin wt Persamaan e and v di atas sesuai dengan persamaan simpangan pada gerak harmonik sederhanan,

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Listrik Arus Bolak Balik - Latihan Soal Doc. Name: AR12FIS0699 Version: 2011-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi: v =140

Lebih terperinci

BENTUK GELOMBANG AC SINUSOIDAL

BENTUK GELOMBANG AC SINUSOIDAL BENTUK GELOMBANG AC SINUSOIDAL. PENDAHULUAN Pada bab sebelunya telah dibahas rangkaian resistif dengan tegangan dan arus dc. Bab ini akan eperkenalkan analisis rangkaian ac diana isyarat listriknya berubah

Lebih terperinci

KONSEP SINYAL. Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani February EL2032 Sinyal dan Sistem

KONSEP SINYAL. Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani February EL2032 Sinyal dan Sistem KONSEP SINYAL Asep Najmurrokhman Jurusan Teknik Elektro Universitas Jenderal Achmad Yani 1 18 February 2013 Tujuan Belajar : mendefinisikan sinyal dan memberi contoh tentang sinyal menggambarkan domain

Lebih terperinci

BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4)

BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4) BILANGAN KOMPLEKS A. Pengertian Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan komleks. Himpunan bilangan riil yang kita pakai sehari-hari merupakan himpunan

Lebih terperinci

KONVERTER AC-DC (PENYEARAH)

KONVERTER AC-DC (PENYEARAH) KONVERTER AC-DC (PENYEARAH) Penyearah Setengah Gelombang, 1- Fasa Tidak terkontrol (Uncontrolled) Beban Resistif (R) Beban Resistif-Induktif (R-L) Beban Resistif-Kapasitif (R-C) Terkontrol (Controlled)

Lebih terperinci

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t)

Sumber AC dan Fasor. V max. time. Sumber tegangan sinusoidal adalah: V( t) V(t) Mengapa AC? Dapat diproduksi secara langsung dari generator Dapat dikontrol oleh komponen elektronika seperti resistor, kapasitor, dan induktor Tegangan maksimumdapat diubah secara mudah dengan trafo Frekuensi

Lebih terperinci

Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL Mempelajari hub

Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL Mempelajari hub Percobaan 5 Rangkaian RC dan RL EL2193 Praktikum Rangkaian Elektrik Tujuan Mempelajari pengertian impedansi Mempelajari hubungan antara impedansi, resistansi, dan reaktansi pada rangkaian seri RC dan RL

Lebih terperinci

ANALISA SINYAL DAN SISTEM TE 4230

ANALISA SINYAL DAN SISTEM TE 4230 ANALISA SINYAL DAN SISTEM TE 430 TUJUAN: Sinyal dan Sifat-sifat Sinyal Sistem dan sifat-sifat Sisterm Analisa sinyal dalam domain Waktu Analisa sinyal dalam domain frekuensi menggunakan Tools: Transformasi

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE SATU 1 Persamaan diferensial orde satu Persamaan diferensial menyatakan hubungan dinamik antara variabel bebas dan variabel tak bebas, maksudnya

Lebih terperinci

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2

METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 METODE NUMERIK PADA RANGKAIAN RLC SERI MENGGUNAKAN VBA EXCEL Latifah Nurul Qomariyatuzzamzami 1, Neny Kurniasih 2 1,2 Departemen Fisika, Institut Teknologi Bandung, Bandung, 40132 latifah_zamzami@yahoo.co.id

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

Applikasi Bil. Komplek pada Teknik Elektro

Applikasi Bil. Komplek pada Teknik Elektro Modul II Applikasi Bil. Komplek pada Teknik Elektro Tujuan : 1. Mahasiswa dapat melakukan operasi perkalian dan pembagian bilangan kompleks 2. Mahasiswa bisa mengunakan kalkulator untuk mengkonversi bentuk

Lebih terperinci

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks BILANGAN KOMPLEKS 1. Bilangan-Bilangan Real Sekumpulan bilangan-bilangan real yang dapat menempati seluruh titik pada garis lurus, hal ini dinamakan garis bilangan real seperti pada Gambar 1. Operasi penjumlahan,

Lebih terperinci

TEORI DASAR TEKNIK TENAGA LISTRIK, oleh Ir. Markoni, S.H., M.T. Hak Cipta 2014 pada penulis

TEORI DASAR TEKNIK TENAGA LISTRIK, oleh Ir. Markoni, S.H., M.T. Hak Cipta 2014 pada penulis TEORI DASAR TEKNIK TENAGA LISTRIK, oleh Ir. Markoni, S.H., M.T. Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057 E-mail: info@grahailmu.co.id

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

RANGKAIAN AC SERI DAN PARALEL

RANGKAIAN AC SERI DAN PARALEL . Konfigurasi Seri ANGKAAN A S DAN PAA Pada Gambar. beberapa elemen dihubungkan seri. Setiap impedansi dapat berupa resistor, induktor, atau kapasitor. otal impedansi dari hubungan seri dapat dituliskan

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengaruh Frekuensi Terhadap Beban Semester I

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET RANGKAIAN LISTRIK. Pengaruh Frekuensi Terhadap Beban Semester I Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 5 A. Kompetensi Menggambarkan pengaruh frekuensi terhadap beban R-L, R-C seri. B. Sub Kompetensi 1. Menyebutkan pengaruh frekuensi terhadap tegangan V R, V L,

Lebih terperinci

The Forced Oscillator

The Forced Oscillator The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)

Lebih terperinci

Spektrum dan Domain Sinyal

Spektrum dan Domain Sinyal Spektrum dan Domain Sinyal 1 Sinyal dan Spektrum Sinyal Komunikasi merupakan besaran yang selalu berubah terhadap besaran waktu Setiap sinyal dapat dinyatakan di dalam domain waktu maupun di dalam domain

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan

Lebih terperinci

Untai 1. I. Setyawan. Materi. Referensi. Evaluasi Untai Elektrik I. Pendahuluan. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana

Untai 1. I. Setyawan. Materi. Referensi. Evaluasi Untai Elektrik I. Pendahuluan. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana Materi Referensi Evaluasi Untai Elektrik I Pendahuluan Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Materi Materi Referensi Evaluasi 1 Definisi-definisi Dasar 2 Konsep-konsep Untai

Lebih terperinci

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif Resonansi paralel sederhana (rangkaian tank ) Kondisi resonansi akan terjadi pada suatu rangkaian tank (tank circuit) (gambar 1) ketika reaktansi dari kapasitor dan induktor bernilai sama. Karena rekatansi

Lebih terperinci

Oleh: Sudaryatno Sudirham. BAB 1 Sinyal onsinus Pada Rangkaian Linier

Oleh: Sudaryatno Sudirham. BAB 1 Sinyal onsinus Pada Rangkaian Linier nalisis Harmonisa Oleh: Sudaryatno Sudirham BB Sinyal onsinus Pada Rangkaian Linier Penyediaan energi elektrik pada umumnya dilakukan dengan menggunakan sumber tegangan berbentuk gelombang sinus. rus yang

Lebih terperinci

Bab III Respon Sinusoidal

Bab III Respon Sinusoidal Bab III Respon Sinusoidal Sinyal sinusiodal digunakan sebagai input ui terhadap kinera sistem, misal untuk mengetahui respon frekuensi, distorsi harmonik dan distorsi intermodulasi... Bentuk Amplituda-fasa

Lebih terperinci

KATA PENGANTAR. 0 Modul Praktikum RL Tehnik Elektro UNISSULA

KATA PENGANTAR. 0 Modul Praktikum RL Tehnik Elektro UNISSULA KATA PENGANTA 0 Modul Praktikum Tehnik Elektro UNSSUA MODU TEGANGAN DAN DAYA STK, SUPE POSS, THEENN DAN NOTON 1.1 TUJUAN a. Mahasiswa mampu menganalisis rangkaian listrik arus sederhana dengan menggunakan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

DERET FOURIER. 1. Pendahuluan

DERET FOURIER. 1. Pendahuluan DERET FOURIER 1. Pendahuluan Teorema Fourier: Suatu fungsi periodik terhadap waktu, x p (t), dengan perioda dasar T 0, dapat dinyatakan sebagai jumlah tak hingga dari gelombang-gelombang sinusoidal. Fungsi

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

Fisika Study Center. Never Ending Learning. Menu. Cari Artikel Fisika Study Center. Most Read. Latest. English

Fisika Study Center. Never Ending Learning. Menu. Cari Artikel Fisika Study Center. Most Read. Latest. English Fisika Study Center Never Ending Learning Menu English Home Fisika X SMA Fisika XI SMA Fisika XII SMA Fisika SMP Soal - Soal Pengayaan Olimpiade Fisika UN Fisika SMA UN Fisika SMP Tips SKL UN Fisika Rumus

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatn Sudirham nalisis Rangkaian Listrik Jilid ii Sudaryatn Sudirham, nalsis Rangkaian Listrik () BB Fasr, Impedansi, dan Kaidah Rangkaian Dalam teknik energi listrik, tenaga listrik dibangkitkan,

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

Arus dan Tegangan Listrik Bolak-balik

Arus dan Tegangan Listrik Bolak-balik Arus dan Tegangan Listrik Bolak-balik Arus dan tegangan bolak-balik (AC) yaitu arus dan tegangan yang besar dan arahnya berubah terhadap waktu secara periodik. A. Nilai Efektif, Nilai Maksimum dan Nilai

Lebih terperinci

Deret Fourier untuk Sinyal Periodik

Deret Fourier untuk Sinyal Periodik x( t T ) x( Analisis Fourier Jean Baptiste Fourier (1768-1830, ahli fisika Perancis) membuktikan bahwa sembarang fungsi periodik dapat direpresentasikan sebagai penjumlahan sinyal-sinyal sinus dengan frekuensi

Lebih terperinci

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS

Deret Fourier. Slide: Tri Harsono PENS ITS Politeknik Elektronika Negeri Surabaya (PENS) - ITS Deret Fourier Slide: Tri Harsono PENS ITS trison@eepis-its.edu . Pendahuluan Gelombang di alam nyata merupakan : Jumlahan gelombang-gelombang pembentuknya (=gelombanggelombang harmonisanya) Suatu gelombang

Lebih terperinci

Konsep Dasar. Arus Bolak Balik (AC)

Konsep Dasar. Arus Bolak Balik (AC) Konsep Dasar Arus Bolak Balik (A) frekwensi f PN Hz 10 dimana : P = jumlah kutub magnit. N = putaran rotor permenit F = jumlah lengkap putaran perdetik.m.f (eletro motor force). 4, 44K K f Volt D dimana

Lebih terperinci

Bab I. Bilangan Kompleks

Bab I. Bilangan Kompleks Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 213 www.darpublic.com 7. Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banak peristiwa terjadi secara siklis sinusoidal, seperti misalna gelombang cahaa, gelombang radio pembawa,

Lebih terperinci

UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO

UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS JEMBER FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO RENCANA PEMBELAJARAN SEMESTER (RPS) MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Rangkaian Listrik TKE1251-4 2 Dosen Pengembang

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT

SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT 1 SINYAL SISTEM SEMESTER GENAP S1 SISTEM KOMPUTER BY : MUSAYYANAH, MT List Of Content 2 Pengertian Sinyal Pengertian Sistem Jenis-Jenis Sinyal dan Aplikasinya Pengertian Sinyal 3 sinyal adalah suatu isyarat

Lebih terperinci

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN

MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN MODUL 1 PENDAHULUAN, FENOMENA TRANSIEN & FUNGSI PEMAKSA TANGGA SATUAN 1. PENDAHULUAN 1.1 Rencana Perkuliahan Mata Kuliah : Rangkaian Listrik 2 Dosen : Trie Maya Kadarina ST, MT. Perkuliahan : PKK Semester

Lebih terperinci

Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 2006

Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 2006 7 AUS DAN TEGANGAN LISTIK BOLAK-BALIK Generator menghasilkan energi listrik. Sumber: Dokumen Penerbit, 006 Sebagian besar energi listrik yang digunakan sekarang dihasilkan oleh generator listrik dalam

Lebih terperinci

ARUS BOLAK BALIK. I m v. Gambar 1. Diagram Fasor (a) arus, (b) tegangan. ωt X(0 o )

ARUS BOLAK BALIK. I m v. Gambar 1. Diagram Fasor (a) arus, (b) tegangan. ωt X(0 o ) ARUS BOLAK BALIK Dalam kehidupan sehari-hari kita jumpai alat-alat seperti dinamo sepeda dan generator. Kedua alat tersebut merupakan sumber arus dan tegangan listrik bolak-balik. Arus bolak-balik atau

Lebih terperinci

1. Alat Ukur Arus dan Tegangan

1. Alat Ukur Arus dan Tegangan 1. lat Ukur rus dan Tegangan lat ukur tegangan, araus dan hambatan listrik baik untuk DC maupun C dibuat menjadi satu alat ukur saja. lat ukur ini dikenal dengan nama VO-meter singkatan dari mpere, olt

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN 15-08-26 Pengesahan Nama Dokumen : SILABUS RANGKAIAN LISTRIK No Dokumen : FIK/TK/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 6 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto,

Lebih terperinci

EL2005 Elektronika PR#03

EL2005 Elektronika PR#03 EL005 Elektronika P#03 Batas Akhir Pengumpulan : Jum at, 10 Februari 017, Jam 16:00 SOAL 1 Sebuah alat las listrik (DC welder) membutuhkan suatu penyearah yang dapat menangani arus besar dan tegangan tinggi.

Lebih terperinci

ANALISIS RANGKAIAN. Oleh: Pujiono. Edisi Pertama Cetakan Pertama, 2013

ANALISIS RANGKAIAN. Oleh: Pujiono. Edisi Pertama Cetakan Pertama, 2013 ANALISIS RANGKAIAN Oleh: Pujiono Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham nalisis Rangkaian Listrik Di Kawasan Waktu 2 Sudaryatno Sudirham, nalisis Rangkaian Listrik (1) BB 6 Hukum-Hukum Dasar Pekerjaan analisis pada suatu rangkaian linier yang parameternya

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER 2 GANJIL 2017/2018 DOSEN : SUSMINI I. LESTARININGATI, M.T Data/Message Data yang dihasilkan oleh manusia atau aplikasi tidak dalam bentuk yang dapat langsung

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

Nama : Taufik Ramuli NIM :

Nama : Taufik Ramuli NIM : Nama : Taufik Ramuli NIM : 1106139866 Rangkaian RLC merupakan rangkaian baik yang dihubungkan dengan paralel pun secara seri, namun rangkaian tersebut harus terdiri dari kapasitor; Induktor; dan resistor.

Lebih terperinci

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP

PERCOBAAN 10 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP PERCOBAAN 0 RANGKAIAN DIFFERENSIATOR DAN INTEGRATOR OP-AMP 0. Tujuan : ) Mendemonstrasikan prinsip kerja dari suatu rangkaian diffrensiator dan integrator, dengan menggunakan op-amp 74. 2) Rangkaian differensiator

Lebih terperinci

Deret Fourier dan Respons Frekuensi

Deret Fourier dan Respons Frekuensi Program Studi Teknik Telekomunikasi - Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Praktikum Pengolahan Sinyal Waktu Kontinyu sebagai bagian dari Mata Kuliah ET 2004 Modul 2 : Deret

Lebih terperinci

Kondisi seperti tersebut dapat dikatakan bahwa antara flux (Ф) dan tegangan (e) terdapat geseran fasa sebesar π / 2 radian atau 90 o.

Kondisi seperti tersebut dapat dikatakan bahwa antara flux (Ф) dan tegangan (e) terdapat geseran fasa sebesar π / 2 radian atau 90 o. Bila dua buah gelombang dengan persamaan Ф = Фm cos ωt dan e = Em sin ωt dilukiskan secara bersama dalam satu susunan sumbu Cartesius seperti pada Gambar 1, maka terlihat bahwa kedua gelombang tersebut

Lebih terperinci

LAPORAN ALAT UKUR DAN PENGUKURAN

LAPORAN ALAT UKUR DAN PENGUKURAN LAPORAN ALAT UKUR DAN PENGUKURAN PENGUKURAN BEDA FASA DENGAN OSILOSKOP Tanggal Percobaan : 13 Desember 2012 Nama : TaufanIrawan (121331061) Partner : Ramdhan Sumitro (121331059) Ulfah Khaerani (121331063)

Lebih terperinci

SOAL SOAL TERPILIH 1. maksimum dan arus efektif serta frekuensinya?

SOAL SOAL TERPILIH 1. maksimum dan arus efektif serta frekuensinya? SOAL SOAL TERPILIH 1 1. Amplitudo arus dalam sebuah elemen pesawat radio adalah 250 A bila amplitudo tegangannya 3,6 V pada frekuensi 1,6 MHz. Berapakah besarnya arus dan tegangan efektifnya? 2. Hair dryer

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.

Lebih terperinci