BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian, definisi, proposisi dan teorema yang berkaitan dengan pembahasan. Definisi Sistem Persamaan Linear (SPL) Sistem Persamaan Linear (SPL) m n adalah m persamaan linear dengan n variabel (peubah). Bentuk umumnya adalah sebagai berikut: = = = dengan dan berupa konstanta, i = 1, 2,, m; j = 1, 2,, n, sedangkan merupakan variabel yang ingin ditentukan nilainya. Nilai disebut koefisien pada persamaan ke-i. Suatu sistem persamaan linear dengan bentuk = = = = 0 disebut SPL homogen. Bentuk umum dari SPL homogen adalah sebagai berikut: = = = 0 (Gunawan Santosa R. 2009) Definisi Matriks Matriks adalah susunan segi empat yang unsur-unsurnya berupa bilanganbilangan. Matriks X dengan ordo m n adalah matriks dengan ukuran m baris dan n kolom, simbolnya adalah sebagai berikut.

2 5 X = Unsur matriks yang disimbolkan dengan dimana i = 1, 2,, m dan j = 1, 2,, n, dibaca sebagai unsur matriks X pada baris ke-i dan kolom ke-j. (Gunawan Santosa R. 2009) Definisi Field Suatu himpunan yang padanya didefinisikan operasi jumlah (+) dan operasi kali (.) disebut field, notasi, jika memenuhi sifat-sifat berikut, 1. merupakan grup komutatif terhadap +, yaitu memenuhi sifat-sifat: a. Asosiatif: (,, ) ( + ) + = + ( + ), b. mempunyai unsur identitas: ( 0 ) ( ) 0 + = + 0 =, c. Setiap unsur dari mempunyai invers: ( ) ( ) + = + = 0, dalam hal ini = ( ), dan d. komutatif: ( ). 2., dimana =, merupakan grup komutatif terhadap., bersifat: a. asosiatif: ( ) ( ), b. mempunyai unsur identitas: ( ) ( ) 1..1 =, c. setiap unsur dari mempunyai invers: ( ) ( ), dalam hal ini dinotasikan ), dan d. komutatif: ( ). 3. Berlaku sifat distributif. terhadap + : ( ) atau ( ) Contoh field takhingga diantaranya adalah: himpunan bilangan real, himpunan bilangan kompleks, sedangkan contoh dari field berhingga diantaranya adalah = {0,1, 2,, ( 1)} dengan operasi jumlah dan kali modulo, dimana bilangan prima. Jadi adalah contoh field berhingga dengan anggotanya adalah {0,1}.

3 6 Definisi Ruang Vektor Diberikan sembarang himpunan dan sembarang field. Pada didefinisikan aturan jumlah dan aturan perkalian dengan skalar. Himpunan disebut ruang vektor atas jika terhadap aturan-aturan tersebut memenuhi 10 aksioma-aksioma berikut. 1. ( u, v )( w ) u + v = w. 2. ( u, v, w ) (u + v) + w = u + (v + w). 3. ( 0 )( u ) 0 + u = u + 0 = u. 4. ( u ) ( v ) u + v = v + u = 0, dalam hal ini v = u. 5. ( u, v ) u + v = v + u. 6. ( k, u )( v ) ku = v. 7. ( k, u, v ) k(u + v) = ku + kv. 8. ( k, l, u ) (k + l) u = ku + lu. 9. ( k, l, u ) (kl)u = k(lu). 10. ( u ) 1u = u dimana 1 adalah unsur identitas dari terhadap operasi kali. Unsur-unsur dari dalam hal ini merupakan skalar, sedangkan unsur-unsur dari disebut dengan vektor. Sebagai contoh: misalkan merupakan himpunan dari pasangan terurut dengan panjang n yang unsur-unsurnya merupakan elemen dari, yaitu = {(,,, ) }. Misalkan pula v =, w =, dan. Operasi Penjumlahan di didefinisikan sebagai v + w =. Sedangkan perkalian dengan skalar didefinisikan sebagai.v =. Maka merupakan ruang vektor. Definisi Subruang (Subspace) Misalkan adalah ruang vektor atas skalar dan. Himpunan disebut subruang dari jika juga merupakan ruang vektor atas terhadap operasi yang sama dengan.

4 7 Teorema 1 Misalkan adalah ruang vektor atas skalar dan, maka tiga proposisi berikut ini ekivalen. (i) subruang dari. (ii) Berlaku dua sifat berikut ini: (a) (, ) +, dan (b) ( k, w ) kw. (iii) ( k, l,, ) k + l. Definisi Kombinasi Linear Misalkan adalah ruang vektor atas skalar. Diberikan himpunan = {,,, } terdiri atas n vektor dalam. Suatu vektor v disebut kombinasi linear dari jika (,,, ) sehingga v =. Definisi Bebas Linear dan Terpaut linear Misalkan adalah ruang vektor atas skalar, dan misalkan = adalah himpunan yang terdiri atas n vektor dalam. disebut bebas linear jika memenuhi persamaan berikut ( i I = {1,2,,n} = 0). Ingkarannya, disebut terpaut linear jika ( j I = {1,2,, n} 0). Definisi Perentang / Span Jika S = adalah vektor-vektor di dalam ruang vektor dan jika tiap-tiap vektor di dalam dapat dinyatakan sebagai kombinasi linear dari S, maka dikatakan bahwa vektor-vektor S merentang (spanning). Jika =, maka S disebut himpunan perentang. Dan dikatakan direntang oleh S. (Gunawan Santosa R. 2009)

5 8 Definisi Basis Jika adalah sembarang ruang vektor dan S = { } adalah sebuah himpunan berhingga dari vektor-vektor di dalam, maka S dinamakan sebuah basis untuk jika: 1. S bebas linear. 2. S merentang. (Gunawan Santosa R. 2009) Definisi Dimensi Dimensi dari sebuah ruang vektor vektor-vektor dari basis di. didefinisikan sebagai banyaknya (Gunawan Santosa R. 2009) Definisi Ruang Baris dan Ruang Kolom Jika diketahui matriks A berukuran m n, maka subruang yang direntang oleh vektor-vektor baris dinamakan ruang baris (row space) dari A. Sedangkan subruang yang direntang oleh vektor-vektor kolom dinamakan ruang kolom (column space) dari A. (Gunawan Santosa R. 2009) Definisi Rank Dimensi ruang baris atau ruang kolom dari matriks A dinamakan rank dari matriks A. (Gunawan Santosa R. 2009) Definisi Produk dalam Misalkan adalah ruang vektor atas skalar, misalkan x, y sembarang. Operasi biner dari x dan y bernilai dalam, dinotasikan, disebut produk dalam (inner product) jika memenuhi sifat-sifat berikut. Untuk setiap x, y, z dan k, l berlaku: 1. Simetrik: = 2. Linearitas: = k + l, dan

6 9 3. Positifitas: 0 dan = 0 jhj x = 0. Sebagai contoh: misalkan x = { } dan y = { }. Produk dalam baku dari x dan y didefinisikan sebagai berikut = x.y =. Definisi Ortogonal Dua vektor x dan y di dalam ruang vektor dikatakan ortogonal, dinotasikan x y, jika = 0. Definisi Komplemen Ortogonal Misalkan adalah ruang vektor dan S. Komplemen ortogonal (disebut juga dual) dari S, notasi, didefinisikan sebagai =. Sebagai contoh: misalkan v =, w = ; v, w. i. Vektor v & w dikatakan saling tegak lurus (orthogonal) jika v.w = 0 ii. Misalkan S merupakan himpunan bagian dari. Komplemen orthogonal dari S, notasi didefinisikan sebagai =. Jika S =, maka =. Jika S merupakan subruang dari ruang vektor, maka merupakan subruang dari ruang vektor dan =. Definisi Kode Linear Misalkan diberikan field berhingga F q. Misalkan pula n F q merupakan himpunan dari vektor-vektor atas F q dengan panjang n. Kode linear C didefinisikan sebagai subruang dari ruang vektor n F q.

7 10 Definisi Kode Dual Misalkan C merupakan kode linear atas, maka Kode dual (dual code) dari C, notasi, adalah komplemen orthogonal dari C. Teorema 2 Misal C adalah kode linear atas dengan panjang n dan dimensi k, maka : i. = dim ( C ) = ii. juga merupakan suatu kode linear dan dim (C ) + dim = n iii. = C Dengan demikian jika C berdimensi k, maka berdimensi r = n k. Definisi Jarak Hamming (Hamming distance) Diberikan ruang vektor atas lapangan. Misalkan pula x dan y adalah anggota dari (x, y ). Jarak Hamming antara x dan y yang dinotasikan dengan d( xy,, ) didefinisikan sebagai berikut. (, ) (, ) (, )... (, ) d x y = d x y + d x y + d x y, dengan n n (, ) d x y i i 1 = 0 x x i i yi. = y i Definisi Jarak Minimum suatu kode (Minimum distance of a code) Misalkan C adalah kode linear yang memiliki kata kode lebih dari satu. Jarak minimum untuk C, yang dinotasikan d( C ), didefinisikan sebagai ( ) ( ) { } dc = min d xy, xy, Cx, y. Parameter Kode Linear Kode linear C dengan panjang n dan berdimensi k disebut dengan kode linear dengan parameter [n, k]. Jika jarak minimum d dari C diketahui, maka C disebut kode linear dengan parameter [n, k, d]. Atau disebut kode linear-[n, k, d].

8 11 Untuk selanjutnya, jika parameter dari suatu kode tidak ditekankan, cukup disebutkan bahwa C adalah suatu kode linear. Anggota dari C disebut dengan kata kode. Definisi Bobot Hamming (Hamming weight) Diberikan ruang vektor. Misalkan pula x. Bobot Hamming (Hamming Distance), yang dinotasikan wt(x) didefinisikan sebagai jumlah koordinat/unsur yang tak nol: Wt(x) = d(x, 0) dengan 0 adalah vektor nol atau dapat pula didefnisikan sebagai berikut. 1 jika x 0 wt( x) = d( x,0) =. 0 jika x = 0 Lema 1. Diberikan ruang vektor. Misalkan x, y, maka d(x, y) = wt(x y). Definisi Bobot Minimum Hamming Diberikan kode linear C. Minimum Hamming weight (Bobot minimal Hamming) dari C, dinotasikan wt ( C ), didefinisikan sebagai bobot terkecil dari kata kode tak nol dari C. Teorema 3 Misalkan C adalah suatu kode linear, maka d ( C) wt ( C) =. Definisi Matriks Generator dan Matriks Cek Paritas i. G dikatakan matriks generator bagi kode C jika baris-barisnya merupakan basis untuk C. ii. H dikatakan matriks cek paritas dari kode C jika H merupakan matriks generator bagi kode dual.

9 12 Bentuk Standar dari Matriks Cek Paritas H dan Matriks Generator G Diberikan kode linear C. Misalkan H dan G, secara berturut-turut adalah matrik cek paritas dan matrik generator untuk kode linear C. Teorema 4 i. Bentuk standar untuk matriks generator G adalah ( I ) I = Matriks identitas berukuran k k. k k X, dengan ii. Bentuk standar untuk matriks cek paritas H adalah ( Y In k), dengan I Matriks identitas berukuran ( n k) ( n k) n k =. Misalkan H adalah suatu matriks cek paritas bagi kode linear C, maka i. C memiliki jarak minimum ii. Teorema 5 Jika G = dari H saling bebas linear. d jika dan hanya jika d 1 kolom C memiliki jarak minimum d jika dan hanya jika d kolom dari H saling tidak bebas linear. adalah bentuk standar dari matriks generator untuk suatu kode C dengan parameter [n, k], maka matriks cek paritas untuk kode C adalah H =. Definisi Ekivalensi dari Kode Linear Misalkan diberikan sembarang kode linear C dan 1 C. 2 C dan 1 C dikatakan 2 ekivalen jika salah satunya dapat diperoleh dari kode yang lain dengan cara mengkombinasikan operasi-operasi sebagai berikut. i. Mempermutasikan digit-digit yang ada di kata kode tersebut. ii. Mengalikan posisi tertentu dengan skalar.

10 13 Model Aljabar Kode Linear Biner. Jika menotasikan ruang vektor standar berdimensi n atas dasar field biner = {0,1}. Maka definisi Bobot (Hamming weight) dari suatu vektor x adalah banyaknya simbol tak nol dalam x dan dinotasikan t (x). Definisi Jarak (Hamming distance) antara dua vektor x,y adalah banyaknya posisi digit dari x dan y dimana simbol mereka berbeda dan dinotasikan d(x,y), jelas bahwa d(x,y) = t(x + y). Sebagai contoh, di dalam ruang vektor, jika x = dan y = , maka: d(x,y) = t( ) = t (011011) = 4 Dalam praktek, pengertian tersebut terkait dengan makna fisik sebagai berikut. Jika pesan x akan dikirim dan berubah menjadi y saat diterima, maka d(x,y) merepresentasikan banyaknya galat yang terjadi. d(x,y) = 0 berarti tidak terjadi kesalahan saat pengiriman. Dari definisi kode di atas dapat disimpulkan bahwa suatu kode linear biner dengan panjang n merupakan subruang C dari ruang vektor. Anggota suatu kode disebut dengan katakode (codeword). Mengonstruksi suatu kode bukan suatu hal yang sederhana karena harus mempertimbangkan makna praktek yang dijelaskan sebagai berikut. Kode merupakan representasi dari himpunan semua pesan. Artinya satu katakode mewakili satu pesan. Kode diciptakan untuk melindungi (koreksi atau deteksi) pesan dari kesalahan saat pengiriman. Dengan demikian di dalam setiap bitstring katakode harus mengandung dua makna, yaitu simbol pesan dan simbol cek. Simbol pesan telah diketahui (diberikan) sebagai bentuk biner dari pesan, sedangkan simbol cek merupakan simbol ekstra yang ditempelkan pada pesan. Biasanya nilai simbol cek bergantung pada simbol pesan. Berikut ini diberikan ilustrasi bagaimana mengonstruksi suatu kode berdasarkan persamaan aljabar. Contoh 1: Definisikan suatu kode C dengan panjang 6 di dalam ruang dengan syarat : x = C jika dan hanya jika simbol pesan dan simbol cek yang memenuhi persamaan : = + = + + = +

11 14 Karena simbol pesan berukuran 3 bit, maka himpunan semua simbol pesan adalah = {000, 001, 010, 011, 100, 101, 110, 111} Jika = 011, berarti = 0, = 1 dan = 1, maka = = 1, = = 0, dan = = 0, sehingga C. Secara lengkap pendefinisian C diberikan dalam tabel berikut : Tabel 1 Contoh pendefinisian pesan menjadi katakode Simbol Pesan Katakode Jadi C = {000000, , , , , , , }. Ilustrasi praktek dari contoh di atas diberikan sebagai berikut. Suatu pesan 110 akan dikirim, maka pesan itu terlebih dahulu harus diubah (dienkoding) menjadi kata kode. Ini berarti 110 menjadi input dari enkoder. Dan enkoder melakukan perhitungan dengan menggunakan algoritma sebagaimana dirumuskan pada contoh tersebut untuk mengubahnya menjadi katakode. Output dari enkoder adalah berupa kata kode x = Katakode inilah yang kemudian dikirim melalui saluran yang diasumsikan terganggu (noisy). Apabila pada saat pengiriman terjadi gangguan dan x berubah menjadi y = , maka dekoder harus mampu paling tidak mendeteksi dan akan lebih baik kalau bisa mengoreksi.

12 15 Pengertian Matriks Cek Paritas Suatu matriks H berukuran r x n yang semua barisnya merupakan suatu basis untuk disebut matriks cek paritas (parity check matrix) dari C. Pengertian matriks paritas ini berimplikasi pada pendefinisian kode linear yang berkaitan dengan cara konstruksi seperti pada contoh 1 diatas, yaitu : C = {x H = 0} Dengan kata lain, C adalah himpunan solusi dari SPL H = 0 (disebut dengan kernel H). Mengkonstruksi (membuat) kode linear dengan panjang n dan berdimensi k sama artinya dengan mendefinisikan matriks cek paritas seperti yang dimaksud di atas. Disamping itu matriks cek paritas berfungsi mengubah pesan menjadi katakode, dengan kata lain ia merupakan parameter didalam enkoding. Enkoding kode linear dengan menggunakan matriks paritas H di ilustrasikan sebagai berikut. Diberikan blok simbol pesan dengan panjang k, misalnya u =., akan dienkode menjadi kata kode x =. dimana n k dengan menggunakan matriks cek paritas H yang telah didefinisikan sebelumnya. Maka pertama kali didefinisikan : =, =,.., =, dan diikuti dengan pendefinisian r = (n k) simbol cek,. yang nilainya bergantung pada nilai simbol pesan. Ketergantungan ini ditentukan oleh H dengan menyelesaikan SPL homogen berikut. H = 0 H = (1) Demi kemudahan penyelesaian, matriks H biasanya diberikan dalam bentuk standar, yaitu H = ( A C ) (2) dengan A adalah matriks biner berukuran r x k, dan adalah matriks idetitas berukuran r x r. Jika H belum berbentuk standar, maka dengan operasi baris/kolom elementer dapat dicari matriks ekuivalen standarnya. Untuk semua

13 16 perhitungan menggunakan aritmetik operasi modulo 2 yang telah didefinisikan pada. Berikut ini adalah ilustrasi proses kalkulasi enkoding dengan menggunakan matriks H. Contoh 2: Didefinisikankan matriks cek paritas H = Dari ukuran H diperoleh n = 6; n k = 3, sehingga k = 3. Terlihat bahwa matriks H mempunyai bentuk standar sama dengan A = Pesan u = akan dienkode menjadi x =. Hal ini dimulai dari = ; = ; = ; kemudian dipilih sehingga memenuhi H = 0, sehingga diperoleh Sistem Persamaan Linear (SPL) + + = 0; + + = 0; + + = 0: dan disebut SPL cek paritas. Misalnya pesan u = 110, maka = 1, = 1, = 0, dan dari SPL diperoleh = -1 = 1 = -1 = 1 = -1 1 = = 0 Ini berarti H mengubah pesan u = 110 menjadi katakode x = Secara keseluruhan, karena k = 3, maka ada = 8 pesan berbeda yang bertindak sebagai input dalam enkoding, sehingga H mendefinisikan kode C dengan anggota 8 katakode. C = {000000, , , , , , , } Selain menggunakan matriks cek paritas H, untuk mengkonstruksi C juga bisa menggunakan matriks generator dari C, biasanya dinotasikan dengan G. Dengan demikian, semua baris dari G merupakan basis untuk C. Akibatnya, G berukuran

14 k x n dan setiap katakode merupakan kombinasi linear dari semua vektor baris dari G, dengan kata lain C = Merentang ({,,. }) dimana {,,. } adalah himpunan semua baris dari G. Dasar-dasar Konstruksi Kode Apabila suatu kode telah berhasil dikonstruksi, maka kode dengan parameter yang berbeda dapat pula dikonstruksi, berikut adalah beberapa cara untuk mendapatkan kode lain tersebut. 1. Penambahan pada matriks cek paritas Misalkan C adalah suatu kode linear biner dengan parameter [ nkd,, ] dengan beberapa kata kode nya berbobot ganjil. Dari kode tersebut akan dibentuk kode baru Ĉ dengan menambahkan bit "0" di akhir kata kode yang berbobot genap, dan bit "1" di akhir kata kode yang berbobot ganjil. Dengan penambahan ini, jarak tiap pasang kata kode menjadi genap. Jika jarak minimum kode C ganjil, maka kode yang baru memiliki jarak minimum d + 1, Sehingga Ĉ memiliki parameter [ n 1, kd, 1] Secara umum, proses penambahan simbol pada matriks cek paritas disebut sebagai exending a code (memperluas suatu kode). (MacWilliams & Sloane,1981) 2. Penghapusan dengan cara menghilangkan beberapa kata kode Misalkan kode linear biner C memiliki parameter [ nkd,, ] dan memiliki kata kode dengan bobot ganjil dan genap. Kata kode dengan bobot ganjil dapat dihapus untuk mendapatkan kode baru dengan parameter [ nk, 1, d' ]. Pada umumnya d' > d. (MacWilliams & Sloane,1981)

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 13 DAN 15 HENDRAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

3 HASIL DAN PEMBAHASAN

3 HASIL DAN PEMBAHASAN 3 HASIL DAN PEMBAHASAN 3.1 Formulasi Masalah Sejauh ini telah diperkenalkan bahwa terdapat tiga parameter yang terkait dengan konstruksi suatu kode, yaitu panjang, dimensi, dan jarak minimum. Jika C adalah

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents Table of Contents 1 1 Pendahuluan 2 1.1 Koreksi dan deteksi pola kesalahan....................... 5 1.2 Laju Informasi.................................. 6 1.3 Efek dari penambahan paritas..........................

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN

BAB III HASIL DAN PEMBAHASAN 13 BAB III HASIL DAN PEMBAHASAN 3.1 Formulasi masalah Misalkan C [ n,k,d ] adalah kode linear biner yang mempunyai panjang n, berdimensi k dan jarak minimum d. kode C dikatakan baik jika n kecil, k besar

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA

KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA KONSTRUKSI KODE LINEAR BINER OPTIMAL KUAT BERJARAK MINIMUM 5 DAN 7 ASRIZA RAHMA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

BAB I PENDAHULUAN. Penyampaian pesan dapat dilakukan dengan media telephone, handphone,

BAB I PENDAHULUAN. Penyampaian pesan dapat dilakukan dengan media telephone, handphone, BAB I PENDAHULUAN. Latar Belakang Sekarang ini teknologi untuk berkomunikasi sangatlah mudah. Penyampaian pesan dapat dilakukan dengan media telephone, handphone, internet, dan berbagai macam peralatan

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Pada BAB IV ini dibahas tentang permasalahan sebagai berikut: Kajian Teori yang digunakan dalam penelitian, Membahas Aritmetik Aljabar Matriks, Program-program Aritmetik Aljabar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan

BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan BAB I PENDAHULUAN A. Latar Belakang Teori pendeteksian error dan pengoreksi sandi adalah cabang dari teknik mesin dan matematika yang berhubungan dengan transmisi dan storage yang dapat dipercaya. Dalam

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Media informasi, seperti sistem komunikasi dan media penyimpanan untuk data, tidak sepenuhnya reliabel. Hal ini dikarenakan bahwa pada praktiknya ada (noise) atau inferensi

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard

Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard Vol 3, No 2, 22-27 7-22, Januari 207 22 Proses Decoding Kode Reed Muller Orde Pertama Menggunakan Transformasi Hadamard Andi Kresna Jaya Abstract The first order Reed Muller, that is written R(,r), is

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

Kode Sumber dan Kode Kanal

Kode Sumber dan Kode Kanal Kode Sumber dan Kode Kanal Sulistyaningsih, 05912-SIE Jurusan Teknik Elektro Teknologi Informasi FT UGM, Yogyakarta 8.2 Kode Awalan Untuk sebuah kode sumber menjadi praktis digunakan, kode harus dapat

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

Deteksi dan Koreksi Error

Deteksi dan Koreksi Error Bab 10 Deteksi dan Koreksi Error Bab ini membahas mengenai cara-cara untuk melakukan deteksi dan koreksi error. Data dapat rusak selama transmisi. Jadi untuk komunikasi yang reliabel, error harus dideteksi

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

Sandi Blok. Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM

Sandi Blok. Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM Sandi Blok Risanuri Hidayat Jurusan Teknik Elektro dan Teknologi Informasi FT UGM Sandi Blok disebut juga sebagai sandi (n, k) sandi. Sebuah blok k bit informasi disandikan menjadi blok n bit. Tetapi sebelum

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

ANALISIS ALGORITMA DAN WAKTU DEKODING KODE BCH DALAM PENGOREKSIAN GALAT PADA TRANSMISI PESAN TEKS. Oleh : FITRI G

ANALISIS ALGORITMA DAN WAKTU DEKODING KODE BCH DALAM PENGOREKSIAN GALAT PADA TRANSMISI PESAN TEKS. Oleh : FITRI G ANALISIS ALGORITMA DAN WAKTU DEKODING KODE BCH DALAM PENGOREKSIAN GALAT PADA TRANSMISI PESAN TEKS Oleh : FITRI G64102003 DEPARTEMEN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

KONSTRUKSI KODE BCH SEBAGAI KODE SIKLIK Indrawati, Loeky Haryanto, Amir Kamal Amir.

KONSTRUKSI KODE BCH SEBAGAI KODE SIKLIK Indrawati, Loeky Haryanto, Amir Kamal Amir. KONSTRUKSI KODE BCH SEBAGAI KODE SIKLIK Indrawati, Loeky Haryanto, Amir Kamal Amir. Abstrak Diberikan suatu polinom primitif f(x) F q [x] berderajat m, lapangan F q [x]/(f(x)) isomorf dengan ruang vektor

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI FRM/FMIPA/063-00 12 Februari 2013 Fakultas : MIPA Program Studi : Matematika Mata Kuliah & Kode : Teori Persandian / SMA 349 Jumlah sks : Teori

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3)

KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3) KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3) Aurora Nur Aini, Bambang Irawanto Jurusan Matematika FMIPA UNDIP Jl. Prof. Soedarto, S. H, Semarang 5275 Abstract. Hamming code can correct

Lebih terperinci

BAB II KAJIAN TEORI. Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan. himpunan bilangan prima kurang dari 12 yaitu A = {2,3,5,7,11}.

BAB II KAJIAN TEORI. Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan. himpunan bilangan prima kurang dari 12 yaitu A = {2,3,5,7,11}. BAB II KAJIAN TEORI A. Lapangan Berhingga Himpunan merupakan suatu kumpulan obyek-obyek yang didefinisikan dengan jelas pada suatu batasan-batasan tertentu. Contoh himpunan hewan berkaki empat H4 ={sapi,

Lebih terperinci

04-Ruang Vektor dan Subruang

04-Ruang Vektor dan Subruang 04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi

PROYEKSI ORTOGONAL PADA RUANG HILBERT. Skripsi PROYEKSI ORTOGONAL PADA RUANG HILBERT Skripsi Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna Memenuhi Gelar Sarjana

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

KOREKSI KESALAHAN. Jumlah bit informasi = 2 k -k-1, dimana k adalah jumlah bit ceknya. a. KODE HAMMING

KOREKSI KESALAHAN. Jumlah bit informasi = 2 k -k-1, dimana k adalah jumlah bit ceknya. a. KODE HAMMING KOREKSI KESALAHAN a. KODE HAMMING Kode Hamming merupakan kode non-trivial untuk koreksi kesalahan yang pertama kali diperkenalkan. Kode ini dan variasinya telah lama digunakan untuk control kesalahan pada

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty

ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty ENCODING DAN DECODING KODE HAMMING SEBAGAI KODE TAK SIKLIK DAN SEBAGAI KODE SIKLIK Lilik Hardianti, Loeky Haryanto, Nur Erawaty Abstrak Kode linear biner [n, k, d] adalah sebuah subruang vektor C GF(2

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. . Matriks dan Sistem Persamaan Linear Definisi Persamaan dalam variabel dan y dapat ditulis dalam

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data

Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Encoding dan Decoding Kode BCH (Bose Chaudhuri Hocquenghem) Untuk Transmisi Data A-3 Luthfiana Arista 1, Atmini Dhoruri 2, Dwi Lestari 3 1,

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berkembangnya jaman yang semakin maju dan modern turut dipengaruhi oleh perkembangan ilmu pengetahuan yang dimiliki manusia. Hal tersebut dapat dilihat secara nyata

Lebih terperinci

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks

2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks 2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf

Lebih terperinci

BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI

BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI BEBERAPA KARAKTERISTIK KRIPTOSISTEM KUNCI PUBLIK BERDASARKAN MATRIKS INVERS TERGENERALISASI Oleh Budi Murtiyasa FKIP Universitas Muhammadiyah Surakarta Makalah disampaikan pada Seminar Nasional Matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci