BAB 1 PENDAHULUAN. 1.1 Latar Belakang
|
|
|
- Doddy Darmali
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Teori graf adalah cabang kajian matematika yang mempelajari sifat-sifat graf. Secara sederhana, suatu graf adalah himpunan benda-benda yang disebut titik yang terhubung oleh sisi. Biasanya graf digambarkan sebagai kumpulan titiktitik yang dihubungkan oleh garis-garis (melambangkan sisi). Suatu sisi dapat menghubungkan suatu titik dengan titik yang sama. Sisi yang demikian disebut loop. Andaikan G adalah sebuah graf. Sebuah jalan dengan panjang t yang menghubungkan titik u dan v di G merupakan sebuah barisan t buah sisi dalam bentuk {u = u 0, u 1 }, {u 1, u 2 }, {u 2, u 3 },..., {u t 1, u t = v} yang dapat dinotasikan dengan u = v 0 v 1 v 2 v t 1 v t = v. Lebih sederhananya, sebuah jalan dengan panjang t yang menghubungkan titik u dan v dinotasikan dengan u t v. Sebuah jalan dengan u v dikatakan terbuka dan sebuah jalan dengan u = v dikatakan tertutup. Sebuah jalan adakalanya memuat sisi yang berulang. Sebuah jalan tanpa perulangan sisi disebut sebagai lintasan. Panjang lintasan adalah jumlah sisi pada lintasan tersebut. Jarak dari u dan v, yaitu d(u, v) merupakan panjang dari lintasan terpendek yang menghubungkan u dan v. Sebuah lintasan dikatakan tertutup apabila u = v. Sebuah lingkaran adalah suatu lintasan tertutup. Sebuah graf G dikatakan terhubung apabila untuk setiap pasangan titik u dan v di G terdapat jalan yang menghubungkan u dan v. Sebuah graf terhubung G dikatakan primitif apabila terdapat bilangan bulat positif k sedemikian sehingga untuk setiap pasangan titik u dan v di G terdapat jalan sepanjang k dari titik u ke titik v di G. Bilangan bulat positif k yang terkecil disebut dengan eksponen dari G dan dinotasikan dengan exp(g). Sebuah graf G juga dikatakan primitif jika dan hanya jika terhubung dan mengandung lingkaran dengan panjang ganjil. 1
2 2 Penelitian mengenai eksponen telah banyak dilakukan diantaranya Fuyi et al. (1999) yang membuktikan bahwa setiap graf primitif ganjil harus memuat 2 titik yang saling lepas dengan lingkaran ganjil, serta menggolongkan keluarga dari graf primitif ganjil yang eksponennya mencapai batas atas. Akelbek dan Kirkland (2009) pertama kali memperkenalkan scrambling index dengan mendefinisikan scrambling index dari graf primitif G, dinotasikan dengan k(g) adalah bilangan bulat positif terkecil k sehingga untuk setiap dua titik u dan v yang berbeda di G, terdapat sebuah titik w dengan sifat terdapat u k w dan v k w. Untuk setiap dua titik u dan v yang berbeda, scrambling index lokal dari u dan v adalah bilangan bulat positif k u,v (G) yang didefinisikan sebagai k u,v (G) = min w V {k : u k w dan v k w} Dari definisi scrambling index k(g) dan scrambling index lokal k u,v (G) diperoleh hubungan k(g) k u,v (G). Karena G adalah graf terhubung, maka untuk setiap bilangan bulat l k u,v (G) dapat ditemukan sebuah titik w sehingga terdapat u l w dan v l w. Hal ini mengakibatkan nilai dari k(g) yang juga disebut dengan scrambling index global adalah maksimum dari nilai-nilai scrambling index lokal k u,v (G) yang didefinisikan sebagai k(g) = max u v {k u,v(g)} Scrambling index dari sebuah graf primitif G dapat diselesaikan menggunakan matriks ketetanggaan dari G yaitu matriks A(G) n n = (a ij ), dimana a ij = 1 jika v i adjacent terhadap v j dan a ij = 0 untuk lainnya. Karena a ij = a ji maka A adalah matriks simetris. Scrambling index dari A adalah bilangan bulat positif terkecil k sedemikian sehingga untuk setiap dua baris dari A k memiliki paling sedikit satu entri positif pada kolom yang sama, dinotasikan dengan k(a). Pada awalnya, penelitian mengenai scrambling index dilakukan pada kelas digraf primitif. Akelbek dan Kirkland (2009a) memperlihatkan tentang batas atas pada scrambling index dari digraf primitif D dengan n titik dan s lilitan. Lebih lanjut Akelbek dan Kirkland (2009b) juga memperlihatkan tentang karakteristik dari semua digraf primitif sehingga scrambling index sama dengan batas atas pada scrambling index digraf primitif D.
3 3 Chen dan Liu (2010) memperlihatkan hubungan antara scrambling index dan eksponen dari graf primitif, jika G adalah graf primitif dengan order n 2 dan u, v adalah pasangan titik dari G adalah dan k(g) = expg (u, v) k u,v (G) 2 exp(g) dengan a adalah integer terkecil a. 2 Chen dan Liu juga mendiskusikan tentang karakteristik graf primitif yang scrambling index sama dengan nilai maksimum dari scrambling index graf primitif G. Selanjutnya, Liu dan Huang (2010) memberikan batas atas untuk scrambling index dari graf primitif dengan lingkaran sepanjang s yaitu k(g) (s 1)/2 + (n s) Batas ini dicapai untuk graf primitif G dengan lingkaran ganjil C s sepanjang s dengan max v V {d(v, C s )} = n s. Gao dan Shao (2013) melakukan penelitian tentang scrambling index dari graf primitif berbentuk lingkaran atas n titik ganjil C s : v 1 v 2 v 3 v s v 1, yaitu k(c n ) = (n 1)/2. Penelitian ini akan secara khusus membahas mengenai scrambling index dari kelas graf primitif ring star dan 2 buah variasinya yaitu graf wheel dan steering ship, dengan definisi sebagai berikut: 1. Graf s-ring star (R) terdiri dari sebuah lingkaran dengan panjang s 3 dimana s adalah ganjil bersama s buah sisi yang menghubungkan masingmasing titik pada lingkaran dengan sebuah titik lain di luar lingkaran. Gambar 1.1 : Bentuk umum graf primitif s-ring star (R)
4 4 2. Graf s-wheel (W ) terdiri dari satu buah lingkaran dengan panjang s 2 dan s buah sisi yang menghubungkan masing-masing titik pada lingkaran dengan satu buah titik di dalam lingkaran. Gambar 1.2 : Bentuk umum graf primitif s-wheel (W ) 3. Graf s-steering Ship (S) terdiri dari satu buah lingkaran dengan panjang s 2 dan 1 buah titik di dalam lingkaran yang menghubungkan dirinya dengan semua titik pada lingkaran serta s buah sisi yang menghubungkan masing-masing titik pada lingkaran dengan 1 buah titik lain di luar lingkaran. Gambar 1.3 : Bentuk umum graf primitif s-steering ship (S) 1.2 Perumusan Masalah Penelitian ini membahas mengenai graf primitif ring star dan dua variasi lainnya yaitu graf primitif wheel dan graf primitif steering ship. Andaikan terdapat graf s-ring star (R), graf s-wheel (W ), dan graf s-steering Ship (S) apakah bentuk umum dari nilai scrambling index pada graf-graf tersebut? Karena syarat dari scrambling index adalah graf primitif yang harus memuat lingkaran ganjil, maka untuk kasus s-ring star (R) s 3 dan s adalah ganjil.
5 5 1.3 Tujuan Penelitian Tujuan dari penelitian ini adalah mendapatkan pola atau bentuk umum nilai scrambling index dari kelas graf primitif s-ring star (R), s-wheel (W ) dan s- steering ship (S). 1.4 Manfaat Penelitian Penelitian ini diharapkan dapat memberikan teori-teori baru tentang scrambling index dari kelas graf primitif, terutama kelas graf ring star, sehingga dapat menjadi referensi bagi penelitian-penelitian selanjutnya.
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Penelitian
BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Graf merupakan pokok bahasan matematika yang banyak mendapat perhatian karena aplikasinya sangat berguna untuk menyelesaikan persoalan kehidupan manusia.
BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf
BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,
BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf
BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan
BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf
BAB 2 GRAF PRIMITIF Pada bagian ini akan dijelaskan mengenai definisi graf, istilah-istilah dalam graf, matriks ketetanggaan, graf terhubung, primitivitas graf, dan scrambling index. 2.1 Definisi Graf
BAB 2 DIGRAF PRIMITIF
6 BAB 2 DIGRAF PRIMITIF Pada bagian ini, peneliti akan menjelaskan bahwa digraf k D n merupakan sebuah digraf primitif. Penjelasan tersebut diperkuat dengan memaparkan beberapa definisi digraf dan beberapa
SCRAMBLING INDEX DARI KELAS DIGRAF HAMILTON DWIWARNA DENGAN N TITIK GANJIL SKRIPSI MERRYANTY LESTARI P
SCRAMBLING INDEX DARI KELAS DIGRAF HAMILTON DWIWARNA DENGAN N TITIK GANJIL SKRIPSI MERRYANTY LESTARI P 110803067 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA
SCRAMBLING INDEX DARI GRAF RING-STAR DAN VARIASINYA
SCRAMBLING INDEX DARI GRAF RING-STAR DAN VARIASINYA SKRIPSI FITRIANA 100803027 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014 SCRAMBLING INDEX
2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D.
BAB 2 DIGRAF DWI-WARNA PRIMITIF Pada Bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. konsep dasar yang dimaksud adalah yang berkaitan
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Penelitian mengenai eksponen digraf dwiwarna telah banyak dilakukan. Shader dan Suwilo (003) adalah yang pertama sekali melakukan penelitian tersebut. Pada
BAB 2 DIGRAPH DWIWARNA PRIMITIF
BAB 2 DIGRAPH DWIWARNA PRIMITIF Pada bagian ini akan diberikan beberapa konsep dasar seperti teorema dan definisi sebagai landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi
Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1. Latar Belakang Sebuah graph G adalah sebuah objek yang terdiri atas sekumpulan titik yang disebut verteks dan garis yang menghubungkan dua buah verteks yang disebut sisi atau edge.
BAB 1 PENDAHULUAN. demikian diamati oleh suatu objek di matematika yang disebut dengan digraph.
BAB 1 PENDAHULUAN 1.1 Latar Belakang Penelitian Dalam kehidupan sehari-hari kita sering mendengar atau melihat sistem jalan satu arah, arus listrik, jaringan kerja dll. Biasanya hal-hal tersebut diatas
DAFTAR ISI PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR GAMBAR BAB 1. PENDAHULUAN 1
DAFTAR ISI Halaman PERSETUJUAN PERNYATAAN PENGHARGAAN ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR i ii iii iv v vi viii BAB 1. PENDAHULUAN 1 1.1. Latar Belakang Penelitian 1 1.2. Perumusan Masalah 3 1.3.
VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT
vi VERTEX EXPONENT OF A TWO-COLOURED DIGRAPH WITH 2 LOOPS ABSTRACT A digraph D in which each of its arcs is coloured by either red or blue is called two-coloured digraph. A strongly connected of two-coloured
TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi
II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan
II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini
5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep
LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.
6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan
BAB 2 DIGRAF DWIWARNA PRIMITIF
BAB 2 DIGRAF DWIWARNA PRIMITIF Pada bab ini akan dibahas teorema, definisi dan landasan teori pada penelitian ini. Berikut akan dibahas mengenai digraf, digraf dwiwarna dan hubungan keduanya dengan primitifitas,
Bab 2. Teori Dasar. 2.1 Definisi Graf
Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut
BAB III PELABELAN KOMBINASI
1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik
Struktur dan Organisasi Data 2 G R A P H
G R A P H Graf adalah : Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak urut dari simpul, anggotanya disebut ruas (rusuk
2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik
2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan
BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks.
BAB 2 DIGRAPH Pada bab ini akan dijelaskan teori-teori dasar tentang digraph yang meliputi definisi dua cycle, primitifitas dari digraph, eksponen, dan lokal eksponen. Dengan demikian, akan mempermudah
III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.
III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada
MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun
MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi
v 3 e 2 e 4 e 6 e 3 v 4
5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan
BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar
Bab 2 TEORI DASAR. 2.1 Graf
Bab 2 TEORI DASAR Pada bab ini akan dipaparkan beberapa definisi dasar dalam Teori Graf yang kemudian dilanjutkan dengan definisi bilangan kromatik lokasi, serta menyertakan beberapa hasil penelitian sebelumnya.
BAB 2. Konsep Dasar. 2.1 Definisi graf
BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G
III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat
III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi
IV. MATRIKS PEMADANAN MAKSIMAL
{(1,),(2,4),(,1),(4,2)} yang berarti pada periode ke dua yaitu baris ke tiga pada kolom pertama, agen 1 dipasangkan dengan agen. Lalu pada kolom dua agen 2 dipasangkan dengan agen 4, pada kolom berikutnya
Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda
Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke
Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik
BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,
II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan
II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan
BAB 2 LANDASAN TEORI
4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas
Misalkan dipunyai graf G, H, dan K berikut.
. Pewarnaan Graf a. Pewarnaan Titik (Vertex Colouring) Misalkan G graf tanpa loop. Suatu pewarnaan-k (k-colouring) untuk graf G adalah suatu penggunaan sebagian atau semua k warna untuk mewarnai semua
BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang
BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan
BATAS ATAS UNTUK SCRAMBLING INDEX DARI GRAF PRIMITIF
BATAS ATAS UNTUK SCRAMBLING INDEX DARI GRAF PRIMITIF TESIS Oleh SILVIA HARLENI 127021010/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014 BATAS ATAS UNTUK SCRAMBLING
Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap
Vol.4, No., 49-53, Januari 08 Bilangan Ramsey untuk Graf Bintang Genap erhadap Roda Genap Hasmawati Abstrak Untuk sebarang graf G dan H, bilangan Ramsey R(G,H) adalah bilangan asli terkecil n sedemikian
BILANGAN KROMATIK LOKASI DARI GRAF ULAT
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika
Graf dan Operasi graf
6 Bab II Graf dan Operasi graf Dalam subbab ini akan diberikan konsep dasar, definisi dan notasi pada teori graf yang dipergunakan dalam penulisan disertasi ini. Konsep dasar tersebut ditulis sesuai dengan
MATEMATIKA DISKRIT RELASI
MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh
KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf
II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini
BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan penelitian yang dilakukan. 2.1. Konsep Dasar Graf Graf G didefinisikan sebagai pasangan himpunan terurut
LOGIKA DAN ALGORITMA
LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg
Digraph eksentris dari turnamen transitif dan regular (Eccentric digraph of transitive and regular tournaments)
Digraph eksentris dari turnamen transitif dan regular (Eccentric digraph of transitive and regular tournaments) Oleh : Hazrul Iswadi Departemen Matematika dan IPA (MIPA) Universitas Surabaya (UBAYA), Jalan
BAB II LANDASAN TEORI
15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang
DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Terminologi graf Tereminologi termasuk istilah yang berkaitan dengan graf. Di bawah ini akan dijelaskan beberapa definisi yang sering dipakai terminologi. 2.1.1 Graf Definisi
NASKAH UJIAN UTAMA. JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016
NASKAH UJIAN UTAMA MATA UJIAN : LOGIKA DAN ALGORITMA JENJANG/PROG. STUDI : DIPLOMA TIGA / MANAJEMEN INFORMATIKA HARI / TANGGAL : Kamis / 18 FEBRUARI 2016 NASKAH UJIAN INI TERDIRI DARI 80 SOAL PILIHAN GANDA
Jln. Perintis Kemerdekaan, Makassar, Indonesia, Kode Pos BASIS FOR DETERMINING THE WHEEL GRAPH
PENETUAN BASIS BAGI GRAF RODA Nur Ulfah Dwiyanti Obed 1*), Nurdin 2), Amir Kamal Amir 3) 1 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin Jln. Perintis Kemerdekaan,
Digraf dengan perioda 2
Digraf dengan perioda 2 Hazrul Iswadi, Arif Herlambang, Heru Arwoko Departemen Matematika dan IPA (MIPA) Universitas Surabaya (UBAYA), Jalan Raya Kalirungkut, Surabaya, e-mail : [email protected]
BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel
BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex
Penerapan Teori Graf untuk Mencari Eksentrik Digraf dari Graf Star, Graf Double Star dan Graf Komplit Bipartit
Penerapan Teori Graf untuk Mencari Eksentrik Digraf dari Graf Star, Graf Double Star dan Graf Komplit Bipartit Ivan Saputra 13505091 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha
BAB III ANALISIS, ALGORITMA, DAN CONTOH PENERAPAN
BAB III ANALISIS, ALGORITMA, DAN CONTOH PENERAPAN 3.1 Analisis Berdasarkan cara menghitung besaran-besaran yang telah disebutkan pada Bab II, diperoleh perumusan untuk besaran-besaran tersebut sebagai
KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas
Pertemuan 12. Teori Graf
Pertemuan 2 Teori Graf Derajat Definisi Misalkan adalah titik dalam suatu Graf G. Derajat titik (simbol d()) adalah jumlah garis yang berhubungan dengan titik dan garis suatu loop dihitung dua kali. Derajat
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin [email protected] Abstract Graf yang memuat semua siklus dari yang terkecil sampai
Bab 2 LANDASAN TEORI. 2.1 Definisi Graf
Bab 2 LANDASAN TEORI 2.1 Definisi Graf Suatu graf G terdiri dari himpunan tak kosong terbatas dari objek yang dinamakan titik dan himpunan pasangan (boleh kosong) dari titik G yang dinamakan sisi. Himpunan
STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA
STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA Anis Kamilah Hayati NIM : 13505075 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf
NILAI MAKSIMUM DAN MINIMUM PELABELAN- γ PADA GRAF LINTANG
PROSIDING ISSN: 50-656 NILAI MAKSIMUM DAN MINIMUM PELABELAN- γ PADA GRAF LINTANG RiaWahyu Wijayanti 1), DwiMaryono, S.Si., M.Kom ) MahasiswaPascaSarjana UNS 1), Dosen FKIP UNS ) [email protected] 1), [email protected]
Graf. Program Studi Teknik Informatika FTI-ITP
Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan
RAINBOW CONNECTION PADA BEBERAPA GRAF
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 17 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND RAINBOW CONNECTION PADA BEBERAPA GRAF GEMA HISTA MEDIKA Program Studi Matematika, Program Pascasarjana
EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS
EKSENTRIK DIGRAF DARI GRAF-GRAF KHUSUS Sulistyo Unggul Wicaksono NIM : 13503058 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail: [email protected]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul
3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya
BAB III DIMENSI PARTISI n 1 3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya cukup mudah atau sederhana. Kelas graf
Matriks. Contoh matriks simetri. Matriks zero-one (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1. Contoh matriks 0/1:
MATRIKS & RELASI Matriks Matriks adalah adalah susunan skalar elemenelemen dalam bentuk baris dan kolom. Matriks A yang berukuran dari m baris dan n kolom (m n) adalah: A = a a M a 2 m a a a 2 22 M m 2
Graf. Matematika Diskrit. Materi ke-5
Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya
BAB II Graf dan Pelabelan Total Sisi-Ajaib Super
BAB II Graf dan Pelabelan Total Sisi-Ajaib Super 2.1 Graf dan Beberapa Definisi Dasar Graf G=(V,E) didefinisikan sebagai pasangan terurut himpunan berhingga dan tak hampa V dan himpunan E. Himpunan V dinamakan
Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara
BILANGAN RAMSEY UNTUK GRAF BINTANG S n DAN GRAF RODA W m
BILANGAN RAMSEY UNTUK GRAF BINTANG S n DAN GRAF RODA W m ISNAINI RAMADHANI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis
PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN n GANJIL, n 3
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 34 40 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL TITIK AJAIB PADA GRAF LENGKAP DENGAN METODE MODIFIKASI MATRIK BUJURSANGKAR AJAIB DENGAN
Bagaimana merepresentasikan struktur berikut? A E
Bagaimana merepresentasikan struktur berikut? B D A E F C G Bagaimana merepresentasikan struktur berikut? Contoh-contoh aplikasi graf Peta (jaringan jalan dan hubungan antar kota) Jaringan komputer Jaringan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Dalam bab ini dipaparkan beberapa hasil penelitian yang dilakukan para peneliti sebelumnya, pengertian dasar graf, operasi-operasi pada graf, kelas-kelas graf dan dimensi partisi
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya
SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN
PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri
Relasi. Oleh Cipta Wahyudi
Relasi Oleh Cipta Wahyudi Definisi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh
BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 6 13 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG FADHILAH SYAMSI Program Studi Matematika, Pascasarjana
BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n
Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 14 22 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF P m P n, K m P n, DAN K m K n MARIZA WENNI Program Studi Matematika,
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) ATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. atriks-matriks yang dapat menyajikan
PERTEMUAN Relasi dan Fungsi
4-1 PERTEMUAN 4 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : [email protected] HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 4. Relasi dan
Catatan Kuliah (2 sks) MX 324 Pengantar Teori Graf
Catatan Kuliah (2 sks) MX 324 Pengantar Teori Graf (Draft Versi Desember 2008 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana DAFTAR
Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).
Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk
MIDDLE PADA BEBERAPA GRAF KHUSUS
PELABELAN DAN PEMBENTUKAN GRAF MIDDLE PADA BEBERAPA GRAF KHUSUS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Meliana Deta Anggraeni 4111409019
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Sebelum memulai pembahasan lebih lanjut, pertama-tama haruslah dijelaskan apa yang dimaksud dengan traveling salesman problem atau dalam bahasa Indonesia disebut sebagai persoalan
II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan
5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Untuk menjelaskan pelabelan analytic mean pada graf bayangan dari graf bintang K 1,n dan graf bayangan dari graf bistar B n,n perlu adanya beberapa teori dasar yang akan menunjang
KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan
KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS Tri Anggoro Putro, Siswanto, Supriyadi Wibowo Program Studi Matematika FMIPA UNS Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah
PENENTUAN DIMENSI METRIK GRAF HELM
PENENTUAN DIMENSI METRIK GRAF HELM SKRIPSI Oleh : DIAN FIRMAYASARI S NIM : H 111 08 011 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN MAKASSAR 2012 PENENTUAN DIMENSI
