HIMPUNAN Adri Priadana ilkomadri.com

dokumen-dokumen yang mirip
HIMPUNAN Adri Priadana ilkomadri.com

PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I

Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika

DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB

Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan. Nur Hasanah, M.Cs

Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1

HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si

TEORI HIMPUNAN. A. Penyajian Himpunan

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1

Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Logika Matematika Modul ke: Himpunan

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan

Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit

Himpunan. Himpunan (set)

BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}

Pengertian Himpunan. a. kumpulan makanan lezat b. kumpulan batu-batu besar c. kumpulan lukisan indah. 1. Kumpulan yang bukan merupakan himpunan

HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI

Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 2

PENDAHULUAN. 1. Himpunan

Mohammad Fal Sadikin

Pertemuan 6. Operasi Himpunan

INF-104 Matematika Diskrit

H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.

Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

TEORI HIMPUNAN Penyajian Himpunan

BAB I H I M P U N A N

Materi 1: Teori Himpunan

Bahan kuliah Matematika Diskrit. Himpunan. Oleh: Didin Astriani P, M.Stat. Fakultas Ilkmu Komputer Universitas Indo Global Mandiri

Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

1.2 PENULISAN HIMPUNAN

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

LANDASAN MATEMATIKA Handout 2

INF-104 Matematika Diskrit

Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011

Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo

Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15

BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016

1 Pendahuluan I PENDAHULUAN

PERTEMUAN 5. Teori Himpunan

LOGIKA MATEMATIKA PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN. TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM

H I M P U N A N. 1 Matematika Ekonomi Definisi Dasar

Himpunan. by Ira Prasetyaningrum. Page 1

Matematika Diskrit 1

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.

Kata kata Motivasi. Malas belajar hanya akan membuat suatu pelajaran semakin sulit dipelajari.

Himpunan Bagian ( Subset )

MATEMATIKA BISNIS. Dosen Hikmah Agustin,SP.,MM. Politeknik Dharma Patria Kebumen 2016

BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1

FERRY FERDIANTO, S.T., M.Pd. PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011

Teori Himpunan Elementer

MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.

Dasar Logika Matematika

Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:

MATEMATIKA BISNIS. Pendahuluan: 1. Kontrak Perkuliahan 2. Himpunan. Sitti Rakhman, SP., MM. Modul ke: Fakultas FEB. Program Studi Manajemen

Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1

Materi 2: Operasi Terhadap Himpunan

: SRI ESTI TRISNO SAMI

[HIMPUNAN] MODUL MATEMATIKA SMP KELAS VII KURIKULUM 2013 RAJASOAL..COM. istiyanto

Himpunan, Dan Fungsi. Ira Prasetyaningrum,M.T

Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan

MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO

DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.

HIMPUNAN. A. Pendahuluan

TEORI HIMPUNAN (Kajian tentang Karakteristik, Relasi, Operasi dan Representasi Himpunan)

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Himpunan Ole l h h : H anu n n u g n N. P r P asetyo

HIMPUNAN. A. Pendahuluan

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.

Ulang Kaji Konsep Matematika

LOGIKA MATEMATIKA. Dosen: Drs. Sumardi Hs., M.Sc. Modul ke: 01Fakultas FASILKOM. Program Studi Teknik Informatika

Logika Matematika. Teknik Informatika IT Telkom

BAB 1 PENGANTAR. 1.1 Himpunan

Logika Matematika Himpunan

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.

: SRI ESTI TRISNO SAMI

Contoh:A= { a, e, i, o, u }; S=U = himpunan semua huruf

BAB V HIMPUNAN. Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas.

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

H I M P U N A N. A. Pendahuluan

Bab1. Himpunan. Gajah Merpati. Burung Nuri Jerapah

MSH1B3 LOGIKA MATEMATIKA Teori Himpunan (Lanjutan)

Pengantar Matematika Diskrit

LANDASAN MATEMATIKA Handout 1 (Himpunan)

KONSEP DASAR MATEMATIKA

Teori Himpunan. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Teori Himpunan

RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN

Logika Matematika. Pengertian Himpuan, Cara Penyajian Himpunan, Bentuk- Bentuk Himpunan, dan Operasi Himpunan. Harni Kusniyati, ST.

MATEMATIKA DISKRIT MATEMATIKA DISKRIT

MODUL STRUKTUR ALJABAR 1. Disusun oleh : Isah Aisah, Dra., MSi NIP

Transkripsi:

HIMPUNAN Adri Priadana ilkomadri.com

Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class atau collection

Definisi Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. BEM adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain.

Notasi Himpunan Himpunan dinyatakan dg huruf capital misal : A, B, G Sedangkan elemennya dg huruf kecil a, b, c..,1,2,..

Penyajian Himpunan 1. Enumerasi menyebutkan semua anggota dari himpunan tersebut. contoh : Himpunan tiga bilangan ganjil pertama: A = {1,3,5}. Keanggotaan Himpuan x A : x merupakan anggota himpunan A; x A : x bukan merupakan anggota himpunan A. Contoh 1. Misalkan: A = {1,3,5,8}, R = { a, b, {a, b, c}, {a, c} }, K = {{}} maka 1 A, {a, b, c} R, a R, sedangkan {a} R, {} K

Penyajian Himpunan Contoh 2. Misalkan: P 1 = {a, b}, P 2 = { {a, b} }, dan P 3 = {{{a, b}}}, maka : a P 1 a P 2 P 1 P 2 P 1 P 3 P 2 P 3

Penyajian Himpunan 2. Simbol Simbol Baku Beberapa simbol baku pada himpunan N = himpunan bilangan alami (asli) = { 1, 2, 3,... } Z = himpunan bilangan bulat = {..., -2, -1, 0, 1, 2,... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks sedangkan U menyatakan himpunan semesta. Contoh: Misalkan U = {a, b, c, d, e} dan A adalah himpunan bagian dari U, dengan A = {a, d, e}.

Penyajian Himpunan 3. Notasi Persyaratan A = {x syarat yang harus dipenuhi oleh x} contoh : A adalah himpunan bilangan asli yang kecil dari 10 A = { x x 10 dan x N } atau A = { x N x 10 } yang ekivalen dengan A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Penyajian Himpunan 4. Diagram Venn untuk menyatakan relasi antar himpunan Misal U = {1, 2,, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. maka notasi dalam diagram Venn: U A B 7 1 2 8 5 3 6 4

Himpunan Berhingga (Finite Set) Himpunan yang mempunyai anggota berhingga disebut himpunan berhingga (finite set) Sembarang himpunann yang anggotanya tak berhingga disebut himpunan tak berhingga(infinite set) contoh A={a,b,c,d,e,f} adalah finite set, sedangkan Z adalah infinite set.

Kardinalitas Misalkan A merupakan himpunan berhingga, maka jumlah elemen berbeda di dalam A disebut kardinal dari himpunan A. (menyatakan banyaknya anggota dari himpunan) Notasi: n(a) atau A contoh : (i) B = { x x merupakan bilangan prima lebih kecil dari 20}, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 (iii) A = {t, {t}, {{t}},{{{t}}} }, maka A = 4

Himpunan Kosong (null set) Himpunan yang tidak mempunyai anggota atau kardinalitasnya = 0 Contoh : A ={x x < x}, maka n(a)= 0 Notasi : {} atau Ø {Ø} atau {{}} bukan himpunan kosong karena ia memiliki satu elemen yaitu Ø atau {}

Himpunan Bagian (Subset) Himpunan A disebut himpunan bagian (subset) dari himpunan B jika dan hanya jika setiap anggota A merupakan anggota dari B. Dalam hal ini, B dikatakan superset dari A. Notasi: A B Diagram Venn: U A B

Himpunan Bagian (Subset) Catatan : A dan A A, maka dan A disebut himpunan bagian tak sebenarnya (improper subset) dari himpunan A. Contoh: A = {a,b,c}, maka {a,b,c} dan adalah improper subset dari A.

Himpunan Bagian (Subset) Contoh. (i) { a, b, c} {a, b, c, d, e} (ii) { a, b, c} {a, b, c } TEOREMA 1. Untuk sembarang himpunan A berlaku ha sebagai berikut: (a) A adalah himpunan bagian dirinya sendiri (yaitu, A A). (b) Himpunan kosong merupakan himpunan bagian dari se himpunan (dalam hal ini A ( A)). (c) Jika A B dan B C, maka A C

Himpunan Bagian (Subset) Catatan : A B tidak sama dengan A B Pada : A B : A adalah himpunan bagian dari B tetapi A B. A adalah himpunan bagian sebenarnya (proper subset) dari B. Contoh: {a} dan {b,c} adalah proper subset dari {a,b,c} sedangkan : A B : digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.

Himpunan yang Ekivalen Himpunan A disebut ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama. Notasi : A ~ B A = B A = { 1,2,3,4} dan B = { ali, budi, joko,tuti }, maka A ~ B sebab A = B = 4

Himpunan yang Sama A = B jika dan hanya jika setiap anggota A merupakan anggota B dan sebaliknya setiap anggota B merupakan anggota A.. Jika tidak demikian, maka A B. Notasi : A = B A B dan B A

Himpunan Kuasa Himpunan kuasa (power set) dari himpunan A adalah suatu himpunan yang anggotanya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri. Notasi : P(A) atau 2 A Jika A = m, maka P(A) = 2m. Contoh 12. Jika A = { 1, 2 }, maka P(A) = {, { 1 }, { 2 }, { 1, 2 }} Contoh 13. Himpunan kuasa dari himpunan kosong adalah P( ) = { }, dan himpunan kuasa dari himpunan { } adalah P({ }) = {, { }}.

Himpunan Saling Lepas Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki anggota yang sama. Notasi : A // B Diagram Venn: U A B Contoh 11. Jika A = { x x P, x < 8 } dan B = { 10, 20, 30,... }, maka A // B.

Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {a,b,c,d,e} dan B = {c,e,f,g}, maka A B = {c,e} (ii) Jika A = { 1,2,3} dan B = { 4,5}, maka A B =. Artinya: A // B

Operasi Terhadap Himpunan 2. Gabungan (union) Notasi : A B = { x x A atau x B } Contoh: (i) Jika A = { a, b, c} dan B = { b,c,d,e }, maka A B = { a,b,c,d,e } (ii) A = A

Operasi Terhadap Himpunan 3. Komplemen (complement) Notasi : A = { x x U, x A } Contoh Misalkan U = { 1, 2, 3,..., 7 }, jika A = {1, 3, 4, 6}, maka A = {2, 5, 7}

Operasi Terhadap Himpunan 4. Selisih (difference) Notasi : A B = { x x A dan x B } = A B Contoh. (i) Jika A = { a, b, c,d,e,f} dan B = { c,d,f}, maka A B = { a,b,e} dan B A = (ii) {1, 3, 5} {1, 2, 3} = {5}, tetapi {1, 2, 3} {1, 3, 5} = {2}

Operasi Terhadap Himpunan 5. Beda Setangkup (Symmetric Difference) Notasi: A B = (A B) (A B) = (A B) (B A) Contoh 19. Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A B = { 3, 4, 5, 6 }

Operasi Terhadap Himpunan TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut: (a) A B = B A (hukum komutatif) (b) (A B ) C = A (B C ) (hukum asosiatif)

Contoh 20. Misalkan U = himpunan mahasiswa P = himpunan mahasiswa yang nilai ujian UTS di atas 80 Q = himpunan mahasiswa yang nilain ujian UAS di atas 80 Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80. (i) Semua mahasiswa yang mendapat nilai A : P Q (ii) Semua mahasiswa yang mendapat nilai B : P Q (iii) Semua mahasiswa yang mendapat nilai C : U (P Q)

Operasi Terhadap Himpunan 6. Perkalian Kartesian (cartesian product) Notasi: A B = {(a, b) a A dan b B } Contoh. (i) Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } (ii) Misalkan A = B = himpunan semua bilangan riil, maka A B = himpunan semua titik di bidang datar

Operasi Terhadap Himpunan Catatan: 1. Jika A dan B merupakan himpunan berhingga, maka: A B = A. B. 2. (a, b) (b, a). 3. A B B A dengan syarat A atau B tidak kosong. Pada Contoh di atas, C = { 1, 2, 3 }, dan D = { a, b }, D C = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) } C D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } D C C D. 4. Jika A = atau B =, maka A B = B A =

Contoh. Misalkan A = himpunan makanan = { s = soto, b = bakso, n = nasi goreng, m = mie ayam} B = himpunan minuman = { c = coca-cola, t = teh, d = es jeruk} Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas? Jawab: A B = A B = 4 3 = 12 kombinasi dan minuman, yaitu {(s, c), (s, t), (s, d), (b, c), (b, t), (b, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)}.

Contoh Soal Operasi Terhadap Himpunan Dari 45 siswa, diketahui 27 siswa yang menyukai IPA dan 26 siswa menyukai IPS. Siswa yang tidak menyukai keduanya ada 5 orang. Tentukanlah banyaknya siswa yang menyukai IPA saja dan IPS saja! Kita cari terlebih dahulu jumlah siswa yang menyukai kedua pelajaran tersebut: n(a B) = (n(a) + n(b)) - (n(u) n(x)) n(a B) = (27 + 26) (45 5) n(a B) = 13 Maka dapat disimpulkan bahwa: Siswa yang menyukai IPA saja = 27-13 = 14 siswa Siswa yang menyukai IPS saja = 26-13 = 13 siswa

Perampatan Operasi Himpunan Operasi himpunan dapat dilakukan terhadap 2 atau lebih himpunan. Dalam hal ini kita akan melakukan perampatan (generalization) operasi himpunan. A A... 1 2 A A... 1 2 A A... 1 2 A A... 1 2 n i 1 n i 1 A n A i A n A i n A A n i 1 n A A n i i 1 i

Contoh : A (B1 B2... Bn) = (A B1) (A B2)... (A Bn) A ( n i 1 B i ) n i 1 ( A B ) i

Hukum yang Berlaku pada Operasi Himpunan

Matur Nuwun