IV. MATRIKS PEMADANAN MAKSIMAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "IV. MATRIKS PEMADANAN MAKSIMAL"

Transkripsi

1 {(1,),(2,4),(,1),(4,2)} yang berarti pada periode ke dua yaitu baris ke tiga pada kolom pertama, agen 1 dipasangkan dengan agen. Lalu pada kolom dua agen 2 dipasangkan dengan agen 4, pada kolom berikutnya yaitu kolom tiga agen dipasangkan dengan agen 1 dan kolom empat agen 4 dipasangkan dengan agen 2. Selanjutnya pada periode yaitu periode ke tiga diperoleh pemadanan {(1,4),(2,),(,2),(4,1)} artinya pada periode ke tiga yaitu baris ke empat pada kolom pertama agen 1 dipasangkan dengan agen 4, pada kolom dua agen 2 dipasangkan dengan agen, pada kolom tiga agen dipasangkan dengan agen 2, dan pada kolom empat agen 4 dipasangkan dengan agen 1. Matriks pemadanan maksimal menjelaskan pemasangan di antara n agen dengan tidak ada agen yang bertemu dengan pasangan yang sama lagi. Perlu diketahui bahwa semua matriks pemadanan maksimal sembarang dengan n genap adalah bujursangkar latin yang memenuhi batasan tambahan bahwa setiap baris adalah involusi dari baris pertama. Hal ini merupakan kasus khusus karena tidak semua bujursangkar latin memenuhi sifat involusi. Contoh 14 Misal diberiakan matriks bujursangkar latin berikut dengan populasi 1,2,, Perhatikan matriks bujursangkar latin pada Contoh 14 di atas, pada baris ke dua diperoleh pemadanan {(1,2),(2,),(,4),(4,1)} yang artinya pada baris ke dua ini pada kolom satu agen 1 dipasangkan dengan agen 2 tetapi pada kolom dua agen 2 tidak dipasangkan dengan agen 1 melainkan dengan agen, hal ini bertentangan dengan sifat involusi sehingga matriks bujursangkar latin pada Contoh 14 ini bukan merupakan matriks pemadanan. Untuk popolasi X saat jumlah agen n ganjil matriks pemadanan maksimal bukan merupakan bujursangkar latin karena matriks pemadanan maksimal memiliki baris sebanyak 1. Perlu diingat pada Definisi 8 merupakan matriks pemadanan jika pada saat n ganjil maka dalam setiap kolom j agen j muncul paling banyak dua kali dan entri lainnya pada kolom tersebut seluruhnya berbeda yaitu agen X\{j}. Hal ini mengakibatkan jika n ganjil maka dengan mengeliminasi baris pertama dari matriks dapat diperoleh matriks bujursangkar latin. Contoh 15 Misal n=, didapatkan matriks pemadanan maksimal. Jika baris pertama dari dieliminasi, maka diperoleh bujursangkar latin L = L = IV. MATRIKS PEMADANAN MAKSIMAL Bagian ini akan membahas eksistensi matriks pemadanan maksimal untuk sebarang populasi terbatas yang kemudian akan diperlihatkan bagaimana membentuk matriks pemadanan yang maksimal. Andaikan terdapat X populasi yang terdiri atas dua grup, sebut saja grup A dan grup B. Setiap grup memiliki anggota yang sama banyaknya misalkan n anggota. Untuk lebih mudahnya diinterpretasikan setiap grup tersusun atas agen yang homogen, sebagai contohnya, grup pembeli dan grup penjual. Tujuan selanjutnya adalah memasangkan tepat satu kali setiap agen dari A dengan agen dari B, jadi setiap agen dari satu grup dipadankan dengan agen pada grup lainnya dalam keadaan mutlak saling asing, artinya setiap agen dipadankan dengan agen lainnya tepat satu kali dan dalam setiap periode pemadanan setiap agen yang diperoleh adalah maksimal artinya semua agen memperoleh pasangannya masingmasing. Perlu diingat bahwa kaidah pemadanan ini dapat menghasilkan paling bayak n periode dari pemadanan, karena setiap agen dapat berpasangan dengan paling banyak n agen

2 dari grup lainnya. Permasalahan di sini adalah bagaimana membentuk pemadanan maksimal yang diharapkan dan bagaimana cara sistematis untuk memperoleh pemadanan yang maksimal tersebut. Dalam hal ini kita menggambarkan dalam sebuah matriks yang sebelumnya sudah disebutkan sebagai matriks pemadanan maksimal. Terdapat dua hal yang diperoleh dari permasalahan di atas. Pertama hal tersebut menetapkan bahwa agen dipasangkan dalam keadaan mutlak saling asing paling banyak n kali. Ke dua diperoleh prosedur untuk membentuk kaidah pemadanan pada sembarang populasi. Misal dinotasikan X = AuB berarti dan, dengan kata lain X adalah union disjoint dari A dan B. Lema 1 Andaikan 1,..., dan 1,...,2, maka matriks M(A,B) berukuran L n 1 n n+ 1 n+ 2 L 2n 1 2n n+ 1 n+ 2 L 2n 1 2n 1 2 L n 1 n M( A, B) = n+ 2 n+ L 2n n+ 1 n 1 L n 2 n 1 M M O M M M M O M M 2n n+ 1 L 2n 2 2n 1 2 L n 1 adalah matriks pemadanan dari populasi X=AuB sedemikian sehingga setiap agen di A adalah pasangan yang terpadankan dengan setiap agen di B. [Aliprantis, et al 2006] Bukti Notasi M(A,B) menggambarkan di mana agen pada himpunan A dipadankan dengan agen pada himpunan B dengan tidak memasangkan dengan dirinya sendiri. Andaikan adalah bujursangkar latin dari himpunan 1,...,2 yang dibangun berdasarkan konstruksi bujursangkar latin #1 pada Bab II, dan melambangkan bujursangkar latin dari himpunan 1,..., yang dibangun berdasarkan konstruksi bujursangkar latin #2. Sehingga dengan demikian diperoleh matriks 1... n n n M( A, B) = + L ( B) L ( A). Dengan demikian M(A,B) adalah matriks pemadanan yang sesuai untuk populasi X = Perlu diperhatikan pada matriks pemadanan M(A,B) yang diperoleh dari Lema 1 bukan merupakan matriks pemadanan yang maksimal, karena matriks M(A,B) tidak menggambarkan pemadanan antar agen dalam himpunan itu sendiri melainkan pemadanan antar agen pada himpunan A dan B saja. Yang perlu diingat juga berdasarkan Definisi 8, matriks pemadanan maksimal M berukuran di mana saat n ganjil maka 1 dan saat n genap maka. Untuk lebih jelas lihat Contoh 16 berikut. Contoh 16 Andai 1,..,8 dengan 1,2,,4 dan 5,6,7,8. Maka berdasarkan Lema 1 di atas diperoleh matriks berikut M( A, B ) = Perhatikan matriks pada Contoh 16 di atas, terlihat bahwa matriks pemadanan M(A,B) yang terbentuk dari populasi 1,..,8 di mana 8. Matriks pemadanan M(A,B) yang terbentuk tidak berukuran seperti yang didasarkan pada Definisi 8 sehingga dapat disimpulkan matriks pemadanan M(A,B) yang diperoleh tidaklah maksimal. Selanjutnya akan dibahas prosedur untuk mendapatkan matriks pemadanan maksimal

3 yang diinginkan untuk memadankan setiap agen yang ada pada populasi yang terbatas. Teorema 1 Setiap populasi yang terbatas mempunyai matriks pemadanan maksimal. [Aliprantis, et al 2006] Bukti Pembuktian dari teorema ini terdiri atas dua bagian. Pada bagian pertama, akan ditunjukkan eksistensi matriks pemadanan maksimal untuk sebarang populasi ganjil, dan pada bagian kedua akan ditunjukkan eksistensi dari matriks pemadanan maksimal untuk sebarang populasi genap. Sekarang akan dibuktikan untuk bagian yang pertama untuk populasi ganjil. Misalkan diberikan populasi 1,.,, di mana n ganjil. Dengan menggunakan konstruksi bujursangkar latin pada Bab II maka diperoleh bujursangkar latin L, sedemikian sehingga diperoleh matriks berukuran 1 sebagai berikut: 1 2 L n 2 n 1 n n n 1 n 2 L 2 1 n 1 n 2 n L 2 1 n 1... n n = n 2 n n 4 L 1 n n 1 = L M M M O M M M 2 1 n L n n 1 L 4 2 Matriks tersebut merupakan matriks pemadanan maksimal untuk populasi X di mana n ganjil. Pada bagian ke dua untuk populasi genap, andaikan diberikan populasi 1,.,2, dan misalkan banyaknya populasi X adalah 2 2, di mana p dan k adalah bilangan natural dengan p bilangan ganjil. Untuk menyelesaikannya dipandang dalam dua kasus. Pertama jika populasi 2 2 dibagi menjadi dua populasi n yang sama banyak sebut saja menjadi populasi agen A dan agen B maka masing-masing populasi agen pada A dan B memiliki banyak anggota n dengan n genap. Kedua kasus di mana jika 2 2 dibagi menjadi dua populasi n yang sama banyak juga maka masing-masing populasi A dan B memiliki anggota n dengan n ganjil. Sekarang akan dibahas terlebih dahulu untuk kasus yang pertama Kasus 1 : p = 1 Sehingga diperoleh populasi banyaknya X adalah 2 2. Akan dibuktikan adanya matriks pemadanan maksimal dengan menggunakan induksi matematika pada k. Basis induksi: Untuk 1, maka 2 2 sehingga diperoleh matriks = 2 1 maksimal untuk populasi 2 2. Hipotesis Induksi: Anggap benar untuk sehingga 2 2 terdapat matriks pemadanan maksimal. Langkah Induksi Akan dibuktikan benar terdapat matriks pemadanan maksimal untuk 1 sehingga 2 2. Untuk membuktikannya misalkan 1,,2 = AuB di mana 1,,2 dan 2 1,,2. Dari hipotesis induksi diketahui bahwa terdapat matriks pemadanan maksimal berukuran 2 2 untuk 2 2. Sehingga terdapat matriks pemadanan maksimal untuk populasi 1,,2 dan matriks pemadanan maksimal untuk populasi 2 1,,2. Berdasarkan Lema 1 maka diperoleh ( ) ( ) A B + 1 = ( B) ( A) maksimal untuk populasi 1,,2 =

4 Selanjutnya akan dibahas keberadaan matriks pemadanan maksimal untuk kasus yang ke dua. Kasus 2 : 1 Dalam kasus dipilih 2 2, dan untuk membuktikannya masih dapat menggunakan induksi matematika pada k. Basis Induksi Untuk k=1, maka diperoleh 2 2, akibatnya 1,,2. Misalkan X = AuB dengan 1,, dan 1,,2 di mana A dan B masing-masing memiliki p agen. Misalkan dan adalah bujursangkar latin (p-1) x p yang dibentuk dengan menghapus baris pertama dari dan. Selanjutnya perlu diingat bahwa p ganjil. Andaikan dan merupakan matriks pemadanan maksimal 1 untuk A dan B yang dapat dibuat berdasarkan Definisi 8. Perlu diingat juga, pada Definisi 8 diketahui bahwa jika n ganjil maka dalam setiap kolom j agen j muncul paling banyak dua kali. Kemunculan agen j untuk yang ke dua kalinya ini disebut titik tetap di mana pada periode ini agen j dipasangkan dengan dirinya sendiri. Untuk membuat supaya hal ini tidak terjadi maka dapat dilakukan dengan cara menukar titik tetap tersebut dengan titik tetap pada matriks pemadanan lainnya. Untuk lebih jelas titik tetap yang terdapat pada matriks pemadanan maksimal ditukar dengan titik tetap yang ada pada matriks pemadanan maksimal pada. Untuk mengetahui letak titik tetap yang dimaksud, misalkan saja melambangkan yang dibulatkan ke integer yang lebih besar, dan 2 1. Sehingga diperoleh tabel untuk mencari titik tetap untuk setiap baris j dari dan berikut. Tabel 2 Titik tetap. Baris k j = 2k 1,., j = 2k + 1 1,.., 1 p (k 1) 2p - (k - 1) Lalu misalkan dan adalah matrik pemadanan maksimal yang diperoleh dengan menukar titik-titik tetap dari dan dalam setiap periode (baris). Sebagai contoh misalkan agent 1 yang muncul pada entri (p+1,1) dari yang dipasangkan dengan dirinya sendiri dengan kata lain tidak memiliki pasangan pada baris tersebut sementara itu agen 1 yang juga muncul pada entri 1,1 dari juga tidak memiliki pasangan pada baris tersebut, maka dengan menukar agen 1 pada baris tersebut dari dengan agen p+1 pada baris yang sama dari. Dengan prosedur yang serupa untuk agen-agen lainnya sehingga diperoleh matriks pemadanan maksimal dan. Lalu berdasarkan Lema 1, maka diperoleh matriks 2p x 2p sebagai berikut maksimal dari populasi 1,.,2. Hipotesisi Induksi Misalkan terdapat matriks pemadanan maksimal untuk populasi 2n = 2 h p, di mana. Langkah Induksi Sekarang akan diperlihatkan bahwa terdapat matriks pemadanan maksimal untuk populasi X pada saat 1 sehingga populasi 2n = 2 h+1 p. Untuk membuktikannya misalkan 1,,2 = AuB di mana 1,,2 dan 2 1,,2. Dari hipotesis induksi diketahui bahwa terdapat matriks pemadanan maksimal berukuran 2 2 untuk 2 2. Sehingga terdapat matriks pemadanan maksimal untuk populasi 1,,2 dan matriks pemadanan maksimal untuk populasi 2 1,,2. Berdasarkan Lema 1 maka diperoleh ( ) ( ) A B + 1 = ( B) ( A)

5 maksimal untuk populasi 1,,2 = Teorema 1 menunjukkan eksistensi dari matriks pemadanan maksimal untuk sembarang populasi terbatas dan pada beberapa kasus menyediakan algoritma untuk membangun matriks pemadanan maksimal pada populasi yang terbatas. Untuk lebih jelas perhatikan contoh-contoh berikut. Contoh 17 Misal populasi yang ganjil dengan. Maka matriks pemadanan maksimal yang diperoleh adalah = Perhatikan matriks pada Contoh 17 di atas agen 1 muncul dua kali pada kolom pertama, kemunculan agen 1 pada baris selain baris pertama dalam Contoh 17 pada baris terakhir (ke empat) ini yang disebut sebagai titik tetap pada matriks pemadanan maksimal. Contoh 18 Misalkan diberikan populasi genap 1,2,,4,5,6, di mana k=1 dan p=. Misalkan 1,2, dan 4,5,6. Sehingga diperoleh matriks pemadanan maksimal untuk A dan B sebagai berikut ( A) =, ( B) = Selanjutnya dengan menukar titik-titik tetap pada dan akan diperoleh matriks pemadanan maksimal untuk A dan B berikut ' ( A) =, ' ( ) B = Kemudian ingat kembali, berdasarkan defnisi dari dan, maka diperoleh matriks L ( A) 1 = 2 1 dan L ( B) 1 = Dengan demikian matriks 6 6 ' ' ( A) ( B) 6 = + L ( B) 1 L ( A) = adalah matriks pemadanan maksimal dari populasi X. V. PENERAPAN DALAM BIDANG EKONOMI Dalam percobaan ekonomi matriks pemadanan ini dapat dikaitkan untuk mencari pemadanan di antara pelaku ekonomi. Misalkan saja penjual dan pembeli. Andaikan akan dijalankan percobaan untuk memasangkan penjual dan pembeli. Andaikan juga hanya terdapat delapan subyek yang terkumpul yang terdiri dari empat penjual dan empat pembeli. Selanjutnya akan dipasangkan masing-masing subyek sedemikian rupa sehingga setiap pembeli dapat bertemu setiap penjual tepat satu kali untuk paling banyak dalam empat periode. Yang perlu diingat pemadanan yang dilakukan harus dalam keadaan mutlak saling asing, di mana setiap penjual dipadankan dengan pembeli tepat satu kali, dan dalam setiap periode pemadanan antara penjual dan pembeli yang diperoleh maksimal artinya semua penjual dan pembeli memperoleh pasangan. Dengan demikian tujuannya adalah meminimalkan interaksi berulang. Pemilihan secara acak dari semua kemungkinan pasangan yang muncul akan mengakibatkan tidak diperolehnya tujuan tersebut, dan peluang bahwa pemadanan yang dilakukan dalam keadaan mutlak saling asing

DEPARTEMEN MATEMATIKA

DEPARTEMEN MATEMATIKA PEMADANAN BILATERAL DENGAN RANCANG GAN BUJURSANGKAR LATIN MUHAMAD SYAZALI G54104023 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKAA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2008 ABSTRACT MUHAMAD

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5 Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:

Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}: Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teori graf adalah cabang kajian matematika yang mempelajari sifat-sifat graf. Secara sederhana, suatu graf adalah himpunan benda-benda yang disebut titik yang terhubung

Lebih terperinci

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A:

DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A: DETERMINAN Definisi Determinan Matriks Determinan matriks adalah bilangan tunggal yang diperoleh dari semua permutasi elemen matriks bujur sangkar.jika subskrip permutasi elemen matriks adalah genap (inversi

Lebih terperinci

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks.

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks. BAB 2 DIGRAPH Pada bab ini akan dijelaskan teori-teori dasar tentang digraph yang meliputi definisi dua cycle, primitifitas dari digraph, eksponen, dan lokal eksponen. Dengan demikian, akan mempermudah

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3

PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3 Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 34 40 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

Matematika Diskrit 1

Matematika Diskrit 1 Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Induksi Matematika. Fitriyanti Mayasari

Induksi Matematika. Fitriyanti Mayasari Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

Logika Matematika Modul ke: Himpunan

Logika Matematika Modul ke: Himpunan Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut

Lebih terperinci

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan, adalah banyaknya cara menyusun partisi suatu himpunan dengan elemen ke

Lebih terperinci

Gambar 6. Graf lengkap K n

Gambar 6. Graf lengkap K n . Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa BAB IV HASIL PENELITIAN A. Deskripsi Subyek Penelitian Penelitian dilaksanakan di SMA Theresiana Salatiga Semester 1 pada Tahun Ajaran 2011/ 2012 yang terletak di jalan Cemara II Salatiga. Subyek penelitian

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi.

Sri Purwaningsih. Modul ke: Fakultas EKONOMI BISNIS. Program Studi Manajemen dan Akuntansi. Modul ke: Fakultas EKONOMI BISNIS MATEMATIKA BISNIS Sesi 2 ini akan membahasteori Deret Hiutung dan Deret Ukur pada Matematika Bisnis sehingga Mahasiswa mempunyai dasar yang kuat untuk melakukan pengukuran

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL

3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL 3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL Kita sudah memperkenalkan Kombinasi linear p variabel di pasal 2.6. Pada kebanyakan prosedur multivariat, kita pasti dengan sendirinya menganggap kombinasi

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D.

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D. BAB 2 DIGRAF DWI-WARNA PRIMITIF Pada Bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. konsep dasar yang dimaksud adalah yang berkaitan

Lebih terperinci

3 HASIL DAN PEMBAHASAN

3 HASIL DAN PEMBAHASAN 3 HASIL DAN PEMBAHASAN 3.1 Formulasi Masalah Sejauh ini telah diperkenalkan bahwa terdapat tiga parameter yang terkait dengan konstruksi suatu kode, yaitu panjang, dimensi, dan jarak minimum. Jika C adalah

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

PIGEON HOLE. Kristiana Wijaya. February 23, Jurusan Matematika Fakultas MIPA Universitas Jember

PIGEON HOLE. Kristiana Wijaya. February 23, Jurusan Matematika Fakultas MIPA Universitas Jember Jurusan Matematika Fakultas MIPA Universitas Jember February 23, 2012 Pendahuluan Prinsip Pigeonhole (atau dikenal juga sebagai prinsip Kotak Merpati) kadang-kadang berguna untuk menjawab pertanyaan:

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta

Lebih terperinci

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema sebagai landasan berfikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

MATEMATIKA 1. Pengantar Teori Himpunan

MATEMATIKA 1. Pengantar Teori Himpunan MATEMATIKA 1 Silabus: Logika, Teori Himpunan, Sistem Bilangan, Grup, Aljabar Linier, Matriks, Fungsi, Barisan dan deret, Beberapa Cara pembuktian Pengertian Himpunan Pengantar Teori Himpunan Himpunan adalah

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

Logika Pembuktian. Matematika Informatika 3 Onggo

Logika Pembuktian. Matematika Informatika 3 Onggo Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen. MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

HIMPUNAN MEMBAHAS TENTANG:

HIMPUNAN MEMBAHAS TENTANG: Modul ke: HIMPUNAN MEMBAHAS TENTANG: Fakultas Ekonomi dan Bisnis Program Studi Akuntansi www.mercubuana.ac.id PENGERTIAN HIMPUNAN, PENYAJIAN HIMPUNAN, HIMPUNAN UNIVERSAL DAN HIMPUNAN KOSONG, OPERASI HIMPUNAN,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang PENGANTAR GRUP Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 18, 2013 1 Daftar Isi 1 Tujuan 3 2 Pengantar Grup 3 3 Sifat-sifat Grup

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci