Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS

Ukuran: px
Mulai penontonan dengan halaman:

Download "Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS"

Transkripsi

1 Biostatistika (KUI 611) TOPIK 3: VARIABEL RANDOM & DISTRIBUSI PROBABILITAS 1

2 Probabilitas Perlunya pengetahuan tentang probabilitas dalam Biostatistik Pengertian probabilitas, variabel random dan distribusi probabilitas Menggunakan Probabillitas billi 2

3 Probabilitas Harga yang menunjukkan seberapa besar kemungkinan suatu peristiwa akan terjadi Tidak mungkin Mungkin ya mungkin tidak Pasti 0 1 Sangat tidak mungkin Sangat mungkin 3

4 Probabilitas vs. Statistika Permasalahan dalam probabilitas Bila diambil satu orang secara random, berapa probabilitas mendapatkan orang yg terambil sakit? P( ) = 3 12 sehat sakit 4

5 Probabilitas vs. Statistika Permasalahan dalam statistika Bila diperoleh sampel seperti di bawah, berapa proporsi orang yang sakit dalam populasi?? inferensi sehat sakit 5

6 Populasi dan Sampel X : biaya persalinan sampling Populasi sampel inferensi Berapa rata-rata t biaya persalinan? 6

7 Terminologi dalam Sampling Populasi: Himpunan semua obyek yang diamati Unit: Anggota (elemen) populasi Sampel: Sebagian dari anggota populasi Kerangka sampel Daftar anggota populasi (unit) Variabel Karakteristik dari unit yang ingin diamati 7

8 Statistika Inferensial Statistika Inferensial: Mengambil kesimpulan, inferensi atau generalisasi tentang suatu populasi berdasarkan informasi yang diperoleh dari sampel. Parameter: Suatu harga (numerik) dihitung dari populasi yang memberi deskripsi/karakteristik pada populasi. Statistik: Suatu harga (numerik) yang dihitung dari sampel. 8

9 Statistika Inferensial X : biaya persalinan μ sampling inferensi x parameter Populasi sampel statistik μ Rata-rata biaya persalinan (populasi) x Rata-rata biaya persalinan (sampel) 9

10 Sampling dan Desain sampling Populasi sampel non-random random: simple stratification cluster systematic Desain: Longitudinal Cohort Case-control dst 10

11 Jenis Inferensi Estimasi Estimasi titik Estimasi interval Digunakan untuk menjawab pertanyaan Uji Hipotesis i Digunakan untuk menjawab pernyataan Berbeda dengan uji hipotesis penelitian 11

12 Jenis Inferensi Interval Konfidensi Berapa mean (rata rata, dilambangkan sebagi μ) biaya persalinan? Jawabansuatupertanyaan berupa pernyataan: 500 μ 3000 (ribu rupiah) Uji Hipotesis i H 0 : mean biaya persalinan 2 juta rupiah Jawaban sebuah pernyataan: konfirmasi Ya atau Tidak (setuju atau Tidak) Hipotesis statistik tdk selalu sama dengan hipotesis penelitian 12

13 Parameter dan Estimatornya Beberapa Contoh: Parameter Estimator / Statistik (populasi) (sampel) Mean (rata-rata) μ Mean (rata-rata) Proporsi Proporsi sampel P atau π Standar deviasi σ x p Standar deviasi sampel s 13

14 Distribusi Probabilitas Statistik (estimator) mengikuti distribusi teoritis (model) tertentu yang dapat digunakan sebagai dasar inferensi. Contoh: Distribusi Normal (Gaussian) Distribusi Binomial Distribusi Poisson Distribusi Eksponensial 14

15 Distribusi Probabilitas Distribusi Normal (Gaussian) 0.20 Berat badan anak laki-laki usia 5 tahun berat badan (kg) 15

16 Distribusi Probabilitas Distribusi Eksponensial Lama waktu tunggu mulai dinyatakan dioperasi sampai masuk ruang operasi Lama tunggu operasi (hari) 16

17 Distribusi Probabilitas Distribusi Binomial 0.3 Peluang banyaknya anak yang belum di-imunisasi dari 10 anak jika diketahui cakupan imunisasi 90% banyaknya anak 17

18 Distribusi Probabilitas Distribusi Poisson Peluang banyaknya pasien UGD korban kecelakaan lalu lintas dalam sehari banyaknya pasien 18

19 Distribusi Normal 19

20 Distribusi Normal 20

21 Distribusi Normal 21

22 Distribusi Normal 22

23 Distribusi Normal 23

24 Distribusi Normal 24

25 Distribusi Normal 25

26 Tahapan Inferensi Identifikasilah parameter yang dapat digunakan untuk menjelaskan jl populasi iberdasarkan variabel iblyang menjadi jdi perhatian Tentukan statistik yang dapat digunakan untuk inferensi parameter tersebut di atas Tentukan distribusi (model) statistik di atas berdasarkan deskripsi data dan informasi lain; kemudian periksalah apakah khdata memenuhi asumsi yang mendasari model dl tersebut Tentukan apakah diperlukan metode alternatif bila asumsi tidak dkdapat dipenuhi Tentukan apakah akan digunakan estimasi atau uji hipotesis 26

27 Aktivitas Latihan Topik 3 Gunakan permasalahan lh yang sama seperti pada aktivitas latihan Topik 1, jelaskan metode dan cara pengumpulan datanya (boleh memberi permasalahan lain, tidak harus sama dengan permasalahan sebelumnya) Apakah diperlukan statistika untuk menganalisis data permasalahan yang anda kemukakan di atas? Model probabilitas apa yang dapat digunakan untuk menjelaskan fenomena permasalahan yang anda kemukakan di atas? 27

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM MMS-1403 p.1/93 Distribusi Sampling Statistik Populasi: himpunan keseluruhan obyek yang

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

Kontrak Kuliah Metode Statistika 2

Kontrak Kuliah Metode Statistika 2 Kontrak Kuliah Metode Statistika 2 Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Deskripsi Mata Kuliah Nama Mata Kuliah : Metode Statistika 2 Semester/SKS : I / 3 SKS Kompetensi

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

1. PENGERTIAN. Manfaat Sampling :

1. PENGERTIAN. Manfaat Sampling : 1. PENGERTIAN Sampel adalah sebagian dari anggota populasi yang dipilih dengan cara tertentu yang akan diteliti sifat-sifatnya dalam penelitian. Nilai-nilai yang berasal dari data sampel dinamakan dengan

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

Statistika (MMS-1001)

Statistika (MMS-1001) Statistika (MMS-1001) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan berjalannya waktu, ilmu pengetahuan dan teknologi (sains dan teknologi) telah berkembang dengan cepat. Salah satunya adalah ilmu matematika yang

Lebih terperinci

PENAKSIRAN PARAMETER TM_3

PENAKSIRAN PARAMETER TM_3 PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN. Populasi adalah wilayah generalisasi yang terdiri atas obyek atau

BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN. Populasi adalah wilayah generalisasi yang terdiri atas obyek atau BAB 5 PENENTUAN POPULASI DAN SAMPEL PENELITIAN 5.1. Populasi dan Sampel Populasi adalah wilayah generalisasi yang terdiri atas obyek atau subyek yang memiliki kuantitas atau kualitas tertentu yang ditentukan

Lebih terperinci

DISTRIBUSI SAMPLING besar

DISTRIBUSI SAMPLING besar DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan

Lebih terperinci

STATISTIK PERTEMUAN VII

STATISTIK PERTEMUAN VII STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis

BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep uji hipotesis, kesalahan tipe 1 dan 2, uji hipotesis untuk mean (1 dan 2 sampel),

Lebih terperinci

Setelah mengikuti mata kuliah ini mahasiswa mampu menjelaskan prinsipprinsip dasar statistika, dan mampu melakukan beberapa analisis statistika

Setelah mengikuti mata kuliah ini mahasiswa mampu menjelaskan prinsipprinsip dasar statistika, dan mampu melakukan beberapa analisis statistika 2 N i 1 x i N 2 Z X Setelah mengikuti mata kuliah ini mahasiswa mampu menjelaskan prinsipprinsip dasar statistika, dan mampu melakukan beberapa analisis statistika sederhana s 2 n i 1 x i x n 1 2 No.

Lebih terperinci

Ayundyah Kesumawati. April 27, 2015

Ayundyah Kesumawati. April 27, 2015 Kesumawati Prodi Statistika FMIPA-UII April 27, 2015 Estimasi interval Jika diperhatikan, terdapat kesamaan rumus-rumus yang dipakai pada saat pengujian hipotesis dan pendugaan selang kepercayaan. Untuk

Lebih terperinci

(ESTIMASI/ PENAKSIRAN)

(ESTIMASI/ PENAKSIRAN) ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

BAB IV INFERENSI STATISTIK SATU POPULASI SEMBARANG

BAB IV INFERENSI STATISTIK SATU POPULASI SEMBARANG BAB IV INFERENSI STATISTIK SATU POPULASI SEMBARANG Bab ini akan membahas inferensi statistik terhadap mean suatu populasi sembarang dan proporsi suatu populasi dikotomi/binomial. Ukuran sampel random yang

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial

Distribusi Teoritis Probabilitas. Distribusi Teoritis Probabilitas. Distribusi Binomial. Distribusi Binomial. Distribusi Binomial Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 3 4 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

Distribusi Teoritis Probabilitas

Distribusi Teoritis Probabilitas Distribusi Teoritis Probabilitas Topik Distribusi teoritis Binomial Distribusi teoritis Poisson Distribusi teoiritis Normal 2 Distribusi Teoritis Probabilitas Distr. Teoritis Probabilitas Diskrit Kontinyu

Lebih terperinci

BAB V INFERENSI STATISTIK SATU POPULASI NORMAL

BAB V INFERENSI STATISTIK SATU POPULASI NORMAL BAB V INFERENSI STATISTIK SATU POPULASI NORMAL Bab ini membahas inferensi statistik untuk mean dan variansi satu populasi normal berdasarkan sampel random berukuran kecil dan besar. Untuk membahas hal

Lebih terperinci

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1

ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1 ESTIMASI Podojoyo, SKM, M.Kes Podojoyo 1 Definisi Estimasi Suatu metode dimana kita dapat memperkirakan nilai populasi (parameter) dengan memakai nilai sampel (statistik) Podojoyo 2 Didalam estimasi nilai

Lebih terperinci

BAB III METODOLOGI RISET

BAB III METODOLOGI RISET BAB III METODOLOGI RISET 3.1 Studi Pendahuluan Penelitian ini akan diawali dengan melakukan studi awal melalui kajian teoritis terutama dengan membandingkan penelitian terkait sebelumnya guna mendapatkan

Lebih terperinci

STATISTIKA. Srava Chrisdes Antoro, M.Si.

STATISTIKA. Srava Chrisdes Antoro, M.Si. STATISTIKA Srava Chrisdes Antoro, M.Si. Definisi Statistika Ilmu yang mempelajari cara-cara mengumpulkan, menata, menyajikan, menganalisis, dan menginterpretasikan data menjadi informasi yang dapat membantu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 1:,, Statistika FMIPA Universitas Islam Indonesia Data Populasi dan Sampel Menurut Websters New World Dictionary, data berarti sesuatu yang diketahui atau dianggap. Dengan demikian, data dapat memberikan

Lebih terperinci

METODOLOGI PENELITIAN 10FEB. Modul ke: Sampling. Fakultas. AFRIZON, SE, M.Si, AK. Program Studi AKUNTANSI

METODOLOGI PENELITIAN 10FEB. Modul ke: Sampling. Fakultas. AFRIZON, SE, M.Si, AK. Program Studi AKUNTANSI METODOLOGI Modul ke: PENELITIAN Sampling Fakultas 10FEB AFRIZON, SE, M.Si, AK Program Studi AKUNTANSI 1 1 Sampling Sampling: proses pemilihan dalam jumlah yang memadai dari unsur masyarakat, sehingga hasil

Lebih terperinci

Populasi dan Sampel. Materi 1 Distribusi Sampling

Populasi dan Sampel. Materi 1 Distribusi Sampling Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

MENGAPA PERLU SAMPLING

MENGAPA PERLU SAMPLING POPULASI DAN SAMPEL TOPIK BAHASAN:. Pengertian (Populasi & Sampel). Mengapa perlu sampling 3. Prosedur Pengambilan Sampel 4. Potensi Bias pada pengambilan 5. Teknik/Metode Pengambilan Sampel 6. Besar Sampel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Antrian Teori antrian adalah teori yang menyangkut studi sistematis dari antrian atau baris-baris penungguan. Formasi baris-baris penungguan ini tentu saja merupakan suatu

Lebih terperinci

BAB VI INFERENSI STATISTIK DUA POPULASI SEMBARANG

BAB VI INFERENSI STATISTIK DUA POPULASI SEMBARANG BAB VI INFERENSI STATISTIK DUA POPULASI SEMBARANG Bab ini membahas inferensi statistik selisih dua mean populasi sembarang dan selisih dua proporsi populasi dikotomi/binomial. Untuk membahas hal tersebut

Lebih terperinci

PENGERTIAN STATISTIK. NO Tahun Jumlah / / / APAKAH INI STATISTIK?

PENGERTIAN STATISTIK. NO Tahun Jumlah / / / APAKAH INI STATISTIK? PENGERTIAN STATISTIK NO Tahun Jumlah 1. 2. 3. 2000 /2001 2001/ 2002 2002 / 2003 15.556 29.008 34.825 APAKAH INI STATISTIK? PENGERTIAN STATISTIK DAN STATISTIKA Statistika Ilmu mengumpulkan, menata, menyajikan,

Lebih terperinci

PENARIKAN SAMPEL & PENDUGAAN PARAMETER

PENARIKAN SAMPEL & PENDUGAAN PARAMETER PENARIKAN SAMPEL & PENDUGAAN PARAMETER Arti Penarikan Sampel Populasi ( Universe) adalah totalitas dari semua objek atau individu yang memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti

Lebih terperinci

Probability and Random Process

Probability and Random Process Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 1. Review Teori Statistika Prima Kristalina Maret 2016 2 Outline Pengertian Statistika Populasi,

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh

STK 511 Analisis statistika. Materi 4 Sebaran Penarikan Contoh STK 511 Analisis statistika Materi 4 Sebaran Penarikan Contoh 1 Pengantar Pada dasarnya data contoh diperoleh dengan dua cara: Data telah ada Teknik Penarikan Contoh Data belum tersedia Perancangan Percobaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan dalam statistika biasanya dirumuskan melalui variabel random yang menjadi perhatian, tetapi fungsi kepadatan probabilitas atau fungsi massa probabilitas

Lebih terperinci

SEJARAH DISTRIBUSI POISSON

SEJARAH DISTRIBUSI POISSON SEJARAH DISTRIBUSI POISSON Distribusi poisson disebut juga distribusi peristiwa yang jarang terjadi, ditemukanolehs.d. Poisson (1781 1841), 1841), seorang ahli matematika berkebangsaan Perancis. Distribusi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Statistika adalah salah satu cabang ilmu matematika yang memperhitungkan probabilitas dari suatu data sampel dengan tujuan mendapatkan kesimpulan mendekati

Lebih terperinci

UJI RATA-RATA SATU SAMPEL MENGGUNAKAN R UNTUK MENGETAHUI PENGARUH MODEL BELAJAR TERHADAP HASIL BELAJAR MATA KULIAH ANALISIS VEKTOR

UJI RATA-RATA SATU SAMPEL MENGGUNAKAN R UNTUK MENGETAHUI PENGARUH MODEL BELAJAR TERHADAP HASIL BELAJAR MATA KULIAH ANALISIS VEKTOR PYTHAGORAS, 6(2): 161-166 Oktober 2017 ISSN Cetak: 2301-5314 UJI RATA-RATA SATU SAMPEL MENGGUNAKAN R UNTUK MENGETAHUI PENGARUH MODEL BELAJAR TERHADAP HASIL BELAJAR MATA KULIAH ANALISIS VEKTOR Hermansah

Lebih terperinci

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT)

STATISTIKA II Distribusi Sampling. (Nuryanto, ST., MT) STATISTIKA II Distribusi Sampling (Nuryanto, ST., MT) 1. Pendahuluan Bidang Inferensia Statistik membahas generlisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

RENCANA MUTU PEMBELAJARAN

RENCANA MUTU PEMBELAJARAN RENCANA MUTU PEMBELAJARAN Nama Dosen : N. Setyaningsih, MSi. Program Studi : Pendidikan Matematika Kode Mata Kuliah : 504203 Nama Mata Kuliah : Statistika Matematika Jumlah sks : 3 sks Semester : V Alokasi

Lebih terperinci

Mengapa Kita Perlu Melakukan Sampling?

Mengapa Kita Perlu Melakukan Sampling? Pengertian Dasar yang Terkait Populasi: sekelompok orang, kejadian, atau segala sesuatu yang ingin diteliti oleh peneliti. Elemen: anggota dari populasi Rerangka populasi: daftar yang memuat semua elemen

Lebih terperinci

Modul 13 Ukuran Sampel

Modul 13 Ukuran Sampel Modul 13 Ukuran Sampel Daftar Isi 13.1 Tujuan Pembelajaran..................... 1 13.2 Prinsip Penghitungan Besar Sampel............. 1 13.3 Ukuran Sampel untuk Uji Mean............... 3 13.4 Ukuran Sampel

Lebih terperinci

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS

KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS KONSEP PROBABILITAS & DISTRIBUSI PROBABILITAS 5 Pengendalian Kualitas Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e- Mail : [email protected] Blog : hbp://debrina.lecture.ub.ac.id/ 2

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di zaman sekarang, kemajuan sains dan teknologi sangat berkembang pesat. Salah satu ilmu yang berkembang adalah matematika yang merupakan induk dari semua ilmu

Lebih terperinci

STATISTIKA LINGKUNGAN

STATISTIKA LINGKUNGAN STATISTIKA LINGKUNGAN TEORI PROBABILITAS Probabilitas -pendahuluan Statistika deskriptif : menggambarkan data Statistik inferensi kesimpulan valid dan perkiraan akurat ttg populasi dengan mengobservasi

Lebih terperinci

TEORI PENDUGAAN (TEORI ESTIMASI)

TEORI PENDUGAAN (TEORI ESTIMASI) TEORI PENDUGAAN (TEORI ESTIMASI) Tujuan Pembelajaran Mempelajari bagaimana cara melakukan pendugaan parameter populasi berasarkan statistik yang dihitung dari sampel A. Pendahuluan Pendahuluan : Tujuan

Lebih terperinci

PEMILIHAN DATA (SAMPEL) PENELITIAN PERTEMUAN KE 5

PEMILIHAN DATA (SAMPEL) PENELITIAN PERTEMUAN KE 5 PEMILIHAN DATA (SAMPEL) PENELITIAN PERTEMUAN KE 5 Data, Populasi Dan Sampel Data merupakan bahan baku informasi yang dapat memberikan gambaran tentang sesuatu. Data merupakan bentuk jamak dari datum. Contoh

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

Pemilihan Data (Sampel) Penelitian

Pemilihan Data (Sampel) Penelitian Pemilihan Data (Sampel) Penelitian 1. Populasi dan Sampel Populasi yaitu sekelompok orang, kejadian atau segala sesuatu yang mempunyai karakteristik tertentu. Populasi adalah keseluruhan subjek penelitian

Lebih terperinci

statistika untuk penelitian

statistika untuk penelitian statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

BAB I PENDAHULUAN. Dalam suatu penelitian, seringkali tidak mungkin untuk melakukan

BAB I PENDAHULUAN. Dalam suatu penelitian, seringkali tidak mungkin untuk melakukan BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Dalam suatu penelitian, seringkali tidak mungkin untuk melakukan pengamatan pada semua elemen populasi. Karena itu, perlu dilakukan pengambilan sampel yang

Lebih terperinci

PEMBAHASAN UTS 2015/2016 STATISTIKA 1

PEMBAHASAN UTS 2015/2016 STATISTIKA 1 PEMBAHASAN UTS 2015/2016 STATISTIKA 1 1. pernyataan berikut ini menjelaskan definisi dan cakupan statistika deskriptif, KECUALI : a. statistika deskriptif mendeskripsikan data yang telah dikumpulkan (Organizing)

Lebih terperinci

SILABUS MATA KULIAH. : Dapat menganalisis tentang statistika inferensial secara teoritik beserta komponen dan sifat-sifatnya

SILABUS MATA KULIAH. : Dapat menganalisis tentang statistika inferensial secara teoritik beserta komponen dan sifat-sifatnya SILABUS MATA KULIAH Program Studi : Pendidikan Matematika Kode Mata Kuliah : 50603 Mata kuliah : Statistika Matematika Bobot : 3 SKS Semester : V Mata Kuliah Prasyarat : Probabilitas Deskripsi Mata Kuliah

Lebih terperinci

TEKNIK SAMPLING MODUL: 7

TEKNIK SAMPLING MODUL: 7 TEKNIK SAMPLING MODUL: 7 ISTILAH PENTING DALAM PENELITIAN POPULASI ELEMEN SAMPEL SUBYEK SAMPLING Proses menyeleksi sejumlah elemen dari populasi sehingga dengan mempelajari sampel dan memahami sifat-sifat

Lebih terperinci

Sri Subanti TEORI PELUANG SEBELAS MARET UNIVERSITY PRESS. iii

Sri Subanti TEORI PELUANG SEBELAS MARET UNIVERSITY PRESS. iii TEORI PELUANG i Sanksi Pelanggaran Pasal 72 Undang-undang Nomor 19 Tahun 2002 Perubahan atas Undang-undang Nomor 7 Tahun 1987 Perubahan atas Undang-undang Nomor 6 Tahun 1982 Tentang Hak Cipta 1. Barang

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 2: Sifat-Sifat Estimator Statistika FMIPA Universitas Islam Indonesia Statistik Cukup Dalam kondisi real, kita tidak mengetahui parameter dari populasi data yang akan kita teliti Informasi dalam sampel

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Pendahuluan. Statistik Deskriptif. Pengertian. Pengertian

Pendahuluan. Statistik Deskriptif. Pengertian. Pengertian Statistik Deskriptif Pendahuluan B U A N A S U H U R D I N P U T R A 2 0 1 0 B U A N A S U H U R D I N P U T R A 2 0 1 0 Peluang (probabilitas): Nilai angka yang menunjukkan seberapa besar kemungkinan

Lebih terperinci

Teknik Sampling. Hipotesis. Populasi: parameter. Inferensial. Sampel:statistik Diolah di analisis

Teknik Sampling. Hipotesis. Populasi: parameter. Inferensial. Sampel:statistik Diolah di analisis Sampling Ali Muhson, M.Pd. (c) 2012 1 Kompetensi Dasar Mahasiswa mampu menerapkan penggunaan teori sampling dalam rancangan penelitian (c) 2012 2 1 Rasional Penelitian tidak mungkin meneliti seluruh anggota

Lebih terperinci

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF Adi Setiawan Program Studi Matematika Industri dan Statistika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl

Lebih terperinci

Mendefinisikan arti dari terminologi-terminologi penting dalam statistika Memahami dan menjelaskan peranan statistik dan penerapannya di bidang

Mendefinisikan arti dari terminologi-terminologi penting dalam statistika Memahami dan menjelaskan peranan statistik dan penerapannya di bidang Tujuan Pembelajaran Mendefinisikan arti dari terminologi-terminologi penting dalam statistika Memahami dan menjelaskan peranan statistik dan penerapannya di bidang teknik Menjelaskan langkah-langkah dasar

Lebih terperinci

Sanksi Pelanggaran Pasal 72 Undang-undang Nomor 19 Tahun 2002 Perubahan atas Undang-undang Nomor 7 Tahun 1987 Perubahan atas Undang-undang Nomor 6

Sanksi Pelanggaran Pasal 72 Undang-undang Nomor 19 Tahun 2002 Perubahan atas Undang-undang Nomor 7 Tahun 1987 Perubahan atas Undang-undang Nomor 6 INFERENSI BAYESIAN Sanksi Pelanggaran Pasal 72 Undang-undang Nomor 19 Tahun 2002 Perubahan atas Undang-undang Nomor 7 Tahun 1987 Perubahan atas Undang-undang Nomor 6 Tahun 1982 Tentang Hak Cipta 1. Barang

Lebih terperinci

Metode Sampling dan Teorema Central Limit

Metode Sampling dan Teorema Central Limit Metode Sampling dan Teorema Central Limit Tjipto Juwono, Ph.D. Oct 28, 2016 TJ (SU) Metode Sampling dan Teorema Central Limit Oct 2016 1 / 52 Mengapa Perlu Sampling? Contoh Kita ingin mengetahui elektabilitas

Lebih terperinci

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan

BAB I PENDAHULUAN. mengetahui fenomena yang akan terjadi pada periode mendatang akan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada kehidupan sehari-hari, adanya ketidakmampuan manusia untuk mengetahui fenomena yang akan terjadi pada periode mendatang akan mengakibatkan kurang tepatnya

Lebih terperinci

Kuliah BIOSTATISTIKA. Pokok Bahasan : SAMPLING. Teknik Pengambilan Sampel

Kuliah BIOSTATISTIKA. Pokok Bahasan : SAMPLING. Teknik Pengambilan Sampel Kuliah BIOSTATISTIKA Pokok Bahasan : SAMPLING Teknik Pengambilan Sampel PENELITIAN PENGAMATAN BERULANG PADA SUATU OBYEK PENELITIAN INDIVIDU TOTAL OBYEK (POPULASI) SAMPEL PENELITIAN DESKRIPTIF DESKRIPSI

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP) PROGRAM STUDI AKUNTANSI

SATUAN ACARA PERKULIAHAN (SAP) PROGRAM STUDI AKUNTANSI STIE Bisma Lepisi Jl. Ks. Tubun No. 11 Tangerang 15112 Telp.:(021) 558 9161-62. Fax.:(021) 558 9163 SATUAN ACARA PERKULIAHAN (SAP) PROGRAM STUDI AKUNTANSI Kode Mata Kuliah Nama Mata Kuliah Kelompok Mata

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: [email protected] 1 Teori Statistik Titik Parameter Interval Teori Statistik Titik Parameter Interval 3 1 PENDUGA TUNGGAL SEBAGAI FUNGSI

Lebih terperinci

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30

Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30 Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga

Lebih terperinci

BIOSTATISTIKA DAN EPIDEMIOLOGI (MMS-4411)

BIOSTATISTIKA DAN EPIDEMIOLOGI (MMS-4411) BAHAN AJAR BIOSTATISTIKA DAN EPIDEMIOLOGI (MMS-4411) Disusun oleh: Dr. Danardono, MPH. PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM INFERENSI PARAMETER POPULASI SERAGAM Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro 52-6

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: [email protected] 1 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran Teori Statistik Pengujian Hipotesa

Lebih terperinci

Probabilitas & Distribusi Probabilitas

Probabilitas & Distribusi Probabilitas Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang

Lebih terperinci

l.makalah DISTRIBUSI PROBABILITAS DISKRIT

l.makalah DISTRIBUSI PROBABILITAS DISKRIT l.makalah DISTRIBUSI PROBABILITAS DISKRIT Kata Pengantar Puji syukur atas kehadirat Allah SWT karena rahmat serta karunia-nya penulis dapat menyelesaikan makalah ini.shalawat serta salam dari Allah SWT

Lebih terperinci

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson

DISTRIBUSI POISSON Pendahuluan Rumus Pendekatan Peluang Poisson untuk Binomial P ( x ; µ ) = (e µ. µ X ) / X! n. p Rumus Proses Poisson DISTRIBUSI POISSON Pendahuluan Distribusi poisson diberi nama sesuai dengan penemunya yaitu Siemon D. Poisson. Distribusi ini merupakan distribusi probabilitas untuk variabel diskrit acak yang mempunyai

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : [email protected] Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER

Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui

Lebih terperinci

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai

Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika. Distribusi normal baku adalah distribusi

Lebih terperinci

Teknik Sampling. Hipotesis Tesis. Populasi: parameter. Inferensial. Sampel:statistik Diolah di analisis

Teknik Sampling. Hipotesis Tesis. Populasi: parameter. Inferensial. Sampel:statistik Diolah di analisis Sampling Ali Muhson, M.Pd. (c) 2013 1 Kompetensi Dasar Mahasiswa mampu menerapkan penggunaan teori sampling dalam menjelaskan gejala pendidikan dan ekonomi (c) 2013 2 1 Rasional Penelitian tidak mungkin

Lebih terperinci

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan

Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan Tujuan Pembelajaran Menjelaskan pengertian distribusi binomial, mengidentifikasi eksperimen binomial dan menghitung probabilitas binomial, menghitung ukuran pemusatan dan penyebaran distribusi binomial

Lebih terperinci

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL

POPULASI DAN SAMPEL. Gambar 1 POPULASI dan SAMPEL Pengertian Populasi dan Sampel POPULASI DAN SAMPEL Kata populasi (population/universe) dalam statistika merujuk pada sekumpulan individu dengan karakteristik khas yang menjadi perhatian dalam suatu penelitian

Lebih terperinci