On A Generalized Köthe-Toeplitz Duals

Ukuran: px
Mulai penontonan dengan halaman:

Download "On A Generalized Köthe-Toeplitz Duals"

Transkripsi

1 JMP : Volume 4 Nomor, Ju 202, hal O A Geeralzed Köthe-Toepltz Duals Sumardoo, Supama 2, da Soepara Darmawaa 3 PPPPTK Matematka, smrd2007@gmal.com 2 Mathematcs Departmet, Gadah Mada Uverst, supama@ugm.ac.d 3 Mathematcs Departmet, Gadah Mada Uverst ABSTRACT. I ths paper, we geeralzed the oto of Kothe-Toepltz duals of sequece space o troducg the cocept sequece of sequeces. Some propertes of the geeralzed dual are obtaed. Kewords: Köthe-Toepltz duals, Geeralzed dual spaces, Sequece of sequeces ABSTRAK. Pada paper dbahas megea dual Kothe-Toepltz ag dperumum dar ruag barsa ke ruag barsa dega suku barsa. Sela tu, aka dbahas uga megea sfat-sfat dar dual tersebut. Kata Kuc: dual Kothe-Toepltz, ruag dual ag dperumum, barsa dar barsa. PENDAHULUAN Kosep ruag dual merupaka kosep petg dalam stud aalss. Salah satu bahasa megea dualtas suatu ruag telah dsampaka Köthe da Toepltz (934), Garlg (967), da uga Ruckle (967) dega memperkealka tpe-tpe dual ruag barsa atu dual-, dual-, dual-, da dual-. Sfat-sfat dual-, dual-, da dual- d atas uga telah dbahas oleh Kamtha & Gupta. Beragkat dar pegerta d atas, kam memperluas kosep dual-, dual-, dual-, da dual- dar ruag barsa ke ruag barsa dega suku barsa. 2. PERLUASAN DUAL KÖTHE-TOEPLITZ Dmsalka koleks semua barsa = {} dega C,.

2 32 Sumardoo, Supama, da Soepara Darmawaa Hasl kal da peumlaha dua barsa {}da {} ddefska secara potwse sebaga berkut. {}.{} = {, 2, 3,...}. {, 2, 3,...} = {., 2.2, 3.3,...} {}+ {} = {, 2, 3,...} + {, 2, 3,...} = { +, 2 + 2, 3 + 3,...} Dega peumlaha potwse da perkala skalar, maka mead ruag vektor atas C. Hmpua semua permutas dar N dotaska dega. Defs 2. ([6], [], [5]) Dpadag ruag vektor tak ol maka ddefska dual-, dual-, dual-, da dual- dar berturut-turut sebaga berkut. = { :, = { :, = { :, = { :,, }, } sup, } ( ),, da } Selauta, utuk setap = {}, beberapa otas ddefska sebaga berkut. = {} = da = {} = {, 2, 3,... }. Sehgga C sedag. Barsa dega etr d dotaska dega huruf kaptal X = { () } dega () meataka suku ke- pada X. X = { (), (2), (3),... } dega () = {, 2, 3,...}

3 O A Geeralzed Köthe-Toepltz Duals 33 (2) = {2, 22, 23,...} (3) = {3, 32, 33,...}... Dmsalka koleks semua barsa X = { () } dega (). Hasl kal da peumlaha pada dlakuka secara potwse sebaga berkut. Utuk setap X, Y maka X.Y = { () }. { () } = { (). (), (2). (2), (3). (3),... } X +Y = { () } + { () } = { () + (), (2) + (2), (3) + (3),... } Dega peumlaha bersfat potwse da perkala skalar, maka mead sebuah ruag vektor atas C. Defs 2.2 Dpadag sebuah ruag vektor atau ruag lear ag tak ol. Dega X = { () } da Y = { () }, (), () maka ddefska berturutturut, ( ) ( ) = { X : X,, Y } = { X : X, = { X : X, = { X : X, ( ) ( ), Y } sup ( ) ( ), Y } ( ) ( ), Y da } Selauta, berturut-turut ruag,,, da dsebut dual-, dual-, dual-, da dual- dar. Dega meggat bahwa utuk setap = {}, betuk ddefska sebaga maka dperoleh sebaga berkut. ( ) ( ) () () (2) (2) (3) (3) =...

4 34 Sumardoo, Supama, da Soepara Darmawaa = { +, 2, 3,...}.{, 2, 3,...} { + 2, 22, 23,...}.{ 2, 22, 23,...} { , 32, 33,...}.{ 3, 32, 33,...} { + { +., 2. 2, 3. 3,...} { , , ,...} 2. 2, , ,...} = { } + { } { } +... = = Selauta dega cara ag sama dperoleh berturut-turut. ( ) ( ) = sup ( ) ( ) = sup ( ) ( ) ( ) = Dega demka, dual-, dual-, dual-, da dual- dar dapat dataka kembal sebaga berkut. Defs 2.3 Dpadag sebuah ruag vektor atau ruag lear ag tak ol. Dega X = { () } da Y = { () }, (), () serta () = {} da () = {} maka ddefska berturut-turut, = { X : X, = { X : X, = { X : X, sup, Y }, Y }, Y }

5 O A Geeralzed Köthe-Toepltz Duals 35 = { X : X, ( ), Y da } Padag koleks * = {X : X = { () }, = {, 0, 0, 0,...}, } da * ruag vektor tak ol, maka sup = = sup Dperoleh bahwa., = ( ) =, =, =, = dega = {{} : C }, da = {{} : C } = ( ) Jad,,, da merupaka suatu perluasa atau geeralsas dar,,, da. Semetara, utuk koleks ** = {X : X = { (), 0, 0, 0,... } } da ** ruag vektor tak ol, maka = = = = : C } dega = {{} : C }, da = {{} 3. BEBERAPA SIFAT PERLUASAN DUAL KÖTHE-TOEPLITZ Pada baga akhr, kam sampaka beberapa sfat Perluasa dual Köthe- Toepltz ag mash serupa dega sfat-sfat pada dual Köthe-Toepltz. Proposs 3. Bukt: Dambl sebarag X maka utuk sebarag Y dperoleh = = =...

6 36 Sumardoo, Supama, da Soepara Darmawaa Sehgga, X. Proposs 3.2 Bukt: Dambl sebarag X maka utuk setap Y. Dega kata la, barsa koverge (ke suatu blaga kompleks). Karea koverge, maka barsa Cauch. Selauta, karea barsa Cauch, maka barsa terbatas. Dega kata la, utuk setap berlaku Dega demka dperoleh, sup Sehgga, X.. merupaka barsa. Proposs 3.3 Bukt: Dambl sebarag X maka ( ) utuk setap Y da setap permutas. Karea maka dapat dplh = N sehgga dperoleh () = da Sehgga, X. Proposs 3.4 Jka maka, dega =,,, atau Bukt: Msal. Dambl sebarag X. Utuk sebarag Y maka Y. Lalu karea Y sedag X maka berlaku d maa da berturut-turut adalah etr suku ke- dar barsa ke- dar X da Y.

7 O A Geeralzed Köthe-Toepltz Duals 37 Jad, utuk sebarag Y berlaku bahwa X. Jad,. Utuk dual-, dual-, da dual-, bukt serupa d atas.. I arta Proposs 3.5 Jka = 2 maka = 2 dega =,,, atau Bukt: Dmsalka bahwa = 2 dperoleh, 2. Karea maka, uga karea 2 maka 2. Dega demka, dperoleh 2... () D la phak, ka dambl sebarag X 2 maka X da X 2. Dega demka, utuk setap Y... () da utuk setap Y 2... () Sekarag, dambl sebarag H = 2 maka H atau H 2. Jka H maka berdasarka () dperoleh Jka H 2 maka berdasarka () dperoleh h Karea berlaku utuk sebarag H maka X. Dega demka, 2... () Dar () da () maka = 2. Utuk dual-, dual-, da dual-, bukt serupa d atas. Proposs 3.6 Jka = maka = h.. dega =,,, atau Bukt: Utuk = maka bear bahwa = maka =. Msalka perataa bear utuk = k atu = k maka = k Selauta aka dbuktka bahwa perataa bear utuk = k +. k = = k k+

8 38 Sumardoo, Supama, da Soepara Darmawaa maka = = = k k k k k Jad, bear bahwa ka = maka = Proposs 3.7 dega =,,, atau Bukt: Dpadag dual- berkut. = { X : X,, Y } Lalu, ka dambl sebarag Y maka Perataa terakhr meataka bahwa Y ( ) Jad, Utuk dual-, dual-, da dual-, bukt serupa d atas., X Secara umum tdak berlaku =. Utuk ruag barsa ag memeuh kesamaa = maka dsebut ruag sempura (perfect space). Proposs 3.8 = dega =,,, atau Bukt: Utuk setap berlaku Oleh karea tu, utuk ruag barsa berlaku ( ) atau... () Sebalka, oleh karea maka ( ) atau... () Dar () da () maka =. Beberapa akbat lagsug dar proposs d atas atara la sebaga berkut. Proposs 3.9 Dega =,,, atau maka () Utuk setap maka merupaka ruag sempura. (2) Ruag barsa merupaka ruag sempura ka terdapat ruag barsa sedemka hgga = (3) Jka = da ruag sempura maka =.

9 O A Geeralzed Köthe-Toepltz Duals 39 DAFTAR PUSTAKA Chllgworth, H.R. (958). Geeralzed dual sequece spaces. Nederl. Akad. Wetesch. Idag. Math. 20 Choudhar, B, da Mshra, S.K. (993). O Kothe-Toepltz Duals of Certa Sequece Spaces ad Ther Matr Trasformatos. Ida Jural Pure aplled Math, 24(5): Cowa, J. B. (990). A Course Fuctoal Aalss. Sprger-Verlag. Garlg, D.J.H. (967). The - ad -dualt. Proc. Cambrdge Phlos. Soc. 63 Kamtha, P.K. da Gupta, M. (98). Sequece spaces ad seres. New York. Marcel Dekker, Ic. Köthe, G. & Toepltz. (934). Leare Räume mt uedlch vele Koordate ud Rge uedlcher Matrze, Jour. Ree agew. Math. 7 Rode, H. L. (988). Real Aalss. MacMlla Publshg Compa. New York. Rud, W. (973). Fuctoal aalss. New York: McGraw-Hll Book Compa Wlask, A. (984). Summablt through Fuctoal Aalss. Amsterdam: North Hollad.

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER

TUGAS MATA KULIAH TEORI RING LANJUT MODUL NOETHER TUGAS ATA KULIAH TEORI RING LANJUT ODUL NOETHER Da Aresta Yuwagsh (/364/PPA/03489) Sebelumya, telah dketahu bahwa sebaga rg dega eleme satua memeuh sfat rata ak utuk deal-deal d. Apabla dpadag sebaga modul,

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teoremateorema II. LANDAAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teoremateorema ag medukug utuk pembahasa pada bab IV. Pegerta (defs) da teorema tersebut dtulska sebaga berkut.. Teorema Proeks Teorema

Lebih terperinci

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA

Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA

MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Masalah Norm Mmum (Karat) MASALAH NORM MINIMUM PADA RUANG HILBERT DAN APLIKASINYA Karat da Dhorva Urwatul Wutsqa Jurusa Peddka Matematka FMIPA Uverstas Neger Yogakarta Abstract I ths paper, wll be dscussed

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk menganalisis aproksimasi fungsi dengan metode II. TINJAUAN PUSTAKA Dalam proses peelta utuk megaalss aproksmas fugs dega metode mmum orm pada ruag hlbert C[ab] (Stud kasus: fugs rasoal) peuls megguaka defs teorema da kosep dasar sebaga berkut:.. Aproksmas

Lebih terperinci

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema

II. LANDASAN TEORI. Pada bab II ini, akan dibahas pengertian-pengertian (definisi) dan teorema-teorema II. LANDASAN TEORI Pada bab II aka dbahas pegerta-pegerta (defs) da teorea-teorea ag edukug utuk pebahasa pada bab IV. Pegerta (defs) da teorea tersebut dtulska sebaga berkut... Teorea Proeks Teorea proeks

Lebih terperinci

Extra 4 Pengantar Teori Modul

Extra 4 Pengantar Teori Modul Extra 4 Pegatar Teor odul Apabla selama dkealka suatu kosep aljabar megea ruag vektor, maka modul merupaka perumuma dar ruag vektor. Pada modul, syarat skalar dperumum mejad eleme pada suatu rg da buka

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP

PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP PELABELAN GRACEFUL PADA DIGRAF LINTASAN DAN DIGRAF BIPARTIT LENGKAP Lusa Tr Lstyowat Krstaa Waya M Fatekurohma Jurusa Matematka FMIPA Uerstas Jember e-mal: krstaa_waya@yahoocom da m_fatkur@yahoocom Abstract:

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu

I adalah himpunan kotak terbatas dan tertutup yang berisi lebih dari satu METODE FUNGS QUAS-FED SATU ARAMETER UNTUK MENYEESAKAN MASAAH ROGRAM NTEGER TAK NEAR Ra Hardyat (M4) ABSTRAK Dalam kehdupa sehar-har serg djumpa masalah optmas yag membutuhka hasl teger Masalah tersebut

Lebih terperinci

H dinotasikan dengan B H

H dinotasikan dengan B H Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )

Lebih terperinci

Digraf Eksentrik dari Graf Crown. Fakultas MIPA UNS Surakarta

Digraf Eksentrik dari Graf Crown. Fakultas MIPA UNS Surakarta Dgraf Eksetrk dar Graf Crow NugrohoArf udbo 1, Tr Atmojo Kusmaad 1 Program tud Tekk Iformatka TMIK Duta Bagsa urakarta Fakultas MIPA UN urakarta ABTRAK Dberka G suatu graf dega hmpua berhgga verte V(G)

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT

KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER

PELABELAN GRACEFUL SATU MODULO w PADA BEBERAPA GRAF EULER PELABELAN GRACEFUL SATU MODULO PADA BEBERAPA GRAF EULER Isa 1, Luca Ratasar, R. Heru Tjahjaa 3 1,,3 Jurusa Matematka, Fakultas Sas da Matematka, Uverstas Dpoegoro Jl. Prof. H. Soedarto, S.H. Tembalag,

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI REGULER DALAM ALJABAR MAX-PLUS INTERVAL A-12 Sswato 1, Ar Suparwato 2, M Ady Rudhto 3 1 Mahasswa S3 Matematka FMIPA UGM da Staff Pegajar FMIPA UNS Surakarta,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas

Lebih terperinci

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS

ALGORITMA MENENTUKAN HIMPUNAN TERBESAR DARI SUATU MATRIKS INTERVAL DALAM ALJABAR MAX-PLUS LGORITM MENENTUKN HIMPUNN TERBESR DRI SUTU MTRIKS INTERVL DLM LJBR MX-PLUS Rata Novtasar Program Stud Matematka FMIP UNDIP JlProfSoedarto SH Semarag 575 bstract Ths research dscussed about how to obtaed

Lebih terperinci

IDEAL DALAM ALJABAR LINTASAN LEAVITT

IDEAL DALAM ALJABAR LINTASAN LEAVITT Delta-P: Jural Matematka da Peddka Matematka ISSN 289-855X Vol., No. 2, Oktober 22 IDAL DALAM ALJABAR LINTASAN LAVITT Ida Kura Walyat Program Stud Peddka Matematka Jurusa Peddka MIPA FKIP Uverstas Kharu

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB I PENGINTEGRALAN KOMPLEKS

BAB I PENGINTEGRALAN KOMPLEKS BAB I PENGINTEGRALAN OMPLES . Itegral Gars Sebelum membcaraka tegral gars terlebh dahulu aka dbahas kurva kurva mulus ltasa da retas suatu ltasa. Ltasa urva legkuga d bdag datar dapat dataka dalam betuk

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari:

( ) ( ) ( ) ( ) ( ) III MODEL. , θ Ω. 1 Pendugaan parameter dengan metode maximum lkelihood estimation dapat diperoleh dari: 5 Mamum Lkelhood Estmato Defs Fugs Lkelhood Msalka X, X,, X adalah eubah acak d dega fugs massa eluag ( ; θ, dega θ dasumska skalar da tdak dketahu, maka rosedur fugs lkelhood daat dtulska sebaga berkut

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Penelitian Operasional II Teori Permainan TEORI PERMAINAN

Penelitian Operasional II Teori Permainan TEORI PERMAINAN Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game

Lebih terperinci

ALJABAR LINTASAN LEAVITT SEMIPRIMA

ALJABAR LINTASAN LEAVITT SEMIPRIMA ALJABAR LINTASAN LAVITT SMIPRIMA Ngrum Astrawat Program Stud Tekka, Akadem Martm Yogyakarta astramath@gmal.com ABSTRA. Suatu graf dapat drepresetaska sebaga aljabar ltasa da jka graf tersebut dperluas

Lebih terperinci

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh

Selesaikan persamaan kuadrat ini dengan bentuk kuadrat lengkap, diperoleh Blaga Kompleks Feomea blaga kompleks arlah dua buah blaga ag jumlaha da haslkala juga Msalka blaga ag dcar adalah da w, dega kods + w = da w = Dar kods + w = dperoleh w = Gatka ke w =, dperoleh ( ) =,

Lebih terperinci

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA

PELABELAN HARMONIS GANJIL PADA GRAF KINCIR ANGIN BELANDA DAN GABUNGAN GRAF KINCIR ANGIN BELANDA PELABELAN HARMONIS GANJIL PADA GRAF KINIR ANGIN BELANDA DAN GABUNGAN GRAF KINIR ANGIN BELANDA Fery Frmasah ), Kk Aryat Sugeg ) Abstrak : Gra G V G, EG dega V G adalah hmpua smpul da G hmpua busur dsebut

Lebih terperinci

Orbit Fraktal Himpunan Julia

Orbit Fraktal Himpunan Julia Vol. 3, No., 6-7, Jauar 7 Orbt Fraktal Hmpua Jula Ad Kresa Jaya, Nswar Alasa Abstrak Makalah membahas kumpula ttk-ttk yag berada dalam daerah hmpua Jula d ruag kompleks da memperlhatka sebuah algortma

Lebih terperinci

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI

INTEGRAL LEBESGUE PADA FUNGSI TERBATAS SKRIPSI INTGRAL LBSGU PADA FUNGSI TRBATAS SKRIPSI Dajuka Kepada Fakultas Matematka da Ilmu Pegetahua Alam Uverstas Neger Yogyakarta utuk memeuh sebaga persyarata gua memperoleh gelar Sarjaa Sas Dsusu Oleh : Fauzah

Lebih terperinci

BAB 1 ERROR PERHITUNGAN NUMERIK

BAB 1 ERROR PERHITUNGAN NUMERIK BAB ERROR PERHITUNGAN NUMERIK A. Tujua a. Memaham galat da hampra b. Mampu meghtug galat da hampra c. Mampu membuat program utuk meelesaka perhtuga galat da hampra dega Matlab B. Peragkat da Mater a. Software

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1).

BAB II LANDASAN TEORI. merepresentasikan dan menjelaskan permasalahan pada dunia nyata ke dalam. pernyataan matematis (Widowati & Sutimin, 2007 : 1). BAB II LANDASAN EORI.. Model Matematka Model Matematka merupaka represetas matematka yag dhaslka dar pemodela Matematka. Pemodela Matematka merupaka suatu proses merepresetaska da mejelaska permasalaha

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 38-50

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 38-50 Jural Matematka Mur da Terapa Vol. 4 No.2 esember 200: 38-50 KETERKENALIAN SISTEM LINIER IFERENSIAL BIASA TIME-VARYING AN SISTEM LINIER IFERENSIAL PARSIAL ENGAN PENEKATAN MOUL ATAS OPERATOR IFERENSIAL

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika

TEOREMA TITIK TETAP BANACH. Skripsi. Diajukan untuk Memenuhi Salah satu Syarat. Memperoleh Gelar Sarjana Matematika. Program Studi Matematika TEOREMA TITIK TETAP BANACH Skrps Dajuka utuk Memeuh Salah satu Syarat Memperoleh Gelar Sarjaa Matematka Program Stud Matematka Oleh: Wdaryata Ctra Nursata NIM : 348 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA

Lebih terperinci

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi

BAB II KAJIAN PUSTAKA. Aljabar Max-Plus adalah himpunan { } himpunan semua bilangan real yang dilengkapi dengan operasi BAB II KAJIAN PUSTAKA A. Aljabar Max-Plus 1. Pegerta Aljabar Max-Plus Aljabar Max-Plus adalah hmpua { } dega hmpua semua blaga real yag dlegkap dega operas maksmum, dotaska dega da operas pejumlaha yag

Lebih terperinci

BAB III TEOREMA GLEASON DAN t-desain

BAB III TEOREMA GLEASON DAN t-desain BAB III TEOREMA GLEASON DAN t-desain Dalam ubbab 3., kta aka mempelaar alah atu fat petg dar kode wa-dual geap. Sfat terebut dberka oleh Teorema 3.(Teorema Gleao), Teorema ecara megeaka telah meetuka betuk

Lebih terperinci

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel

PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa

Lebih terperinci

Lampiran : Kekonvergenan Barisan Alternating Projection pada Himpunan yang tak Semuanya Konveks

Lampiran : Kekonvergenan Barisan Alternating Projection pada Himpunan yang tak Semuanya Konveks DAFTAR PUSTAKA [] Apkara, P., P. Gahet, G Becker. (995), Self-scheduled H Cotrol of Lear Paraeter-varyg Systes : a Desg Eeple, Autoatca, 3, 25-26. [2] Bajerdpogcha, D., (997), Paraetrc Robust Cotroller

Lebih terperinci

BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA

BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA Jural Maemaka, Vol., No., 2, 6 2 BEBERAPA SIFAT IDEAL GELANGGANG POLINOM MIRING: SUATU KAJIAN PUSTAKA AMIR KAMAL AMIR Jurusa Maemaka, FMIPA, Uversas Hasaudd 9245 Emal : amrkamalamr@yahoo.com INTISARI Msalka

Lebih terperinci

Sudaryatno Sudirham. Permutasi dan Kombinasi

Sudaryatno Sudirham. Permutasi dan Kombinasi Sudaryato Sudrham Permutas da Kombas Permutas Permutas adalah bayakya peelompoka sejumlah tertetu kompoe ya dambl dar sejumlah kompoe ya terseda; dalam setap kelompok uruta kompoe dperhatka Msalka terseda

Lebih terperinci

Volume 1, Nomor 2, Desember 2007

Volume 1, Nomor 2, Desember 2007 Volume, Nomor, Desember 007 Barekeg, Desember 007. hal.-7 Vol.. No. ESTIMASI PARAMETER DISTRIBUSI EKPONENSIAL PADA LOKASI TERBATAS (Estmatg Parameter Dstrbuto Expoetal At Fte Locato MOZART W TALAKUA, JEFRI

Lebih terperinci

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M

LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS uslch_us@yahoo.co ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.

Lebih terperinci

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT

JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : rzky90@gmal.com BSTRCT.

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV

BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV 4. Proses Sokask Dalam kehdupa yaa, sergkal orag g megama keerkaa sau kejada dega kejada la dalam suau erval waku ereu, yag merupaka suau barsa kejada.

Lebih terperinci

MATEMATIKA INTEGRAL RIEMANN

MATEMATIKA INTEGRAL RIEMANN MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

Edge Anti-Magic Total Labeling dari

Edge Anti-Magic Total Labeling dari Edge At-Magc Total Labelg dar Charul Imro da Suhud Wahyud Jurusa Matematka Isttut Tekolog Sepuluh Nopember Surabaya mro-ts@matematka.ts.ac.d, suhud@matematka.ts.ac.d C Abstract We wll fd edge at-magc total

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

Proses inferensi pada model logit Agus Rusgiyono. Abstracts

Proses inferensi pada model logit Agus Rusgiyono. Abstracts Proses eres ada model logt Agus Rusgoo Let dstrbuto wth Abstracts 3 rereset the resose o a omal radom varable o Beroull P P where s a arameter wth ukow value. Problems o estmatg used smallest square methods

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 11 Latar Belakag Peelta yag dlakuka oleh Va der Pol pada sebuah tabug trode tertutup, yatu sebuah alat yag dguaka utuk megedalka arus lstrk dalam suatu srkut pada trasmtter da recever meghaslka

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM

EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti)

III PEMBAHASAN. Karena vektor-vektor kolom X adalah bebas linear, maka L(ε) mempunyai n vektor eigen yang bebas linear. (Terbukti) Karea vektor-vektor kolom X adalah bebas lear maka mempuya vektor ege yag bebas lear. erbukt eorema 9 Jka... adalah la ege dar maka... adalah la ege dar. BUK : salka... adalah la ege dar yag bersesuaa

Lebih terperinci

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3.

: sebagai standar pembanding bagi sifat-sifat gas nyata Larutan ideal : sebagai standar pembanding bagi sifat-sifat larutan nyata Pers. (3. as deal : sebaga stadar pembadg bag sfat-sfat gas yata Laruta deal : sebaga stadar pembadg bag sfat-sfat laruta yata ers. (3.47): g g ly Laruta deal ddefska sebaga laruta dega: (3.47) d l (4.) Utuk besara

Lebih terperinci

Aturan Cramer dalam Aljabar Maks-Plus Interval

Aturan Cramer dalam Aljabar Maks-Plus Interval Jural Matematka & Sas Aprl 2015 Vol 20 Nomor 1 Atura Cramer dalam Aljaar Maks-Plus Iterval Sswato Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Uverstas Seelas Maret Surakarta e-mal: ssmpaus@yahoocod

Lebih terperinci

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA

BAB III REVIEW SIFAT- SIFAT STATISTIK PENDUGAAN TIPE KERNEL BAGI FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN PERIODE GANDA 9 BAB III REVIEW SIFAT- SIFAT STATISTI PENDUGAAN TIPE ERNE BAGI FUNGSI INTENSITAS PROSES POISSON PERIODI DENGAN PERIODE GANDA 3. Perumua Peduga Malka adala proe Poo ag damat pada terval [0] dega fug teta

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Pegatar Teor Pegkodea (Codg Theory) KODE SIKLIK (CYCLIC CODES) Dose Pegampu : Al Sutjaa DISUSUN OLEH: Nama : M Zak Ryato Nm : /5679/PA/8944 Program Stud : Matematka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA

BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA BAB III PEMBENTUKAN SKEMA PEMBAGIAN RAHASIA 3. Pegkodea Matrks Ketetaggaa Matrks ketetaggaa A adaah matrks smetr, sehgga, dega memh semua eeme pada dagoa utama da eeme-eeme dbawah dagoa utama, maka aka

Lebih terperinci

KODE SIKLIK (CYCLIC CODES)

KODE SIKLIK (CYCLIC CODES) Codg Theory KODE SIKLIK (CYCLIC CODES) Muhamad Zak Ryato NIM: 2/56792/PA/8944 E-mal: zak@malugmacd http://zakmathwebd Dose Pembmbg: Drs Al Sutjaa, MSc Pedahulua Salah satu bahasa yag palg petg pada lear

Lebih terperinci

ALJABAR MAX-PLUS DAN PENERAPANNYA. M. Andy Rudhito

ALJABAR MAX-PLUS DAN PENERAPANNYA. M. Andy Rudhito LJBR MX-PLUS DN PENERPNNY M. dy Rudhto Program Stud Peddka Matematka FKIP Uverstas Saata Dharma Yogyakarta 6 PRKT ljabar -plus merupaka suatu struktur aljabar d maa hmpua semua blaga real R {} dlegkap

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit)

Penyelesaian Sistem Persamaan Linier Kompleks Dengan Invers Matriks Menggunakan Metode Faddev (Contoh Kasus: SPL Kompleks dan Hermit) Jural Sas Matematka da Statstka, Vol., No. I, Jauar ISSN - Peyelesaa Sstem Persamaa Ler Kompleks Dega Ivers Matrks Megguaka Metode Faddev Cotoh Kasus: SPL Kompleks da Hermt F. rya da Tka Rzka, Jurusa Matematka,

Lebih terperinci

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD PENAKSIR PARAMETER DISTRIBUSI EKSPONENSIAL PARETO DENGAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Mayag Novhta Sar *, Bustam, Sgt Sugarto Mahasswa Program Stud S Matematka FMIPA Uverstas Rau Dose Fakultas

Lebih terperinci

Penggunaan Aritmetika Modulo dan Balikan Modulo pada Modifikasi Algoritma Knapsack

Penggunaan Aritmetika Modulo dan Balikan Modulo pada Modifikasi Algoritma Knapsack Pegguaa Artmetka Modulo da Balka Modulo pada Modfkas Algortma Kapsack Sesdka Sasa NIM 3507047 Jurusa Tekk Iformatka ITB, Badug, Jl. Gaesha 0, emal: f7047@studets.f.tb.ac.d Abstract Makalah membahas megea

Lebih terperinci

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE

LOCALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA RUANG n EUCLIDE LOLLY SMLL RIMNN SUMS FUNGSI TRINTGRL HNSTOK-UNFOR P RUNG ULI Solh Program Stud Matemata Faultas Sas da Matemata UNIP Jl Prof Soedarto, SH Semarag 575, sol_erf@yahoocom BSTRK I ths aer we study Hestoc-uford

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

Pertemuan VII IV. Titik Berat dan Momen Inersia

Pertemuan VII IV. Titik Berat dan Momen Inersia Baa jar Mekaka Baa Mulat, ST., MT Pertemua V V. Ttk Berat da Mome ersa. Ttk Berat Peampag Mome pertama suatu luasa eleme teradap suatu sumbu d dalam bdag luasa dberka dega produk luasa eleme da jarak tegak

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1

HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1 HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w

Lebih terperinci