Himpunan Spektrum Real Untuk Masalah Balikan Nilai Eigen Dari Matriks Tak Negatif

Ukuran: px
Mulai penontonan dengan halaman:

Download "Himpunan Spektrum Real Untuk Masalah Balikan Nilai Eigen Dari Matriks Tak Negatif"

Transkripsi

1 Vol.4, No., -, Jaar 8 Hmpa petrm Real Ut Masalah ala Nla Ege ar Matrs Ta Negatf Kresa Jaya bstra Paa paper aa bahas represetas geometr ar hmpa spetrm la ege real yag la ege masmalya t masalah bala la ege vers egevales problem). Ut meja represetas tersebt aa gaa sfat vara ar jmlah oves matrs stoast terhaap jmlah oves spetrm matrs stoast tersebt. Represetas geometr yag peroleh haya paa R t =, 3 a 4. fat varat atas jga aa gaa t meja bahwa sebah spetrm matrs ta egatf tls alam bet vetor,, 3,..., ), maa, t, t3,..., t merpaa spetrm ar sebah matrs postf t t,. Keywors: petrm, matrs ta egatf, matrs stoast, jmlah oves.. Peahla Msala sebah vetor =,,...,, maa yag mas ega masalah bala la ege vers egevale problem) aalah mecar beberapa syarat perl a cp agar vetor tersebt apat paag sebaga spetrm ata mpla la ege ar sebah matrs ta egatf [,, 3, 4, 7]. alam baya lteratr megea masalah bala la ege, para ahl telah megemaa syarat perl a cp agar sebah vetor real apat paag sebaga spetrm matrs ta egatf walap pejaa tersebt haya bersfat ass-ass hss [, 3, 4]. Nam t vetor real bermes =, 3, syarat perl a cp t telah bera []. Teorema tama ar matrs ta egatf a la egeya aalah Teorema Perro- Frobes [6,] yag meyataa bahwa ja matrs oro ta egatf a ta teres, maa mempya la ege seema sehgga setap la ege t =,,, ar berla, vetor araerst t aalah vetor postf, a mltplstas aljabarya aalah. Nla ege yag ema sebt la ege masmal. Pegerta matrs teres ser bera [], yat matrs oro. sebt teres ja terapat matrs permtas P seema sehgga berla P T C P ega a aalah sb matrs bjr sagar. Matrs ataa ta teres ja ta terapat matrs permtas P. Pembahasa paa maalah membera bt postf t sebah problem terba ope problem) paa [8], ega terlebh ahl mejelasa beberapa teorema megea matrs ta egatf a masalah bala la ege. Ut meja secara taf Pegajar paa Jrsa Matemata FMIP Uverstas Hasa Maassar

2 Kresa Jaya 3 legap, aa tja paa matrs yag sfatya teres a ta teres t matrs stoast [], a sfat vara jmlah ovesya. Kema baga terahr bera represetas geometr hss paa spetrm real ar matrs ta egatf berore =, 3 a 4. Msala N meyataa hmpa matrs ta egatve, a P meyataa hmpa matrs postf. Ut meyeerhaaa persoala, spetrm real ar matrs ta egatf apat paag sebaga hmpa baga ar rag R sebaga bert ega ) aalah spetrm real matrs. Z N P,, 3,..., R :,3,...,, x,, 3,..., Z : N,, 3,..., x,,,..., Z : P,,,..., 3 3,. Matrs toast at matrs bjrsagar ta egatf sebt matrs stoast ja jmlah etretr setap barsya aalah. Teorema.. Ja matrs stoast ore, maa berla peryataa-peryataa bert: a. Nla ege masmalya. b. Msal J aalah matrs yag selrh etr-etrya aalah, J = J. c. Vetor =,,, ) aalah vetor ege t la ege. t : a) Msala = a j a la ege masmal aalah r, maa rm r rmax lhat [],Ch.). Karea r m rmax, maa r =. b) Msala = a j, maa t setap =,, berla a j. Msala J= b j, ega b j =,, j,...,, ega j a matrs J = J. maa J = abj a j j a t setap =,,, berla a,, maa etah J=J, ega J matrs ega etr-etr, maa J = abj a j, ega j,, j,,...,. Ut =,,, a aalah jmlah bars matrs, maa aalah matrs stoast. c) etah ar po a) r=, a msala aalah vetor ege yag ' berorespoes ega r=. Msala =,...,, = =,..., ', ega a, t setap =,,,. Msala s = max{,, } t sat s{,, }, maa a, s s a j

3 Kresa Jaya 4 a s a s s a s. s a s t setap =,,, a a s, maa harslah, t setap =,,,. t setap =,,,, maa vetor =,, s, ) aalah vetor ege yag berorespoes ega la ege. etah vetor ege yag berorespoes ega la ege masmal aalah =,,, ), t. Msala =a j,, j,,...,, ata a j = Maa jmlah etr-etr alam setap bars matrs aalah, ata aalah matrs stoast. Teorema.. Msala a aalah a matrs stoast, maa a. aalah matrs stoast b. Ut [, ), maa + ) aalah matrs stoast. t : a) Msala a aalah matrs stoast, ega meggaa sfat b) paa Teorema., maa )J = J) = J = J, peroleh )J = J maa aalah matrs stoast. b) Pembta ega memaa po b) paa Teorema., a msala a, berla aalah matrs stoast, maa t setap + ))J = J + )J = J + )J = J maa + ) matrs stoast t Msala Z,...,, ]., Z Z aalah blaga-blaga alam bag omples, a,,..., aalah blaga ta egatf yag jmlah eselrhaya, maa tt Z Z sebt jmlah oves ar Z, Z,..., Z. fat ema aa embaga alam a abat bert. bat.. Ja aalah la ege ar matrs stoast berore a aalah jmlah oves ar,,,...,, t c c,, maa aalah la ege ar matrs stoast = c I + c + c + + c. bat.. Ja la ege ar matrs stoast beroro, maa t sembarag blaga ta egatf c <, c la ege ar matrs stoast. Kea abat atas telah bera bt []. elajtya Perhata bet matrs J ega etr-etrya, la araterst ar J aalah a, ata spetrmya aalah, s

4 Kresa Jaya 5,, ). Ja ala ega salar / maa matrs J J aalah matrs stoast ega spetrmya aalah,,..., ). Teorema bert merpaa ragma bat. a bat.. Teorema.3. Ja ) =,,..., ) aalah spetrm matrs stoast, maa = + )J aalah matrs stoast ega spetrm )=,,..., t setap. t : Ut, paag jmlah oves matrs ega J, = + )J, maa ega Teorema. po b), aalah matrs stoast. etah J matrs stoast ega spetrm,,, ), maa terapat P matrs ta sglr seema sehgga PJP - = ag,,, ). ehgga PP PP P ) J P PP PP ) ag,,...,) ega PP - smlar ega a PP - smlar ega. Msala PP - Klam: petrm matrs aalah,,..., ) PJ P. Msala C = ag PP - C = PP - + ) ag,,, ) C,,...,, maa PP - C a tja eterma PP - C =. = PP - ag,,..., ) )

5 Kresa Jaya 6 etpp - C) = etpp - ag,,..., ) ) Karea,,..., ) aalah spetrm matrs, maa,,..., ) jga spetrm ar PP -. Ja etpp - ag,,..., ) ) =, maa etpp - C) =. petrm ar matrs PP - aalah,,..., ). Ja spetrm aalah ) =,,..., ) t setap. Ut sembarag matrs ta egatf ega la ege masmal yag aa bahas paa bab bert, seatasa terapat matrs stoast yag smlar ega matrs tersebt a taga alam teorema bert. Teorema.4. Ja matrs ta egatf ega la araterst masmal r a sat vetor araterst postf t la araterst r, maa r - serpa secara agoal ega sat matrs stoast. t Msala x = x, x,..., x aalah vetor araterst postf t la araterst masmal r ar. Ja = ag x, x,..., x, maa x = ega =,,, ) - r - ) = r - - r - - ) = r - - x = r - - rx = - x = Maa ega Teorema., r - - aalah matrs stoast. 3. Hmpa petrm Real Matrs ta Negatf Permasalaha yag aa bahas alam maalah aalah pertayaa paa paper lberto oroba a Jlo Moro [8]. paah bear ja,,..., ) spetrm matrs ta egatf yag ta smlar ega sembarag matrs postf), maa terapat a ompoe =,,..., yag sama, ata terapat sat sbset,..., s ar sehgga... s =. Ut t aa embal perhata hmpa-hmpa N a P yag telah efsa awal maalah. Teorema 3.. Ja,, 3,..., ) N, maa t setap, t, t3,..., t ) P. t : Msal,,..., ) N t [.) berla, maa terapat matrs yag ta egatf ega spetrm ) =,,..., ). ehgga t matrs tersebt aa ass, yat :. Ja matrs ta teres, maa t setap t alam [, ), maa matrs P = t + t)j aalah matrs postf ega spetrm P)=,,..., ).. Ja aalah matrs teres, maa terapat matrs permtas P seema sehgga

6 7 Kresa Jaya PP T K K K, 3 3,, aalah matrs ta teres, maa. Plh matrs ta egatf G, yat: G K maa spetrm G aalah G) = ),...,,. = K - aalah matrs stoast yag smlar ega, a = ag w w w,...,, ). Ut setap =,,, aalah matrs ta egatf yag ta teres etah:... ). Msala la araterst masmal aalah p t sat p,...,, maa terapat,..., vetor postf yag berorespoes ega la araterst, p maa p, ega = ag,..., a aalah matrs stoast ) ). et matrs G apat tls meja p p yag apat psaha alam perala tga matrs bert. G = p p -, ega. Matrs p p smlar ega matrs G. Paag matrs stoast bert.

7 Kresa Jaya 8 p E p t =,,, E aalah matrs berra + yag berbet p E p aalah matrs stoast ega spetrm, maa,,..., ega cara yag sama ega ass yag ta teres, matrs P = t + t)j aalah matrs postf ega spetrm P) =, t, t,..., t ). Ja, t, t,..., t ) P. 3 E 3 Kema paag hmpa = N P. Hmpa merpaa batas hmpa N. Msala,, 3,..., ), maa,, 3,..., ) aalah spetrm ar matrs ta egatf a ta aa satp matrs postf yag smlar ega. Cotohya,,,, ) a,,,..., ) seema sehgga..., merpaa spetrm ar 3 matrs ta egatf tap ba spetrm matrs postf maap. Gambar. Represetas Hmpa N. Perhata ja, N, maa t = ata =, vetor, ) aalah tt paa batas ata ta aa matrs postf yag spetrmya aalah, ). Nla-la haya terleta paa terval [, ]. Hmpa N aalah segme gars yag beraa sat sata e atas ar smb -, sebagamaa yag perlhata paa Gambar atas. Ut Hmpa N 3 Rag R 3, hmpa tersebt aalah sebah bag yag terleta paa = yag batas oleh gars + 3 =, =, 3 =, =, a 3 =, sebagamaa yag bera paa Gambar bert.

8 Kresa Jaya 9 Gambar. Represetas Hmpa N 3. Ut hmpa N 4 rag R 4, hmpaya aalah volme rag yag berbet bs terpotog oleh persamaa bag =. Nam t membera bet geometrsya aga slt laa, sehgga tampla grafya belm bera alam maalah. 4. Petp Ut =, pertayaa paa [8] terjawab secara trval, yat batas hmpa N aalah, ) a, ). Ut = 3, bag yag batas oleh + 3 =, =, 3 =, =, a 3 = atas bag O 3 sejah sata. Tt,,,, ) Rag R aalah sr P, a setap ta mear gars lrs e sembarag tt paa batas hmpa N, maa tt-tt yag ta peroleh seatasa sr alam P. batya, bet pertayaa ta hars lebh spesf ja,,..., ) spetrm matrs ta egatf yag ta smlar ega sembarag matrs postf), maa terapat =, 3,, seema sehgga =. ebalya ta selal bear bahwa terapat sat sbset,..., s ar sehgga... s =, maa,,..., ) spetrm matrs ta egatf yag ta smlar ega sembarag matrs postf). Ope problem yag mcl aalah spesfas pertayaa tersebt meja : paah bear ja,,..., ) spetrm matrs ta egatve yag ta smlar ega sembarag matrs postf), maa terapat =, 3,, seema sehgga =, ata...? s telah perlhata, a ema pla [,], bahwa 3 t =, 3 a 4, maa jawaba permasalaha paa ope problem aalah postf. aftar Pstaa [] KresaJaya,.,, Masalah la araterst vers real ta egatve, Thess, Magster Matemata IT. [] Wwe, G., 996, verse egevale problem for oegatve matrces, Lear lgebra a Its pplcatos, 49, pp :

9 Kresa Jaya [3] Rawa, N., 996, verse egevale problem for symmetrc a ormal matrces, Lear lgebra a Its pplcatos, 48, pp : -9. [4] Feler, M., 974, Egevales of o egatve symmetrc matrces, Lear lgebra a Its pplcatos, 9, pp : 9-4. [5] Kellogg, R.., 97, Matrces smlar to a postve or essetally postve matrx, Lear lgebra a Its pplcatos, 4, pp :9-4. [6] Marcs, M. & Mc, H., 964, Matrx Theory a Matrx Ieqaltes, lly a aco Ic., osto. [7] oroba,. a Moro, J., 997, O o egatve matrces smlar to postve matrces, Lear lgebra a Its pplcatos, 66, pp : [8] oroba,. a Moro, J., 998, O the boary of the set of real spectra of oegatve matrces, Lear lgebra a Its pplcatos, 78, pp : [9] oroba,., 998, O the oegatve egevale problem, Lear lgebra a Its pplcatos, 3/4, pp : [] Mc, H., 998, Noegatve Matrces, Joh Wley-Iterscece Pblcato, New Yor.

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK

PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK PRINSIP MAKSIMUM DAN MINIMUM FUNGSI PANHARMONIK Oleh, Edag Cahya M.A. Jrsa Pedidia Matematia FPMIPA UPI Badg Jl. Dr. Setiabdi 9 Badg E-mail ecma@ds.math.itb.ac.id Abstra Tlisa ii mejelasa prisip masimm

Lebih terperinci

BAB III UKURAN PEMUSATAN (RATA-RATA)

BAB III UKURAN PEMUSATAN (RATA-RATA) BAB III UKUAN PEMUSATAN (ATA-ATA Salah sat ra mer yag mejelasa cr-cr data yag petg adalah ra pemsata, yat ra yag meja psat seggs data yag telah drta dar yag terecl sampa yag terbesar ata sebalya Ura pemsata

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann

Lebih terperinci

BAB III TEORI PERRON-FROBENIUS

BAB III TEORI PERRON-FROBENIUS BB III : EORI PERRON-FROBENIUS 34 BB III EORI PERRON-FROBENIUS Pada Bab III aa dbahas megea eor Perro-Frobeus, yatu teor hasl otrbus dar seorag matematawa asal Germa, Osar Perro da Ferdad Georg Frobeus

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)

BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t) BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut

Lebih terperinci

adalah nilai-nilai yang mungkin diambil oleh parameter jika H

adalah nilai-nilai yang mungkin diambil oleh parameter jika H Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Utu mempermudah dalam meyeleaa pembahaa pada bab, maa aa dbera beberapa def da beberapa teor daar yag meduug... Teor Teor Peduug... Rua Gar Def. Rua Gar Ja ada d R atau 3 R, maa ebuah

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal

Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya

Lebih terperinci

BAB II TINJAUAN PUSTAKA. analisis regresi logistik, dan analisis regresi logistik rare event.

BAB II TINJAUAN PUSTAKA. analisis regresi logistik, dan analisis regresi logistik rare event. BAB II TINJAUAN PUSTAKA. Peahulua Sebelum melaua pembahasa megea permasalaha ar srps, paa Bab II aa uraa beberapa teor peujag ag perraa apat membatu alam pembahasa bab-bab selajuta. Pembahasa paa Bab II

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran

STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

9. SOAL-SOAL STATISTIKA

9. SOAL-SOAL STATISTIKA 9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

LOCALLY DAN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] PROSIING ISBN : 978 979 6353 9 4 LOCALLY AN GLOBALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-UNFOR PAA [a,b] A-8 Solh, Y Suato, St Khabbah 3,,3 Jurusa Mateata, Faultas Sas da Mateata, Uverstas poegoro

Lebih terperinci

Karakterisasi Matrik Leslie Ordo Tiga

Karakterisasi Matrik Leslie Ordo Tiga Jurnal Graden Vol No Januar 006 : 34-38 Karatersas Matr Lesle Ordo Tga Mudn Smanhuru, Hartanto Jurusan Matemata, Faultas Matemata dan Ilmu Pengetahuan Alam, Unverstas Bengulu, Indonesa Dterma Desember

Lebih terperinci

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]

Functionally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b] Jural Sas da Matemata Vol (3): 58-63 () Fuctoally Small Rema Sums Fugs Tertegral Hestoc-uford ada [a,b] Solh, Sumato, St Khabbah 3,,3 Program Stud Matemata, FSM UNIP Jl Prof Soedarto, SH Semarag, 575 E-mal:

Lebih terperinci

KONSTRUKSI RUANG TOPOLOGI LENGKAP

KONSTRUKSI RUANG TOPOLOGI LENGKAP KONSTRUKSI RUANG TOPOLOGI LENGKAP Sely Msdalfah Jsan Matemata FMIPA Unestas Tadlao Absta Hmpnan A mepaan semmet-semmet dpelas tedefns atas hmpnan X yang menghaslan sat eseagaman atas X yang aan membangn

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC

JEMBATAN PADA GRAF FUZZY INTUITIONISTIC JEMTN PD GRF FUZZY INTUITIONISTIC St lfatur Rohmaah, au Surarso, da ambag Irawato 3 Uverstas Islam Darul Ulum Lamoga, a0304@gmalcom Uverstas Dpoegoro Semarag 3 Uverstas Dpoegoro Semarag bstract tutostc

Lebih terperinci

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel

dan µ : rata-rata hitung populasi x : rata-rata hitung sampel Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEORI Dalam bab aa djelasa teor-teor yag berhubuga dega peelta yag dapat djada sebaga ladasa teor atau teor peduug dalam peelta Ladasa teor aa mempermudah pembahasa hasl peelta pada bab 3 Adapu

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

Interpretasi Kombinatorial Bilangan Euler. Rektor Sianturi 1. Abstrak

Interpretasi Kombinatorial Bilangan Euler. Rektor Sianturi 1. Abstrak Retor Satur, Iterpretas Kombatoral Blaga Iterpretas Kombatoral Blaga Euler Retor Satur 1 bstra Kombatoral blaga Euler alah suatu proses yag meghtug bayaya alteratf permutas ar hmpua blaga ega umlah geap.

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB 3 Interpolasi. 1. Beda Hingga

BAB 3 Interpolasi. 1. Beda Hingga BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada

Lebih terperinci

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,

Lebih terperinci

APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY

APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY Volme Tah 6 ISSN 58-59X APLIKASI ALJABAR MAX-PLUS PADA SISTEM PRODUKSI TIPE ASSEMBLY Pohet Bitoto Program Sti Peiia Matematia FST Uiversitas Kajrha Malag pohet.bitoto@gmail.com ABSTRAK. Efetivitas peggaa

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 11-22, April 2001, ISSN : SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 11-22, April 2001, ISSN : SUBRUANG MARKED. Suryoto Jurusan Matematika, FMIPA-UNDIP Semarang JURNAL MATEMATIKA DAN KOMPUTER ol. 4. No., - 22, Aprl 2, ISSN : 4-858 SUBRUANG MARKED Suryoto Jurusan Matemata, FMIPA-UNDIP Semarang Abstra Msalan suatu ruang vetor berdmens ngga atas lapangan omples C,

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

Ir. Tito Adi Dewanto

Ir. Tito Adi Dewanto Ir. Tto A Dewato Dega megetahu la rata-rata saja,ormas yag apat aag-aag bsa salah terpretas. Msalya, ar ua elompo ata etahu rata-rataya sama, alau haya ar ormas ta suah meyataa bahwa ua elompo sama, mug

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

On A Generalized Köthe-Toeplitz Duals

On A Generalized Köthe-Toeplitz Duals JMP : Volume 4 Nomor, Ju 202, hal. 3-39 O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d

Lebih terperinci

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS. Purnamayanti 1 Thresye 2 Na imah Hijriati 3

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS. Purnamayanti 1 Thresye 2 Na imah Hijriati 3 Jural Matematka Mur a eraa ol 6 No Ju : 38-46 ORMULA BINE AN JUMLAH SUKU PERAMA PAA GENERALISASI BILANGAN IBONACCI ENGAN MEOE MARIKS Puramayat hresye Na mah Hrat 3 [] Alum Mahasswa PS Matematka MIPA Uverstas

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS uslch_us@yahoo.co ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS. Saniagus Munendra 1) Hery Susanto 2)

SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS. Saniagus Munendra 1) Hery Susanto 2) SIFAT-SIFAT RADIKAL DARI SUATU SUBMODUL DARI MODUL PERKALIAN BEBAS Saagu Muedra 1) Hery Suato 2) Abtra: Sfat-fat yag berlau pada radal uatu deal teryata tda emuaya berlau pada oep radal uatu ubmodul Raaee

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

8.4 GENERATING FUNCTIONS

8.4 GENERATING FUNCTIONS 8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah

Lebih terperinci

Digraf eksentris dari turnamen kuat

Digraf eksentris dari turnamen kuat Dgraf esetrs dar turame uat Hazrul Iswad Departeme Matemata da IPA MIPA) Uverstas Surabaya UBAYA), Jala Raya Kalrugut, Teggls, Surabaya, e-mal : us679@wolfubayaacd Abstra Esetrstas eu) suatu tt u d dgraf

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

MENTERI DALAM NEGERI REPUBLIK INDONESIA

MENTERI DALAM NEGERI REPUBLIK INDONESIA SALINAN REPUBLI INDONESIA PERATURAN REPUBLI INDONESIA NOMOR 47 TAHUN 2017 TENTANG BATAS DAERAH ABUPATEN MUSI RAWAS UTARA PROVINSI SUMATERA SELATAN DENGAN ABUPATEN LEBONG PROVINSI BENGULU DENGAN RAHMAT

Lebih terperinci

BAB 4 SISTEM DINAMIK ORDE-TINGGI

BAB 4 SISTEM DINAMIK ORDE-TINGGI Stem Damk Ore-Tgg 47 BAB 4 SISTEM DINAMI ORDE-TINI Stem amk ore-tgg gabuga ua atau lebh tem amk ore-atu. Cotoh:. Level cotrol paa tagk-tagk, bak yag tem o- terka oteractg ytem maupu yag terterak teractg

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

titik tengah kelas ke i k = banyaknya kelas

titik tengah kelas ke i k = banyaknya kelas STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e

Lebih terperinci

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA BAB V MOEL SEERHANA ISTRIBUSI TEMPERATUR AN SIMULASINYA Model matemata yang terdapat pada bab sebelumnya merupaan model umum untu njes uap pada reservor dengan bottom water. Model tersebut merupaan model

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 A II LANDASAN TEORI Pada bab aa dbahas bebeapa teo alaba le yag meduug dalam peuua Teo Peo-Fobeus pada ab III Teo-teo yag aa dbahas beupa subuag vaa, poyeto, des mats, deomposs coe-lpotet, seta om da

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

Untuk mentukan titik tetap dari persamaan (3.1) maka persamaan tersebut dibuat sama dengan nol, yaitu dt 0. seperti dalam persamaan berikut dt dt dt

Untuk mentukan titik tetap dari persamaan (3.1) maka persamaan tersebut dibuat sama dengan nol, yaitu dt 0. seperti dalam persamaan berikut dt dt dt LAMIRA 4 5 Lamra eetua t eta ar eramaa 3. Utu metua tt teta ar eramaa 3. maa eramaa tereut uat ama ega ol yatu a ee alam eramaa erut t t t..................3 Dar eramaa aa eroleh la eaga erut t Dar eramaa

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

vektor ( MATP ) Disusun Oleh : Drs. Pundjul Prijono Nip

vektor ( MATP ) Disusun Oleh : Drs. Pundjul Prijono Nip MODUL MATEMATIKA SMA 6 JP etr MATP 7.5.6 ) Dssn Oleh : Drs. Pndl Prn Np. 95807.980..00 PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMA NEGERI 6 Jalan Mayen Sngn N. 58 Telp. 04) 7506 Malang Mdl MATP 7.5.6 VEKTOR

Lebih terperinci

NILAI DAN VEKTOR EIGEN MATRIKS INTERVAL ATAS ALJABAR MAX-PLUS. Dwi Suci Maharani 1 dan Suryoto 2. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang

NILAI DAN VEKTOR EIGEN MATRIKS INTERVAL ATAS ALJABAR MAX-PLUS. Dwi Suci Maharani 1 dan Suryoto 2. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang NILAI DAN VEKTOR EIGEN MATRIKS INTERVAL ATAS ALJABAR MAX-PLUS Dw Sc Mahara da Sryoto, Jrsa Mateata FMIPA Uverstas Dpoegoro J Prof H Soedarto, SH, Tebaag, Searag Abstract A terva atr A A, A wth gve A, A

Lebih terperinci

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:

STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik: STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu

Lebih terperinci

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk

BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk 5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

INVERS DRAZIN DARI SUATU MATRIKS DENGAN MENGGUNAKAN BENTUK KANONIK JORDAN

INVERS DRAZIN DARI SUATU MATRIKS DENGAN MENGGUNAKAN BENTUK KANONIK JORDAN Buletn Ilmah ath. Stat. dan erapannya (Bmaster) Volume 5, No. 3 (6), hal 8. INVERS DRAZIN DARI SUAU ARIKS DENGAN ENGGUNAKAN BENUK KANNIK JRDAN Eo Sulstyono, Shanta artha, Ea Wulan Ramadhan INISARI Suatu

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL

PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL PENYELESAIAN PERSAMAAN DIFERENSIAL LANE-EMDEN MENGGUNAKAN METODE TRANSFORMASI DIFERENSIAL Ahma Sya roi, M Natsir, Eag Lily E-mail: Arolativa@yahoocom Mahasiswa Program S Matematia Dose Jurusa Matematia

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE

PRINSIP INKLUSI- EKSKLUSI INCLUSION- EXCLUSION PRINCIPLE RISI IKLUSI- EKSKLUSI ICLUSIO- EXCLUSIO RICILE rsp Iklus-Eksklus Ada berapa aggota dalam gabuga dua hmpua hgga? A A = A A - A A Cotoh Ada berapa blaga bulat postf lebh kecl atau sama dega 00 yag habs dbag

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING

SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING AROUND IDEAL OF THE SKEW POLYNOMIAL RING SEPUTAR IDEAL DARI GELANGGANG POLINOM MIRING Afra, Ar Kaal Ar da Nur Erawaty Jurusa Mateata Faultas Mateata da Ilu Pegetahua Ala Uverstas Hasaudd (UNHAS) Jl. Perts Keerdeaa KM.0 Maassar 90245, Idoesa thalabu@gal.co

Lebih terperinci

ANALISIS DISKRIMINAN (Kasus : Lebih dari 2 Kelompok)

ANALISIS DISKRIMINAN (Kasus : Lebih dari 2 Kelompok) ANALSS DSRNAN (asus : Lebh dar elompo) Hazmra Yozza Jur. atemata FPA Uad LOGO POP POP POP 4 : POP Uura sampel : Sampel telah detahu dar elompo maa berasal Terhadap masg-masg obe damat/duur p peubah POP

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N

GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N SKRIPSI Dajua dalam raga meelesaa Stud Strata Satu utu mecapa gelar Sarjaa Sas Oleh Nama : M SOLIKIN ADRIANSAH NIM : 4504009 Program Stud Jurusa : Matemata

Lebih terperinci

BAB 1 RANGKAIAN TRANSIENT

BAB 1 RANGKAIAN TRANSIENT BAB ANGKAIAN TANSIENT. Penahuluan Paa pembahasan rangkaan lstrk, arus maupun tegangan yang bahas aalah untuk kons steay state/mantap. Akan tetap sebenarnya sebelum rangkaan mencapa keaaan steay state,

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF

ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)

Lebih terperinci

Metode Numerik Stepest Descent Dengan Arah Pencarian Negatif Sigma Gradien

Metode Numerik Stepest Descent Dengan Arah Pencarian Negatif Sigma Gradien SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 6 Metoe Numer Stepest Descet Dega Arah Pecara Negatf Sgma Grae Rumoo Bu Utomo Uverstas Muhammayah Tagerag rumoo.bu.u@mal.ugm.ac. Abstra Peelta

Lebih terperinci

METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k

METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k Prma: Jural Program Stud Pedda da Peelta Matemata Vol. 6, No., Jauar 07, hal. 7-59 P-ISSN: 0-989 METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l UNTUK BEBERAPA NILAI

Lebih terperinci

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI

HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI HASIL KALI TITIK DAN PROYEKSI ORTOGONAL SUATU VEKTOR (Aljabar Linear) Oleh: H. Karso FPMIPA UPI A. Hasil Kali Titik (Hasil Kali Skalar) Da Vektor. Hasil Kali Skalar Da Vektor di R Perkalian diantara da

Lebih terperinci

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data

Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data Raguma. Statt meyataa umpula data yag dapat berupa aga yag damaa data uattat maupu o aga yag damaa data ualtat yag duu dalam betu tabel da atau dagram/gra, yag meggambara da mempermudah pemahama aa aga

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

PROSEDUR PENGUJIAN HIPOTESIS SEHUBUNGAN DENGAN AKAR-AKAR LATEN DARI MATRIKS KOVARIANS (Dalam Analisis Komponen Utama)

PROSEDUR PENGUJIAN HIPOTESIS SEHUBUNGAN DENGAN AKAR-AKAR LATEN DARI MATRIKS KOVARIANS (Dalam Analisis Komponen Utama) H. Maa Suhera,Drs.,M.S PROSEDUR PEGUJIA HIPOTESIS SEHUBUGA DEGA AKAR-AKAR LATE DARI MATRIKS KOVARIAS (Dala Aalss Kopoe Utaa) Abstra Utu ebuat espula tetag araterst populas ultvarat husuya populas varat

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci