4. Jika kubus di samping dibuka dan dibentangkan sisi-sisinya, maka gambar jaring-jaring bangun ruang yang akan terbentuk adalah

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. Jika kubus di samping dibuka dan dibentangkan sisi-sisinya, maka gambar jaring-jaring bangun ruang yang akan terbentuk adalah"

Transkripsi

1 : ( ) - x 0 x 0 x 7 =? A) 1 C) 14 B) 9 D). Ada berapa bilangan angka yang jika dikalikan maka penjumlahan angka-angka pada bilangan pertama sama dengan jumlah angka-angka pada bilangan kedua. A) 5 C) B) 8 D) 1. Bangun A dibentuk dari 4 batang. Masing-masing batang 1 cm lebih panjang dibanding batang di sebelah kirinya. Bangun B dibentuk dari 4 batang yang digunakan pada bangun A dengan susunan yang berbeda. A B Berapa selisih keliling bangun A dengan bangun B? A) 1 cm C) cm B) cm D) 4 cm 4. Jika kubus di samping dibuka dan dibentangkan sisi-sisinya, maka gambar jaring-jaring bangun ruang yang akan terbentuk adalah A) C) B) D) 5. Hasil penjumlahan dua buah bilangan pecahan positif adalah Jika penyebut dari kedua pecahan tersebut kurang dari 5, berapakah pembilang dari pecahan yang lebih besar? A) C) 4 B) D) 5. KEHxGA = 7 Seluruh angka dari 1 sampai 9 digunakan satu kali pada operasi bilangan di atas. Berapa bilangan yang diwakili oleh huruf G? A) 1 C) 8 B) 5 D) 9

2 7. Pada beberapa bulan ada 4 hari Sabtu dan pada bulan lainnya dapat dijumpai lebih dari 4 hari Sabtu dalam satu bulan. Ada berapa bulan dalam satu tahun yang memungkinkan di dalamnya ada lebih dari 4 hari Sabtu? A) 1 C) B) D) 5 8. Dalam sebuah rumah, tinggal orang bersaudara yaitu Ana, Eva dan Lisa. Masing-masing memiliki kemampuan yang sama dalam hal membersihkan rumah. Jika dua orang dari mereka bekerja bersama untuk membersihkan rumah, maka seluruh rumah menjadi bersih dalam waktu 1 jam. Berapa waktu yang dibutuhkan oleh mereka bertiga untuk bersama-sama membersihkan seluruh rumah? A) 0 menit C) 40 menit B) 0 menit D) 45 menit 9. Aulia, Dipa, Lisa, Marina dan Fahd datang ke ruang rapat OSIS. Aulia datang setelah Lisa. Dipa datang lebih awal dibanding Aulia tetapi setelah Marina. Marina datang lebih awal dibanding Lisa. Tetapi Marina bukanlah yang paling awal datang. Siapakah siswa yang sampai ke ruang OSIS pada urutan ke tiga? A) AULIA C) LISA B) FAHD D) DIPA =? A) B) 1 9 C) D) Menurut kalender masehi sekarang adalah tahun 007. Hasil penjumlahan angka-angka pada 007 adalah 9. Berapa tahun lagi hasil penjumlahan angka pada tahun kalender menjadi 9? A) 1 C) 7 B) D) 9 1. Manakah dari pasangan gambar-gambar di bawah yang tepat sama? A) 1 and 5 C) and 4 B) 1 and D) and 5 1. Berapa bilangan tiga angka yang dapat dibentuk oleh lembar kartu angka di bawah? 0 7 A) C) 4 B) D) 5 4

3 14. x x =? A) 1 C) 0 B) 1 D) Jika bentuk di samping kita gunting, manakah gambar yang tak mungkin terbentuk dari guntingan tersebut? A) B) C) D) 1. Ada berapa angka nol jika satu juta ditambah seribu ditambah satu? A) C) 4 B) D) Sisi dari sebuah persegi adalah 5 cm. Vera memotong persegi tersebut menjadi dua buah persegi panjang. Jika keliling persegi panjang yang pertama adalah 1 cm, berapa keliling dari persegi panjang kedua? A) 8 cm C) 1 cm B) 9 cm D) 14 cm 18. Pada sebuah peternakan dipelihara kambing dan ayam. Jumlah masing-masing ternak tersebut sama. Berapa jumlah kaki semua ternak tersebut yang masuk akal? A) 1 C) B) D) Seekor semut menaiki kura-kura yang berjalan selama 4 menit. Kemudian semut tersebut berganti naik ke atas kelinci yang berjalan 4 kali lebih jauh dari jarak yang ditempuh kura-kura. Berapa menit waktu perjalanan yang dilakukan semut bersama kelinci jika kecepatan kelinci 8 kali lebih cepat dibanding kura-kura? A) menit C) 1 menit B) menit D) 48 menit 0. Ahmad adalah seorang pelajar. Jika angka bilangan usianya dibalik, maka akan sama dengan usia kakeknya. Jika usia kakek Ahmad antara 0 dan 70 tahun, maka selisih usia Ahmad dan kakeknya adalah... A) 40 tahun C) 44 tahun B) 4 tahun D) 45 tahun 1. Ada dua buah kertas persegi bersisi 9 cm. Jika dibentuk sebuah persegi panjang berukuran 9 cm x 1 cm dengan menumpuk kedua persegi tersebut, maka irisan luas keduanya adalah... A) C) 54 B) 45 D) 5

4 . Hasil penjumlahan dari tiga bilangan asli adalah 547. Berapakah maksimal nilai bilangan yang terkecil? A) 18 C) 184 B) 18 D) 185. Sebuah percobaan menggunakan timbangan sederhana dilakukan untuk mengetahui berat beban-beban berbentuk lingkaran, kotak persegi dan segi 1 tiga. Posisi setimbang terjadi pada gambar 1 dan. Pada gambar, berapa kotak persegi yang harus ditambahkan pada ember sebelah kanan agar timbangan menjadi seimbang dengan beban di dalam ember di sebelah kiri? A) C) 5 B) 4 D) 4. Penjumlahan dari bilangan asli yang genap adalah x. Berapakah nilai terbesar bilangan tersebut dalam x? A) x 5 B) x + 5 C) D) x 0 x + 0 c 5. abc adalah suatu bilangan tiga angka dan bc adalah bilangan dua angka. Jika abc = bc + Ada berapa bentuk kemungkinan angka yang diwakili oleh c? A) 5 C) B) 4 D) ( ),. K, L dan M bukan angka nol. K>L>M dan KLM LMK MKL Hitunglah nilai maksimal dari K? A) C) 5 B) 4 D) 7. a, b dan c adalah bilangan genap. Manakah di antara persamaan di bawah ini yang selalu bernilai genap? a+b+c A) B) a+ b-c a.b.c C) D) a- b+c 8. AB dan BA adalah kode untuk bilangan dua angka yang berbeda. Manakah yang tidak mungkin jika AB-BA? A) 9 C) B) 18 D) 1

5 9. a adalah suatu bilangan asli. a dapat dibagi 5. Manakah di antara pernyataan berikut yang menunjukkan bilangan ganjil? A) a C) a/4 B) a D) a/ 0. x, y dan z adalah bilangan bulat positif. x.y.z =, x.z = y= x 1 ( ) Berapakah nilai x, y, z? A) 1,, C),,1 B) 1,, D),1, 1. a, b dan c adalah bilangan bulat. a.b = c - 1 Manakah di antara pernyataan di bawah ini yang benar? A) a dan b adalah bilangan ganjil B) a dan b adalah bilangan genap C) a adalah genap dan b adalah ganjil D) a-b adalah bilangan ganjil. Masing-masing tentara penjaga mendapat tugas jaga selama 4 hari, jika tentara pertama memulai tugas jaga pada hari Selasa, maka tentara ke-18 memulai tugas pada hari... A) Minggu C) Selasa B) Senin D) Rabu : 40 =?. A) 1 C) 1 B) 11 D) 4.. Berapakah A+B jika. B A B A A 1 + A) 11 C) 9 B) 1 D) 1 5. Di antara pecahan-pecahan di bawah ini, manakah yang paling mendekati angka 1? A) 1/14 C) 17/1 B) 15/1 D) 18/19 7

6 . 11 -=? 9 5 A) C) B) 9 D) Berapa persentase dari angka 00 yang senilai 50? A) 0 C) 0 B) 5 D) Seorang pedagang membeli tas seharga 40 dollar dan menjualnya kembali seharga 5 dollar. Berapa persen keuntungan yang ia peroleh untuk satu tas yang terjual? A) 0 C) 0 B) 5 D) 5 9. Jika 11,5 % dari sebuah bilangan adalah 41,5. Maka % dari bilangan tersebut bernilai... A) 81 C) 8 B) 8 D) Di dalam satu kelas, jika satu meja diisi anak, maka ada sisa satu meja. Akan tetapi jika satu bangku hanya boleh dipakai anak, maka dibutuhkan meja tambahan. Berapa jumlah siswa dalam satu kelas ini? A) 0 C) 4 B) D) 41. Jika 4 buku dan 5 pensil berharga 58 dollar,5 buku dan 4 pensil berharga 77 dollar, Berapa yang harus kamu bayar untuk membeli 1 buku dan 1 pensil? A) 19 dollar C) 15 dollar B) 0 dollar D) dollar 4. Jika 18 orang pekerja mampu menghasilkan 5 mainan dalam 5 hari, berapa jumlah mainan yang dapat dihasilkan oleh karyawan dalam 9 hari? A) 15 C) 0 B) 18 D) 5 4. Jika bilangan nilai rata-rata aritmatiknya adalah 7, berapa hasil penjumlahan dari ketiga bilangan tersebut? A) 7 C) 1 B) 14 D) 8 8

7 44. Berapa nilai x dalam perbandingan berikut? A) C) 4 1 = x B) 4 D) Jika x =0,5, tentukan nilai x A) 1 C) B) D) 4 4. Jika x-y = dan x+y = 8. Maka nilai x.y adalah... A) C) 8 B) 7 D) Pada baris bilangan di bawah, manakah yang angka suku keduanya merupakan nilai tengah dari suku pertama dan ketiga? А) 1 1, 1, 4 C), 7, 1 B) 1, 1, D) 1 1,, 48. Di atas sebuah kertas petak digambar persegi panjang berukuran 00 x 00 unit. Jika kemudian digambar pula sebuah garis diagonal untuk persegi panjang tersebut, berapa petak yang akan terpotong oleh garis diagonal yang dimaksud? A) 5 C) 450 B) 400 D) Dari jaring-jaring bangun ruang di bawah, manakah yang tepat membentuk kotak berukuran 1x1x unit? A) C) B) D) 50. Ada berapa bilangan tiga angka, yang besar angkanya meningkat dari kiri ke kanan dan hasil perkalian angka-angka tersebut habis dibagi 81? А) C) 4 B) D) 5 9

D) 1 A) 3 C) 5 B) 4 D) 6

D) 1 A) 3 C) 5 B) 4 D) 6 1. Hasil penjumlahan dua buah bilangan pecahan positif adalah 41 5. Jika penyebut dari kedua pecahan tersebut kurang dari 5, berapakah pembilang dari pecahan yang lebih besar? A) C) 4 B) D) 5. Dalam sebuah

Lebih terperinci

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut 1. Pada sisi kanan dan kiri sebuah jalan raya terdapat perumahan. Rumah-rumah yang terdapat di sisi kiri jalan dinomori berurutan dengan nomor ganjil dari angka 1 sampai 39. Rumah-rumah di sebelah kanan

Lebih terperinci

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut :

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut : 1. Jika 3x2006 = 2005+2007+a, maka a sama dengan A) 2003 B) 2004 C) 2005 D) 2006 2. Berapa angka terbesar yang mungkin didapat dari kombinasi susunan enam kartu angka di bawah ini? A) 6 475 413 092 B)

Lebih terperinci

1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13

1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13 1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak 1991. Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13 2. A) 0 B) 106 C) 114 D) 126 3. Titik O terletak di tengah bidang

Lebih terperinci

1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60

1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60 1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60 2. Sebuah botol dengan volume liter, diisi air hingga volumenya. Berapa

Lebih terperinci

1. Soal Isian Singkat

1. Soal Isian Singkat . Soal Isian Singkat. Bilangan pecahan untuk bilangan desimal 0, adalah... 2. Dari pukul 07.00 pagi sampai dengan pukul 0.00 pagi, jarum menit pada jam sudah berputar berapa derajat? 3. Ani membuka sebuah

Lebih terperinci

PENDALAMAN MATERI MATEMATIKA S D. 3. Diketahui : a = 112, b = 175, c = 138 dan d = 225. Tentukan nilai ab+bc+ad+cd

PENDALAMAN MATERI MATEMATIKA S D. 3. Diketahui : a = 112, b = 175, c = 138 dan d = 225. Tentukan nilai ab+bc+ad+cd PRESTASI O S N IMO PENALAMAN MATERI MATEMATIKA S. Gambarlah urutan berikutnya. 5 x 4 : 6 + 8 x 35 : 4 + 63 : 9 x 40 =... 3. iketahui : a =, b = 75, c = 38 dan d = 5. Tentukan nilai ab+bc+ad+cd 4. Jika

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

1. Soal Isian Singkat

1. Soal Isian Singkat . Soal Isian Singkat. ilangan pecahan untuk bilangan desimal 0, adalah... 2. Dari pukul 07.00 pagi sampai dengan pukul 0.00 pagi, jarum menit pada jam sudah berputar berapa derajat? 3. Ani membuka sebuah

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

3 OPERASI HITUNG BENTUK ALJABAR

3 OPERASI HITUNG BENTUK ALJABAR OPERASI HITUNG BENTUK ALJABAR Pada arena balap mobil, sebuah mobil balap mampu melaju dengan kecepatan (x + 10) km/jam selama 0,5 jam. Berapakah kecepatannya jika jarak yang ditempuh mobil tersebut 00

Lebih terperinci

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 00 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

2. Masing-masing angka 5,6,7,8, dan 9 akan ditempatkan tepat satu-satu ke sebuah kotak dalam diagram berikut :

2. Masing-masing angka 5,6,7,8, dan 9 akan ditempatkan tepat satu-satu ke sebuah kotak dalam diagram berikut : SOAL PENYISIHAN OMITS 2011 I. PILIHAN GANDA 1. Babak final lomba renang gaya dada 100 m putera diikuti oleh 4 perenang, yaitu Wawan, Satria, Kresna dan Paul. Pemenang pertama, kedua dan ketiga memperoleh

Lebih terperinci

I. SOAL PILIHAN GANDA

I. SOAL PILIHAN GANDA SOAL PENYISIHAN 7 th OMITS I. SOAL PILIHAN GANDA 1) Tinggi badan Ani ditambah tinggi Bela adalah 320 m. Tinggi Bela ditambah Cici adalah 290 m. Tinggi Ani ditambah Cici adalah 270 m. Berapa jumlah tinggi

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang Diuji Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

SMP / MTs Mata Pelajaran : Matematika

SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 200 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar

Lebih terperinci

C. y = 2x - 10 D. y = 2x + 10

C. y = 2x - 10 D. y = 2x + 10 1. Diantara himpunan berikut yang merupakan himpunan kosong adalah... A. { bilangan cacah antara 19 dan 20 } B. { bilangan genap yang habis dibagi bilangan ganjil } C. { bilangan kelipatan 3 yang bukan

Lebih terperinci

UJIAN NASIONAL SMP/MTs

UJIAN NASIONAL SMP/MTs UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2007/2008 Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari/Tanggal : Selasa, 6 Mei 2008 Jam : 08.00-10.00 WAKTU PELAKSANAAN PETUNJUK UMUM 1. Isikan

Lebih terperinci

Olimpiade Matematika Vektor 2009 se-jawa-bali. SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 2009

Olimpiade Matematika Vektor 2009 se-jawa-bali. SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 2009 SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 009 Bagian A. PILIHLAH JAWABAN YANG TEPAT!. Bilangan pecahan berikut yang berada di antara A. 3 574 B. 574 4 3. Simplify

Lebih terperinci

1 C17. C. Rp B. Rp

1 C17. C. Rp B. Rp 1 C17 1. Joko ingin kuliah di Fakultas kedokteran UNAIR melalui SNMPTN jalur tulis. Dari 15 soal kemampuan dasar di hari pertama, Joko menjawab 5 soal benar dan soal tidak dijawab. Jika menjawab benar

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 203/204 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Selasa, Maret 204 : 20 menit : 40 soal 2D Petunjuk :. Isikan identitas

Lebih terperinci

Copyright Hak Cipta dilindungi undang-undang

Copyright  Hak Cipta dilindungi undang-undang Latihan Soal UN SMP/MTs Mata Pelajaran : Matematika Jumlah Soal : 0. Hasil dari.7 +.75 adalah. 5 c. 57 d 7. Suhu di dalam kulkas - 0 C. Pada saat mati lampu suhu di dalam kulkas naik 0 C setiap menit.

Lebih terperinci

SOAL MATEMATIKA SIAP UN 2012

SOAL MATEMATIKA SIAP UN 2012 SOL MTMTIK SIP UN 1 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Hasil dari 8 ( ) 5 Hasil dari ( 16 ) ( 4 : 4). Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar.

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar. SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 007 BIDANG MATEMATIKA SMP SOAL PILIHAN GANDA. Urutan bilangan bilangan adalah.. a. b. c. d. e., 5,, 5,,, dan, dan, dan 5, dari yang terkecil

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005 UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 004/005 Mata Pelajaran : MATEMATIKA Hari/Tanggal : RABU, 8 JUNI 005 Waktu : 0 MENIT PETUNJUK UMUM. Periksa dan bacalah soal-soal sebelum kamu menjawab. Tulis nomor

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL 2008

OLIMPIADE SAINS TERAPAN NASIONAL 2008 OLIMPIADE SAINS TERAPAN NASIONAL 008 JENIS SOAL : PILIHAN GANDA WAKTU : 10 MENIT DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDRAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SEKOLAH MENENGAH

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

LATIHAN UJIAN AKHIR SEKOLAH

LATIHAN UJIAN AKHIR SEKOLAH LATIHAN UJIAN AKHIR SEKOLAH BERSTANDAR NASIONAL MATEMATIKA WAKTU : 0 menit DEPARTEMEN PENDIDIKAN NASIONAL PETUNJUK UMUM 1. Periksa dan bacalah soal-soal sebelum menjawab.. Jawaban dikerjakan pada lembar

Lebih terperinci

SOAL ISIAN SINGKAT. Jawaban: 50 cm 2.

SOAL ISIAN SINGKAT. Jawaban: 50 cm 2. SOAL ISIAN SINGKAT 1. Dari 12 anak akan dibentuk beberapa tim yang masing-masing terdiri dari lima anak. Apabila seorang anak hanya boleh berada paling banyak pada dua tim, maka banyaknya tim yang dapat

Lebih terperinci

Prediksi Soal Dan Pembahasan TPA Bagian 1 : Soal TPA (Numerik)

Prediksi Soal Dan Pembahasan TPA Bagian 1 : Soal TPA (Numerik) Prediksi Soal Dan Pembahasan TPA 0 Bagian : Soal TPA (Numerik)., 6,, 0,... (A) 8 (D) 4 (B) 0 (E) 48 (C) 6. 6,,, 4, 8,,... (A) (D) 5 (B) (E) 6 (C) 4. 5,,,,... 6 6 (A) 6 (B) 6 (C) 0 6 (D) 9 6 8 (E) 6.,,

Lebih terperinci

SMP NEGERI 199 JAKARTA LATIHAN PERSIAPAN UJIAN SEKOLAH MATEMATIKA 2012

SMP NEGERI 199 JAKARTA LATIHAN PERSIAPAN UJIAN SEKOLAH MATEMATIKA 2012 SMP NEGERI 199 JKRT LTIHN PERSIPN UJIN SEKOLH MTEMTIK 01 PETUNJUK KHUSUS. Pilih dan hitamkan jawaban yang benar di antara a, b, c, dan d pada lembar jawaban komputer (LJK)! 1. Hasil dari (-0) : + (-) -11

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 1. Hasil dari 635 + 175 225 =... A. 575 B. 585 C. 800 D. 900 BAB I Bilangan Penjumlahan dan pengurangan derajatnya sama, pengerjaannya

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOL SELEKSI TINGKT KOT/KUPTEN OLIMPIE SINS NSIONL 7 ING MTEMTIK SMP. SOL PILIHN GN. Urutan ilangan-bilangan 5555, 5, dan dari yang terkecil sampai yang terbesar adalah. a. 5555, 5, dan b. 5,, dan 5555

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

SOAL USM STAN 2011 TPA Kuantitatif

SOAL USM STAN 2011 TPA Kuantitatif ------------------- SOAL USM STAN 2011 TPA Kuantitatif------------------------ 36. 3,8 x 33 + 2,1 x 17 + 33 x 2,1+ 17 x 3,8 A. 245 C. 305 B. 295 D. 345 1. Caranya adalah kita dekat-dekatkan dulu angka

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP)

Rencana Pelaksanaan Pembelajaran (RPP) Rencana Pelaksanaan Pembelajaran (RPP) Sekolah : SD Mata Pelajaran : Matematika Kelas/Semester : V/2 Standar Kompetensi : 5. Menggunakan pecahan dalam pemecahan masalah. Kompetensi Dasar : 5.1 Mengubah

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. Indikator, menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Indikator Soal, menentukan hasil operasi campuran bilangan

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 200 BIDANG MATEMATIKA TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT ============================================================

Lebih terperinci

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

MATEMATIKA SMP PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 2016/2017 PAKET 01 FULL DOKUMEN. SMPN 2 LOSARI 2017 Created by Irawan

MATEMATIKA SMP PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 2016/2017 PAKET 01 FULL DOKUMEN. SMPN 2 LOSARI 2017 Created by Irawan PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 06/07 PAKET 0 DOKUMEN SANGAT RAHASIA MATEMATIKA SMP FULL SMPN LOSARI 07 Created by Irawan DINAS PENDIDIKAN KABUPATEN CIREBON Jika operasi " *

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1992

MATEMATIKA EBTANAS TAHUN 1992 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Diketahui: A = {m, a, d, i, u, n} dan B = {m, a, n, a, d, o} Diagram Venn dari kedua himpunan di atas A. m a d o a m o i e e I d u a a u n e m i d o m i d a u n

Lebih terperinci

KELAS 8 NASKAH SOAL OLIMPIADE MATEMATIKA ANAK BANGSA HOTEL MERDEKA, 16 JANUARI 2011

KELAS 8 NASKAH SOAL OLIMPIADE MATEMATIKA ANAK BANGSA HOTEL MERDEKA, 16 JANUARI 2011 NSKH SOL OLIMPIDE MTEMTIK NK NGS HOTEL MERDEK, 6 JNURI 0 KELS 8 Pusat elajar nak angsa Kantor Pusat : Perumahan Taman sri III/74 Madiun Telepon : 035 454 Website : http://www.anak-bangsa.com E-mail : bangbangsasa@yahoo.com

Lebih terperinci

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 009 Mata pelajaran Matematika Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah OLIMPIADE SAINS TERAPAN

Lebih terperinci

UAN MATEMATIKA SMP 2007/2008 C3 P13

UAN MATEMATIKA SMP 2007/2008 C3 P13 1. Hasil dari adalah a. 47 b. 52 c. 57 d. 63 2. Suhu di dalam kulkas sebelum dihidupkan 29 C. Setelah dihidupkan, suhunya turun 3 C setiap 5 menit. Setelah 10 menit suhu di dalam kulkas adalah a. 23 C

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 1. Hasil dari ( 18 + 30): ( 3 1) adalah. A. -12 B. -3 C. 3 D.12 BAB I BILANGAN BULAT dan BILANGAN PECAHAN ( 18 + 30): ( 3 1) = 12

Lebih terperinci

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian. Glosarium A Akar pangkat dua : akar pangkat dua suatu bilangan adalah mencari bilangan dari bilangan itu, dan jika bilangan pokok itu dipangkatkan dua akan sama dengan bilangan semula; akar kuadrat. Asosiatif

Lebih terperinci

A. LATIHAN SOAL UNTUK KELAS 9A

A. LATIHAN SOAL UNTUK KELAS 9A A. LATIHAN SOAL UNTUK KELAS 9A. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -5 B. -6. 0 D. 6 2. Hasil dari 2 : 75% + 8,75 =... A. 4 B. 5. 6 D. 7 3. Uang Irna sama dengan 2 3 uang Tuti. Jika jumlah uang mereka

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

SOAL UJIAN MATEMATIKA SEKOLAH DASAR Urutan yang benar dari bilangan terkecil sampai yang terbesar adalah

SOAL UJIAN MATEMATIKA SEKOLAH DASAR Urutan yang benar dari bilangan terkecil sampai yang terbesar adalah SOL UJIN MTEMTIK SEKOLH SR 009. gar.00.0 : +. = n benar, maka n =..00..000..00..000. Suhu udaha di puncak gunung Jayawijaya - 0, sedang suhu di pantai mencapai 0. Selisih suhu udara kedua daerah itu. 9

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM Mata Pelajaran Jenjang : Matematika : SMP / MTs MATA PELAJARAN Hari / Tanggal : Rabu, 9 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional

Lebih terperinci

4. Satu koin dilempar tiga kali. Berapa kemungkinan muncul angka dan gambar selang seling?

4. Satu koin dilempar tiga kali. Berapa kemungkinan muncul angka dan gambar selang seling? 1. Di papan tertulis 7 kata benda, 5 kata kerja dan 2 kata sifat. Untuk membentuk satu kalimat kita perlu memakai satu kata tiap jenis kata. Berapa kalimat kita bisa bentuk? A) 24 B) 14 C) 70 D) 40 2.

Lebih terperinci

3. Beberapa angka dikali dengan jumlah digitnya hasilnya adalah Berapa jumlah digit dari angka ini?

3. Beberapa angka dikali dengan jumlah digitnya hasilnya adalah Berapa jumlah digit dari angka ini? 1. Berat dua buah kubus sama dengan berat sebuah bola. Berat 2 balok sama dengan berat 3 bola. Berapa kubus yang diperlukan agar beratnya sama dengan satu balok? A) 5 kubus B) 4 kubus C) 3 kubus D) 2 kubus

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

II. Kerjakan soal-soal berikut ini!

II. Kerjakan soal-soal berikut ini! Ulangan Harian I. Isilah titik-titik berikut ini dengan tepat!. x 0 60 : (-8) =.. FPB dari bilangan dan 7 adalah.. 70 7 x (-) + 8 : 8 =.. (00 +.00) : (-7) x 8 60 =.. KPK dari bilangan 8 dan adalah. 6.

Lebih terperinci

1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. A. cm. B. cm. C. cm D. 2 cm A. 0,2 B. 0,5 C. 1,5 D.

1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. A. cm. B. cm. C. cm D. 2 cm A. 0,2 B. 0,5 C. 1,5 D. 1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. cm cm cm 2 cm 2.. 0,2 0,5 1,5 15 3. Suatu pekerjaan jika dikerjakan 15 orang dapat selesai bekerja dalam

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : D45 NO SOAL PEMBAHASAN 1 Hasil dari 8 5 3 adalah... 1. a A. 10 5 = a a a a a B. 5. a 1 n n = a C. 3 3. a m n n = a m D. 64 Hasil dari 8 3 adalah... A. 6 B. 8 C.

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TAHUN 014 TINGKAT KABUPATEN/KOTA Sabtu, 8 Maret 014 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

Luky, S.Pt. RINGKASAN MATERI MATEMATIKA SD Ujian Sekolah

Luky, S.Pt. RINGKASAN MATERI MATEMATIKA SD Ujian Sekolah Kompetensi 1 Memahami konsep dan operasi hitung bilangan serta dapat menggunakannya dalam kehidupan sehari-hari (1.) OPERASI HITUNG Urutan langkah pengerjaan : 1. Dikerjakan operasi dalam kurung terlebih

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai

BILANGAN PECAHAN. A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai BILANGAN PECAHAN A. Pengertian Bilangan Pecahan dan Pecahan Senilai Bilangan pecahan adalah bilangan yang dapat dinyatakan sebagai a b dengan a, b bilangan bulat dan b 0. Bilangan a disebut pembilang dan

Lebih terperinci

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani)

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani) Bilangan Bulat 1. Suhu sebongkah es mula-mula 5 o C. Dua jam kemudian suhunya turun 7 o C. Suhu es itu sekarang a. 12 o C c. 2 o C b. 2 o C d. 12 o C 2. Jika x lebih besar dari 1 dan kurang dari 4 maka

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

SOAL SELEKSI TINGKAT PROPINSI OLIMPIADE SAINS NASIONAL 007 BIDANG MATEMATIKA SMP A. Soal Pilihan Ganda 1. Banyak bilangan prima antara 10 dan 99 yang tetap merupakan bilangan prima jika kedua digitnya

Lebih terperinci

TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012

TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012 TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012 Mata Pelajaran : Matematika Jenjang : SMP/MTs Hari/Tanggal : - Waktu : 120 menit Jam : 08.00 10.00 PETUNJUK UMUM 1. Isikan identitas

Lebih terperinci

adalah x

adalah x SOAL Babak Penyisihan Olimpiade Matematika ITS 202 (OMITS 2) Tingkst SMP Se-derajat Pilihan Ganda. Jika I + T = -S, maka nilai dari I 3 + T 3 + S 3 = 3 3 3 a. 3 ITS b. ITS 3 c. ITS d.it 2 S 2. Diketahui

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

Free-download

Free-download PREDIKSI UJIAN NASIONAL TAHUN 2008/2009 I. Standar Kompetensi Menggunakan konsep operasi hitung dan sifat-sifat bilangan, perbandingan, aritmetika sosial, barisan bilangan, serta penggunaannya dalam pemecahan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

1. Hasi dari ( ) : ( 3 1) adalah... A. 12 B. 3 C. 3 D. 12 Jawab : ( ) : ( 3 1) = 12 : 4 = 3 Jadi jawabannya : B

1. Hasi dari ( ) : ( 3 1) adalah... A. 12 B. 3 C. 3 D. 12 Jawab : ( ) : ( 3 1) = 12 : 4 = 3 Jadi jawabannya : B C-P1-008/009 1. Hasi dari ( 18 + 0) : ( 1) adalah... A. 1 B. C. D. 1 ( 18 + 0) : ( 1) = 1 : =. Pada lomba Matematika ditentukan untuk jawaban yang benar mendapat skor, jawaban salah mendapat skor 1, sedangkan

Lebih terperinci

Gambar-15b: Modifikasi Dua Bungkusan Roti Wafer. Pengerjaan gambar menentukan di bawah ini! banyak piring yang tersisa dapat diilustrasikan pada

Gambar-15b: Modifikasi Dua Bungkusan Roti Wafer. Pengerjaan gambar menentukan di bawah ini! banyak piring yang tersisa dapat diilustrasikan pada 5 (10 + 6) Gambar-15b: Modifikasi Dua Bungkusan Roti Wafer Banyak roti Wafer pada Gambar-15a sama dengan banyak roti Wafer pada Gambar-15b sehingga dapat ditulis 4 ( 15 + 8) = (4 15) + (4 8). Pengerjaan

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 1. Hasil dari 1.764 + 3.375 adalah... A. 53 B. 57 C.63 D. 67 BAB VIII BILANGAN BERPANGKAT 4 2 15 1.764 3.375 4 x 4 16 1 3 1 1 64

Lebih terperinci

Jadi luas daerah yang dapat dijadikan kambing tempat memakan rumput adalah 154m 2

Jadi luas daerah yang dapat dijadikan kambing tempat memakan rumput adalah 154m 2 61. Seekor kambing diikat di lapangan berumput dengan tali yang panjangnya 7 meter pada sebuah tiang. Tentukan luas daerah yang dapat dijadikan kambing tempat memakan rumput. Diketahui : Seekor kambing

Lebih terperinci

PEMECAHAN MASALAH UNTUK MENGAKTIFKANSISWA SLTP DALAM PEMBELAJARAN MATEMATIKA

PEMECAHAN MASALAH UNTUK MENGAKTIFKANSISWA SLTP DALAM PEMBELAJARAN MATEMATIKA PEMECAHAN MASALAH UNTUK MENGAKTIFKANSISWA SLTP DALAM PEMBELAJARAN MATEMATIKA Pengertian Semua pertanyaan akan menjadi masalah hanya jika pertanyaan itu menunjukkan adanya suatu tantangan yang tidak dapat

Lebih terperinci

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12 0. Hasil dari (-8 + 30) : (-3 - ) (A) - (B) -3 (C) 3 (D) 0. Pada lomba matematika ditentukan untuk jawaban yang benar mendapatkan skor, jawaban salah mendapatkan skor, sedangkan bila tidak menjawab mendapat

Lebih terperinci

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275)

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275) KODE : 02 A / TUC 2 /2016 MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo 54114 Telepon/Fax (0275) 321405 UJI COBA KE 2 UJIAN NASIONAL 2016

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMP / MTs Mata Pelajaran : Matematika Jumlah Soal :. Hasil dari (-8 + ) : (- ) - -. Pada lomba matematika ditentukan jawaban yang benar mendapat skor, jawaban salah mendapat skor -, sedangkan

Lebih terperinci

UN SMP Matematika (A) 53 (B) 57 (C) 63 (D) 67

UN SMP Matematika (A) 53 (B) 57 (C) 63 (D) 67 UN SMP Matematika Doc Name: UNSMP2008MAT999 Version : 202-0 halaman 0. Hasil dari 3.764 3. 37 (A) 3 (B) 7 (C) 63 (D) 67 02. Suhu di dalam kulkas -2 0 C. Pada saat mati lampu suhu di dalam kulkas naik 3

Lebih terperinci