KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA

dokumen-dokumen yang mirip
MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

RANK MATRIKS ATAS RING KOMUTATIF

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

SISTEM BILANGAN BULAT

Teorema Dasar Aljabar Mochamad Rofik ( )

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

Sistem Bilangan Kompleks (Bagian Pertama)

DIAGONALISASI MATRIKS KOMPLEKS

BAB II TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

SYARAT CUKUP DAN SYARAT PERLU AGAR RUANG BERNORMA MENJADI RUANG HASIL KALI DALAM

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

KLASIFIKASI NEAR-RING Classifications of Near Ring

8 MATRIKS DAN DETERMINAN

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

SISTEM BILANGAN REAL

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

BENTUK - BENTUK IDEAL PADA SEMIRING ( ( ) )

Pembentukan -aljabar Komutatif dan Implikatif dari Sebuah Lapangan. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

Skew- Semifield dan Beberapa Sifatnya

KARAKTER REPRESENTASI S n

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

PERKALIAN MATRIKS PERSEGI MENGGUNAKAN ALGORITMA STRASSEN

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR DENGAN METODE TRANSFORMASI DIFERENSIAL

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ;

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

1 SISTEM BILANGAN REAL

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

BAB VI BILANGAN REAL

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif);

NILAI MAKSIMUM/MINIMUM PADA FUNGSI DENGAN VARIABEL BERPANGKAT BILANGAN BULAT MENGGUNAKAN PERTIDAKSAMAAN ARITMETIKA-GEOMETRI

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

Diagonalisasi Matriks Segitiga Atas Ring komutatif Dengan Elemen Satuan

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

1 Preliminaries The Algebra of Sets... 3

BAB II TINJAUAN PUSTAKA

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

Persamaan dan Pertidaksamaan Linear

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

Matematika Teknik INVERS MATRIKS

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

LEMBAR AKTIVITAS SISWA MATRIKS

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

IDEAL PRIMA FUZZY DI SEMIGRUP

Bab 1 Sistem Bilangan Kompleks

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

UNIVERSITAS GADJAH MADA. Bahan Ajar:

SEMINAR NASIONAL BASIC SCIENCE II

BILANGAN BULAT. Operasi perkalian juga bersifat tertutup pada bilangan Asli dan bilangan Cacah.

Bilangan Bulat. A. Pengenalan Bilangan Bulat Himpunan bilangan bulat terdiri dari bilangan bulat negatif, bilangan nol, dan bilangan bulat positif.

Volume 9 Nomor 1 Maret 2015

Sudaryatno Sudirham. Aritmatika Interval

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

1 SISTEM BILANGAN REAL

LEMBAR AKTIVITAS SISWA MATRIKS

BAB II TINJAUAN PUSTAKA

Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi

Perluasan Teorema Cayley-Hamilton pada Matriks

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

BAB 1. PENDAHULUAN KALKULUS

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

DIKTAT MATEMATIKA II

1 SISTEM BILANGAN REAL

Part II SPL Homogen Matriks

PENGGUNAAN TEOREMA POLYA DALAM MENENTUKAN BANYAKNYA GRAF SEDERHANA YANG TIDAK SALING ISOMORFIS

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

Transkripsi:

Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 19 28. KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA Analia Wenda, Evi Noviani, Nilamsari Kusumastuti INTISARI Aritmetika interval merupakan generalisasi dari aritmetika klasik yang pendefinisiannya didasarkan pada himpunan semua interval tertutup (IR). Dalam suatu aritmetika interval bilangannya didefinisikan pada interval yang dinyatakan dengan istilah pertidaksamaan sebagai suatu pasangan berurut. Pada kajian ini diterapkan operasi-operasi yang digunakan dalam aritmetika klasik antara lain: penjumlahan, pengurangan, perkalian, pembagian dan pergandaan skalar yaitu penjumlahan dan perkalian suatu bilangan real dengan interval pada aritmetika interval. Terdapat sifat-sifat yang berlaku dalam aritmetika interval terhadap operasi penjumlahan dan perkalian yaitu sifat tertutup, komutatif, assosiatif dan adanya elemen identitas di IR. Akan tetapi pada kasus khusus tertentu terdapat pula sifat-sifat yang tidak selalu berlaku yaitu tidak adanya invers terhadap operasi penjumlahan dan perkalian di IR. Sifat distributif dalam aritmetika interval di IR tidak selalu berlaku namun berlaku sifat subdistributif. Kata Kunci : Aritmetika Interval, Sifat-Sifat Operasi Aritmetika Interval. PENDAHULUAN Pada tahun 1959, Ramon Moore seorang matematikawan memperkenalkan aritmetika interval sebagai salah satu cara untuk mengatasi hal-hal yang tidak dapat ditentukan secara pasti pada persoalan hasil perhitungan secara numerik yang muncul dalam matematika. Aritmetika interval merupakan generalisasi dari aritmetika klasik yang pendefinisiannya didasarkan pada himpunan semua interval tertutup (IR). Aritmetika klasik dalam operasinya menggunakan himpunan bilangan real yang bernilai tunggal, akan tetapi dalam suatu aritmetika interval bilangannya berupa interval yang dinyatakan dengan istilah pertidaksamaan sebagai suatu pasangan berurut [1]. Operasi aritmetika klasik yang berlaku pada bilangan bernilai tunggal merupakan suatu kajian yang sering dijumpai. Terdapat hal menarik yang ingin dibahas pada penelitian ini yaitu operasi aritmetika interval dan sifatsifatnya di IR. Berdasarkan latar belakang tersebut dirumuskan permasalahan dalam penelitian ini adalah bagaimanakah operasi aritmetika interval di IR beserta sifat-sifatnya. Adapun tujuan yang ingin dicapai dalam penelitian ini yaitu mengkaji operasi aritmetika dan sifat-sifat yang berlaku pada operasi aritmetika interval di IR. Pada penelitian ini interval yang akan dikaji adalah interval tertutup dan operasi aritmetika yang digunakan antara lain operasi penjumlahan, pengurangan, perkalian, pembagian dan pergandaan skalar. SISTEM BILANGAN INTERVAL DAN ARITMETIKA INTERVAL Suatu interval merupakan himpunan bilangan-bilangan real yang ditunjukkan sebagai suatu pasangan berurut dan dinyatakan dalam suatu pertidaksamaan [2]. Secara khusus pada kajian ini interval yang digunakan adalah interval tertutup. Oleh karena itu berikut ini akan diberikan definisi interval tertutup. Definisi 1 [3] Interval tertutup adalah himpunan semua bilangan real untuk sebarang konstanta real dan dengan dinyatakan dalam suatu pertidaksamaan dan dinotasikan [ ]. Selanjutnya suatu interval tertutup dapat dinyatakan ke dalam notasi pembentuk himpunan sebagai berikut: { }. 19

20 A. WENDA, E. NOVIANI, N. KUSUMASTUTI Titik disebut titik ujung bawah (lower endpoints) dan titik disebut titik ujung atas (upper endpoints) dari suatu interval [2]. Selanjutnya berikut ini akan diberikan definisi tentang kekhususan interval yang berhubungan dengan endpointsnya. Definisi 2 [2] a) Misal adalah suatu interval maka disebut interval degenerasi jika. b) Jika adalah suatu interval, negatif dari dinotasikan adalah interval yang berbentuk [ ]. c) Suatu interval disebut simetris jika. d) Jika adalah suatu interval yang tidak memuat, kebalikan dari adalah: { } Sehingga [ ]. e) Interval dikatakan kurang dari interval jika dan hanya jika kurang dari nilai,. f) Dua interval dikatakan sama jika dan hanya jika mempunyai sama dengan dan sama dengan,. g) Interval dikatakan subset dari interval jika dan hanya jika interval kurang dari interval dan interval kurang dari interval,. Selanjutnya diberikan contoh-contoh untuk penerapan Definisi 2 sebagai berikut: Contoh 3 1. Diberikan [ ] merupakan suatu interval di IR, sehingga dapat ditentukan merupakan interval degenerasi karena nilai. 2. Diberikan [ ] merupakan suatu interval di IR, sehingga dapat ditentukan negatif dari suatu interval tersebut [ ]. 3. Interval simetris [ ]. 4. Diberikan [ ], kebalikan dari interval yaitu [ ]. 5. Diberikan [ ] dan [ ], terlihat nilai dan sehingga. 6. Diberikan [ ] dan [ ], terlihat nilai dan nilai sehingga. 7. Diberikan [ ] dan [ ], terlihat nilai dan sehingga. Berikut ini diberikan definisi ketaksamaan antara lower endpoints dan upper endpoints pada IR. Definisi 4 [2] a) Interval positif adalah suatu interval yang memiliki lebih dari nol. b) Interval taknegatif adalah suatu interval yang memiliki lebih dari atau sama dengan nol. c) Interval negatif adalah suatu interval yang memiliki kurang dari nol. d) Interval takpositif adalah suatu interval yang memiliki kurang dari atau sama dengan nol.

Kajian Operasi Aritmetika Interval Dan Sifat-Sifatnya 21 Selanjutnya diberikan contoh untuk mengetahui bagaimanakah ketaksamaan antara lower endpoints dan upper endpoints pada IR. Contoh 5 a. Diberikan suatu interval [ ], interval ini disebut interval positif karena, berdasarkan Definisi 4. b. Diberikan suatu interval [ ], interval ini disebut interval taknegatif karena, berdasarkan Definisi 4. c. Diberikan suatu interval [ ], interval ini disebut interval negatif karena, berdasarkan Definisi 4. d. Diberikan suatu interval [ ], interval ini disebut interval takpositif karena, berdasarkan Definisi 4. Aritmetika interval adalah perhitungan yang melibatkan himpunan bilangan-bilangan yang dinyatakan dengan istilah pertidaksamaan sebagai suatu pasangan berurut [1]. Berikut ini akan diberikan definisi tentang aritmetika interval. Definisi 6 [1] Jika dinotasikan sebagai salah satu dari operasi untuk aritmetika pada bilangan real x dan y maka operasi yang sesuai untuk aritmetika pada bilangan interval dan adalah: { }. Sedemikian sehingga operasi aritmetika interval yang dinotasikan dengan yang memenuhi setiap operasi aritmetika klasik yaitu penjumlahan, pengurangan, perkalian dan pembagian. Sifat 7 [1] Pada aritmetika interval terdapat operasi penjumlahan, pengurangan, perkalian, pembagian, penjumlahan dan perkalian dengan skalar. Enam operasi dasar aritmetika interval tersebut mempunyai sifat-sifat sebagai berikut: a) Untuk setiap, operasi penjumlahan dapat didefinisikan sebagai berikut: [ ], b) Untuk setiap, operasi pengurangan dapat didefinisikan sebagai berikut: [ ], c) Untuk setiap, operasi perkalian dapat didefiniskan sebagai berikut: [ { } { }], d) Untuk setiap, operasi pembagian dapat didefinisikan sebagai berikut: e) Untuk setiap dan, operasi penjumlahan dengan skalar dapat didefinisikan sebagai berikut: [ ] f) Untuk setiap dan, operasi perkalian dengan skalar dapat didefinisikan sebagai berikut: [ { } { }]. Selanjutnya operasi dasar dalam aritmetika interval yang melibatkan endpoints pada suatu interval yang ditunjukkan berdasarkan Sifat 7, pembuktian dari masing-masing operasi yang melibatkan endpoints interval dapat dilihat dalam [3].

22 A. WENDA, E. NOVIANI, N. KUSUMASTUTI SIFAT-SIFAT IR TERHADAP OPERASI ARITMETIKA INTERVAL Didefinisikan dua operasi biner dan masing-masing disebut operasi penjumlahan dan operasi perkalian. Kedua operasi biner ini diterapkan pada IR dan memenuhi sifat-sifat sebagai berikut. Sifat 8 [2] Jika diberikan interval [ ], [ ], [ ], [ ] dan [ ] di IR, maka berlaku sifat-sifat berikut: a) Himpunan semua interval tertutup (IR) tertutup terhadap operasi penjumlahan dan perkalian ( ),. b) Penjumlahan dan perkalian di IR bersifat komutatif yaitu ( ) dan. c) Penjumlahan dan perkalian di IR bersifat assosiatif yaitu ( ) ( ) ( ) dan ( ) ( ). d) Terdapat elemen sehingga untuk setiap. Elemen disebut elemen interval nol sebagai elemen identitas terhadap operasi penjumlahan di IR. Terdapat elemen sehingga untuk setiap. Elemen disebut elemen interval satuan sebagai elemen identitas terhadap operasi perkalian di IR. Setelah mengetahui sifat-sifat yang berlaku dalam setiap operasi aritmetika klasik yang juga berlaku dalam setiap operasi aritmetika interval, selanjutnya akan ditunjukkan sifat-sifat yang tidak selalu berlaku secara umum dalam setiap operasi aritmetika interval yang berlaku dalam operasi aritmetika klasik. untuk selanjutnya berikut ini akan diberikan sifat-sifat yang menunjukkan ada atau tidaknya invers penjumlahan dan perkalian di IR. Sifat 9 [3] Diberikan suatu interval di IR dimana masing-masing intervalnya berbentuk [ ] yang menyatakan sebagai sebarang interval di IR dan interval bentuk [ ] dinyatakan sebagai interval degenerasi sehingga berlaku sifat-sifat berikut: a) Jika adalah suatu interval degenerasi maka terdapat disebut invers penjumlahan dari, sehingga. b) Jika adalah interval nondegenerasi maka tidak terdapat disebut bukan invers penjumlahan dari, sehingga. c) Jika adalah suatu interval degenerasi maka terdapat disebut invers perkalian dari, sehingga. d) Jika adalah interval nondegenerasi maka tidak terdapat disebut bukan invers perkalian dari sehingga. Selanjutnya berikut ini diberikan teorema untuk menjelaskan Sifat 9 tentang ada atau tidaknya invers penjumlahan dan perkalian di IR. Teorema 10 [3] a) Interval memiliki invers penjumlahan jika dan hanya jika adalah interval degenerasi. b) Interval memilki invers perkalian jika dan hanya jika adalah interval degenerasi. Bukti: a. Berdasarkan Definisi 2 (a) interval yang berdegenerasi dapat dikatakan sebagai generalisasi dari bilangan real yang bernilai tunggal. Sedemikian sehingga ada invers penjumlahan untuk interval degenerasi di IR. Misal diberikan sebarang interval nondegenerasi di IR yaitu [ ], dimana

Kajian Operasi Aritmetika Interval Dan Sifat-Sifatnya 23. Diasumsikan bahwa ada invers penjumlahan untuk interval nondegenerasi di IR, misalkan [ ]. selanjutnya dengan menggunakan Sifat 7 (a) diperoleh: sehingga dan dimana dan. Oleh karena berdasarkan asumsi dimana, hal ini berakibat: dan, ini berarti bahwa nya dengan menggunakan Sifat 7 (a) diperoleh: [ ] [ ] sehingga dan dimana dan. Sedemikian sehingga asumsi yang diberikan pada teorema ini bahwa ada invers penjumlahan untuk interval nondegenerasi, berdasarkan pembuktian yang diperoleh menunjukkan bahwa terbukti tidak ada invers penjumlahan untuk interval nondegenerasi di IR. Kemudian misal diberikan sebarang interval nondegenerasi di IR yaitu [ ] dimana yaitu. Diasumsikan bahwa tidak ada invers penjumlahan untuk interval nondegenerasi di IR, diketahui bahwa adalah interval degenerasi, misalkan ada [ ] suatu interval di IR. Selanjutnya dengan menggunakan Sifat 7 (a) sehingga dan dimana dan. Oleh karena berdasarkan asumsi dimana, hal ini berakibat: merupakan invers dari dan merupakan invers dari. Sedemikian sehingga asumsi yang diberikan pada teorema ini bahwa tidak ada invers penjumlahan untuk interval nondegenerasi, berdasarkan pembuktian yang diperoleh menunjukkan bahwa ada invers penjumlahan untuk interval degenerasi di IR. b. Berdasarkan sifat 7 (f), misal diberikan [ ] sebarang interval nondegenerasi di IR, dimana yaitu. Diasumsikan bahwa ada invers perkalian untuk [ ] di IR misalkan [ ], dengan menggunakan Sifat 7 (c): [ { } { }] [ ] Hal ini mengakibatkan: Akan tetapi jika atau maka. Dalam hal ini bertentangan dengan asumsi bahwa, dan terbukti bahwa tidak ada invers perkalian untuk interval nondegenerasi di IR. Berdasarkan Sifat 7 (f), misal diberikan [ ] sebarang interval nondegenerasi di IR, dimana yaitu. Diasumsikan bahwa tidak ada invers perkalian untuk interval nondegenerasi di IR. Diketahui bahwa adalah suatu interval degenerasi, misalkan ada [ ] suatu interval di IR. Dengan menggunakan Sifat 7 (c): [ { } { } [ ]] Sehingga,,,, dimana dan. Oleh karena berdasarkan asumsi bahwa, hal ini berakibat: merupakan invers dari dan merupakan invers dari.

24 A. WENDA, E. NOVIANI, N. KUSUMASTUTI Sedemikian sehingga diperoleh adalah invers dari dan adalah invers dari maka. Sedemikian sehingga asumsi yang diberikan pada teorema ini bahwa tidak ada invers perkalian untuk interval nondegenerasi, berdasarkan pembuktian yang diperoleh menunjukkan bahwa ada invers perkalian untuk interval degenerasi di IR. Berdasarkan hasil pembuktian yang diperoleh terlihat bahwa secara umum tidak ada invers penjumlahan dan perkalian di IR, kecuali untuk interval degenerasi. Selanjutnya berikut ini akan diberikan contoh soal untuk mengetahui bagaimana ada atau tidak adanya invers penjumlahan dan perkalian di IR. Contoh 11 Diberikan [ ] dan [ ], cari invers penjumlahan dan perkaliannya masingmasing! Jawab: 1) Akan dicari invers dari diketahui [ ] diperoleh: [ ] menggunakan Sifat 7 (a) dan Definisi 2 (b) Akan dicari invers dari, diketahui [ ] diperoleh: [ ] menggunakan Sifat 7 (a) dan Definisi 2 (b) [ ] 2) Akan dicari invers dari diketahui [ ] diperoleh: [ ],, menggunakan Sifat 7 (c) dan Definisi 2 (d) [ ] Akan dicari invers dari diketahui [ ] diperoleh: [ ] menggunakan Sifat 7 (c) dan Definisi 2 (d) [ ] Pembahasan selanjutnya adalah tentang sifat distributif yang tidak selalu berlaku dalam operasi aritmetika interval terhadap operasi penjumlahan dan perkalian di IR. Secara umum sifat distributif dalam aritmetika interval dirumuskan sebagai berikut: ( ) [2]. Berikut ini akan ditunjukkan dengan menggunakan teorema beserta pembuktiannya yang menunjukkan berlaku dan tidak berlakunya sifat distributif. Teorema 12 [3] Sifat distributif dalam aritmetika interval di IR berlaku yaitu: a. Jika adalah interval degenerasi dan adalah sebarang interval di IR. b. Jika adalah sebarang interval dan adalah interval taknegatif dengan. c. Jika adalah sebarang interval dan adalah interval takpositif dengan. Bukti: a. Misal diberikan: [ ] dengan [ ], [ ] dan [ ] di IR. Menggunakan Sifat 7 (a) dan Sifat 7 (c):.

Kajian Operasi Aritmetika Interval Dan Sifat-Sifatnya 25 [ ] () [ ( ) ( )] Diperoleh: [ ] Kemudian pengoperasian di sebelah kanan dilakukan dengan cara mengalikan terlebih dahulu kemudian baru dijumlahkan, menggunakan Sifat 7 (a) dan Sifat 7 (c): [ ][ ] [ { } { }] [ { } { }] Diperoleh: [ ] Sehingga hasilnya ( ). b. Misal diberikan [ ], [ ] dan [ ] di IR dengan. Menggunakan Sifat 7 (a) dan (c): [ ] () [ { ( ) ( ) ( ) ( )}] { ( ) ( ) ( ) ( )}. Diperoleh: [ ] Kemudian dilakukan operasi di sebelah kanan: [ ][ ] [ { } { }] [ { } { }] Diperoleh: [ ] Sehingga hasilnya: ( ). c. Misal diberikan [ ], [ ] dan [ ] di IR dengan. Menggunakan Sifat 7 (a) dan (c), dilakukan operasi disebelah kiri: [ ] () [ { ( ) ( ) ( ) ( )} { ( ) ( ) ( ) ( )}] [ ( ) ( )]

26 A. WENDA, E. NOVIANI, N. KUSUMASTUTI Diperoleh: [ ] Selanjutnya dilakukan pengoperasian disebelah kanan: [ ][ ] [ { } { }] [ { } { }] Diperoleh: [ ]. Sehingga hasilnya: ( ). Berikut ini akan diberikan contoh sebagai penerapan dari salah satu kasus tentang berlakunya sifat distributif dalam aritmetika interval. Contoh 13 Jika diberikan tiga interval di IR yang masing-masing sebagai berikut: [ ], [ ] dan [ ], maka tunjukkan bahwa sifatdistributif berlaku di IR! Penyelesaian: Diketahui ada tiga interval di IR yaitu: [ ], [ ] dan [ ]. Selanjutnya disubstitusikan ke dalam persamaan sifat distributif diperoleh: [ ]() [ ][ ] [ ][( ) ( ) ( ) ] [ ( ) ( )] [ ( ) ] [( ) ( ) ( )] [( ) ( ) ( )] Selanjutnya berikut ini akan diberikan teorema yang menunjukkan bahwa sifat distributif tidak berlaku dalam operasi aritmetika interval di IR. Teorema 14 [3] Diberikan tiga interval di IR yaitu, dan, dengan menggunakan operasi aritmetika pada interval yaitu penjumlahan dan perkalian akan diperoleh: Jika merupakan sebarang interval dengan bentuk [ ], sedangkan adalah interval degenerasi dengan bentuk [ ] dan interval dengan bentuk [ ] maka hasilnya ( ). Bukti: Akan ditunjukkan bahwa ( ), misal diberikan [ ], [ ] dan [ ] di IR. Berdasarkan sifat 7 (a) dan (c), langkah pertama adalah menjumlahkan kemudian mengalikan, hasilnya: [ ] () [ ] Tetapi jika langkah pertama mengalikan dan kemudian menjumlahkan, diperoleh: [ ]() [ ][ ] [ { } { }] [ { } { }] [ { } { }] [ { } { }]

Kajian Operasi Aritmetika Interval Dan Sifat-Sifatnya 27 Kecuali jika atau atau keduanya. Contoh 15 Jika diberikan tiga interval di IR yang masing-masing sebagai berikut: [ ], [ ] dan [ ], maka tunjukkan bahwa sifat distributif tidak berlaku di IR! Penyelesaian: Diketahui [ ], [ ] dan [ ], selanjutnya dengan menggunakan Sifat 7 (a) dan Sifat 7 (c) operasikan masing-masing endpoints interval ke dalam aritmetika interval sebagai berikut: Ruas kiri: ( ) [ ]() [ ][ ] [ ] Ruas kanan: [ ][ ] [ ] Oleh karena sifat distributif tidak selalu berlaku dalam setiap operasi aritmetika interval di IR, maka dalam hal ini pada operasi aritmetika interval berlaku sifat subdistributif. Berikut ini akan diberikan teorema yang menunjukkan bahwa berlakunya sifat subdistributif. Teorema 16 [5] Misalkan diberikan tiga interval, dan di IR, dengan menggunakan operasi aritmetika interval yaitu penjumlahan dan perkalian akan diperoleh: ( ) Bukti: Diberikan [ ], [ ] dan [ ] di IR. Akan ditunjukkan bahwa ( ), misalkan ( ), dan sedemikian sehingga dimana, dan. Dengan menggunakan Sifat 7 (a), (c) yaitu, atau, atau, atau. Sehingga diperoleh ( ) ( ), ( ) ( ) ( ) ( ) berarti. Berikut ini diberikan contoh sebagai penerapan berlakunya sifat subdistributif dalam operasi aritmetika interval di IR. Contoh 17 Jika diberikan tiga interval di IR yang masing-masing sebagai berikut: [ ], [ ] dan [ ] maka tunjukkan sifat subdistributif berlaku di IR! Penyelesaian: Diketahui [ ], [ ] dan [ ] sehingga dengan menggunakan Sifat 7 (a) dan Sifat 7 (c) dioperasikan masing-masing endpoints interval ke dalam aritmetika interval sebagai berikut: Ruas kiri: ( ) [ ]() [ ][ ] [ ] Ruas kanan: [ ][ ]

28 A. WENDA, E. NOVIANI, N. KUSUMASTUTI [ ] Berdasarkan hasil yang diperoleh dari kedua ruas terlihat bahwa operasi di sebelah kiri menghasilkan [ ] dan operasi di sebelah kanan menghasilkan [ ]. Dalam hal ini interval [ ] adalah interval simetris. Interval simetris memuat nol, oleh karena itu berlaku sifat subdistributif dalam aritmetika interval di IR. KESIMPULAN Berdasarkan penelitian yang telah dilakukan dapat disimpulkan bahwa aritmetika real merupakan pengkhususan dari aritmetika interval. Dalam hal ini jika suatu intervalnya adalah interval degenerasi, maka bilangan interval yang dioperasikan dengan menggunakan operasi aritmetika interval dapat digeneralisasikan sebagai bilangan yang bernilai tunggal dalam operasi aritmetika klasik. Sifat-sifat yang berlaku dalam aritmetika klasik secara umum dapat juga berlaku dalam aritmetika interval yaitu sifat tertutup, komutatif, asosiatif dan adanya elemen identitas di IR. Akan tetapi secara khusus ada juga sifat-sifat dalam aritmetika klasik yang tidak selalu berlaku dalam aritmetika interval yaitu tidak ada invers penjumlahan dan perkalian di IR, kecuali untuk interval degenerasi. Selanjutnya dalam operasi aritmetika interval sifat distributif juga tidak selalu berlaku, hal tersebut menyebabkan berlakunya sifat subdistributif dalam operasi aritmetika interval di IR. DAFTAR PUSTAKA [1]. Hansen E, William W. Global optimization using Interval Analysis. USA: Marcel Dekker Inc and Sun Microsystems Inc; 2004. [2]. Moore R, Kearfott BR, Cloud JM. Introduction to Interval Analysis. Philadelphia, USA: Society for Industrial and Applied Mathematics; 2009. [3]. Hansen E. Interval Arithmetic with some Applications for Digital Computers. Palo Alto, California: Loockheed Missiles and space Company; 1965. [4]. Caprani O, Madsen K, Nielsen BH. Introduction to Interval Analysis. Urbana-Champaign: University of Illinois; 2002. [5]. Chio PK. Inclusion Monotonic Property of Courant-Fischer Symmetric Interval Matrices: Journal of Mathematical Sciences. 1999 May;5(11):11-20. ANALIA WENDA : JURUSAN MATEMATIKA FMIPA UNTAN, Jl. Jend. A. Yani Pontianak, analiawenda@gmail.com EVI NOVIANI : JURUSAN MATEMATIKA FMIPA UNTAN, Jl. Jend. A. Yani Pontianak, evinovianisp@gmail.com NILAMSARI KUSUMASTUTI : JURUSAN MATEMATIKA FMIPA UNTAN, Jl. Jend. A. Yani Pontianak, nilamkusumastuti@gmail.com