Materi Kuliah: Statistik Inferensial
|
|
|
- Yandi Gunawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP 1 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 3 1
2 PENDUGA TUNGGAL SEBAGAI FUNGSI UNSUR POPULASI n ( ) i i S = n( n 1) atau S = f( 1,,, n ) Standar deviasi di mana: = 1 i n = 1 ( n ) n s = 1 ( i - ) n - 1 s = 1 {( 1 - ) + ( - x) + + ( n - ) } n - 1 f( 1) f( ) f( 3) 4 SIFAT-SIFAT PENDUGA Penduga Tidak Bias Penduga titik dikatakan tidak bias (unbiased estimator) jika di dalam sampel random yang berasal dari populasi, rata-rata atau nilai harapan (expexted value, ) dari statistik sampel sama dengan parameter populasi (µ) atau dapat dilambangkan dengan E( ) = µ. E( ) =µ E( ) µ Gambar A Penduga Bersifat Tidak Bias Gambar B Penduga Bersifat Bias 5 SIFAT-SIFAT PENDUGA Penduga Efisien Penduga yang efisien (efficient estimator) adalah penduga yang tidak bias dan mempunyai varians terkecil (s x ) dari penduga-penduga lainnya. s x1 s x s x1 < s x 6
3 DEFINISI Penduga Konsisten Penduga yang konsisten (consistent estimator) adalah nilai dugaan ( ) yang semakin mendekati nilai yang sebenarnya µ dengan semakin bertambahnya jumlah sampel (n). n tak terhingga n sangat besar n besar n kecil 7 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 8 DEFINISI interval: interval adalah menyatakan jarak di dalam mana suatu parameter populasi mungkin berada. 9 3
4 RUMUS INTERVAL PENDUGAAN (s Zs x < P < s + Zs x ) = C Di mana: S P s x Z C s Zs x s + Zs x : Statistik yang merupakan penduga parameter populasi (P) : Parameter populasi yang tidak diketahui : Standar deviasi distribusi sampel statistik : Suatu nilai yang ditentukan oleh probabilitas yang berhubungan dengan pendugaan interval, nilai Z diperoleh dari tabel luas di bawah kurva normal : Probabilitas atau tingkat keyakinan yang dalam praktek sudah ditentukan dahulu. : Nilai batas bawah keyakinan : Nilai batas atas keyakinan 10 CONTOH MENENTUKAN JUMLAH SAMPEL SETIAP STRATUM 0,50 0,50 95% 99% Z =-,58 Z=-1,96 0=µ Z=1,96 Z =,58 Pada gambar terlihat untuk interval keyakinan 95% terhubungkan dengan nilai Z antara 1,96 sampai 1,96. Ini dapat diartikan juga bahwa 95% dari rata-rata hitung sampel akan terletak di dalam ± 1,96 kali standar deviasinya. Sedangkan untuk keyakinan 99%, maka rata-rata hitungnya juga akan terletak di dalam ±,58 kali standar deviasinya. Interval keyakinan juga dapat dituliskan untuk C= 0,95 adalah µ ± 1,96σ x dan untuk C=0,99 adalah µ ±,58s x. 11 CONTOH MENENTUKAN JUMLAH SAMPEL SETIAP STRATUM 0,50 0,50 0,05 (0,50/ ) 0,4750 (0,95/ ) 0,4750 (0,95/ ) Z= -1,96 Z= 1,96 0,05 (0,50/ ) Luas kurva adalah 1, dan simetris yaitu sisi kanan dan kiri luasnya sama yaitu 0,5. Nilai C= 0,95 apabila dibagi menjadi dua bagian simetris maka menjadi 0,4750 yang diperoleh dari 0,95/. Apabila digunakan tabel luas di bawah kurva normal untuk probabilitas 0,4750 maka akan diperoleh nilai Z sebesar 1,96. Begitu juga untuk C= 0,99, maka probabilitasnya adalah 0,99/ = 0,4950, nilai probabilitas ini terhubung dengan nilai Z=,58. Setelah menemukan nilai Z dan standar deviasinya, maka dapat dibuat interval keyakinan dengan mudah misalnya untuk C= 0,95 adalah P( 1,96s x < m < + 1,96s x) = 0,95 sedang untuk C= 0,99 adalah P(,58s x < µ < +,58s x) = 0,
5 5
6 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 16 CONTOH INTERVAL KEYAKINAN RATA-RATA HITUNG Interval keyakinan untuk rata-rata hitung dirumuskan ± Z α/ s/ n Untuk populasi yang terbatas, faktor koreksi menjadi (N-n)/N-1. Nilai merupakan rata-rata dari sampel, sedangkan nilai Z untuk beberapa nilai C Tingkat Keyakinan C/ Nilai Terdekat Nilai Z 0,99 0,495 0,4951,58 0,98 0,49 0,4901,33 0,95 0,475 0,475 1,96 0,9 0,45 0,4505 1,65 0,85 0,45 0,451 1,44 0,8 0,4 0,3997 1,8 17 CONTOH INTERVAL KEYAKINAN RATA-RATA HITUNG Berdasarkan pada nilai Z dan diasumsikan bahwa n>30 maka dapat disusun interval beberapa keyakinan sebagai berikut: 1. Interval keyakinan 99%: ±,58 s/ n. Interval keyakinan 98%: ±,33 s/ n 3. Interval keyakinan 95%: ± 1,96 s/ n 4. Interval keyakinan 90%: ± 1,65 s/ n 5. Interval keyakinan 85%: ± 1,44 s/ n 6. Interval keyakinan 95%: ± 1,8 s/ n 18 6
7 CONTOH INTERVAL KEYAKINAN RATA-RATA HITUNG Interval keyakinan tersebut dapat juga digambarkan sebagai berikut: Batas bawah 1 - α Batas atas α / -Zα / µ Zα / α / Nilai parameter yang sebenarnya diharapkan adan terdapat pada interval 1 - α dengan batas bawah -Zα / dan batas atas Zα /. 19 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 0 SKEMA PROSES INTERVAL KEYAKINAN Populasi Tidak Terbatas ± Z α/ s/ n Mulai Identifikasi masalah Menentukan sampel (n) dan nilai rata-rata Menentukan Keyakinan(C atau α= (1 C) dan Nilai Z Populasi Terbatas ± Z α/ s/ (N - n)/n-1 1 7
8 DISTRIBUSI NORMAL DAN STANDAR DEVIASI POPULASI DIKETAHUI Probabilitas ( Z α/ σ x < µ < ( ± Z α/ s/ (N n)/n 1n s x ) = C atau Probabilitas ( ± Z α/ s x ) = C Di mana: : Rata-rata dari sampel Z α/ : Nilai Z dari tingkat kepercayaan α µ : Rata-rata populasi yang diduga σ x : Standar error / kesalahan standar dari rata-rata hitung sampel C : Tingkat keyakinan α = (1 C) DISTRIBUSI NORMAL DAN STANDAR DEVIASI POPULASI TIDAK DIKETAHUI Standar error untuk populasi tidak terbatas S S x = n Standar error untuk populasi yang terbatas dan n/n > 0,05: S x = S n N n N 1 Distribusi normal standar Distribusi t dengan n=5 Distribusi t dengan n=15 Distribusi t dengan n=5 3 DISTRIBUSI SAMPLING MENDEKATI NORMAL DAN STANDAR DEVIASI POPULASI TIDAK DIKETAHUI ( t α/ s x < µ < ( + t α/ s x ) Di mana: : Rata-rata dari sampel tα/: Nilai t dari tingkat kepercayaan α µ : Rata-rata populasi yang diduga s x : Standar error/kesalahan standar dari rata-rata hitung sampel C : Tingkat keyakinan α : 1 C 4 8
9 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Interval Keyakinan Selisih Rata-rata dan Memilih Ukuran 5 CONTOH MENGHITUNG RETURN ON ASSET Untuk populasi yang tidak terbatas p( 1 p) N n Sp = n 1 N 1 Untuk populasi yang terbatas p( 1 p) Sp = n 1 Bentuk pendugaan proporsi populasi dirumuskan sebagai berikut: Probabilitas (p - Z α/.sp<p< p + Z α/.sp) Di mana: p : sampel Zα/: NilaiZ dari tingkat keyakinanα P : populasi yang diduga S p : Standar error/kesalahan dari proporsi C :Tingkat keyakinan α :1 C 6 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 7 9
10 INTERVAL KEYAKINAN UNTUK SELISIH RATA-RATA Probabilitas (( 1 - ) - Z α/. σ x1-x ) <( 1 - ) < ( 1 - ) + Z α/. σ x1-x ) Dimana standarerror dari nilai selisih rata-rata adalah: σ σ x1 x σ x1 x = + = n1 n Apabila standar deviasi dari populasi tidak ada, maka dapat diduga dengan standar deviasi sampel yaitu: Di mana: s s s x1 x x 1 x = + = n1 n σ x1-x : Standar deviasi selisih rata-rata populasi s x1-x : Standar error selisih rata-rata s x1, s x1 : Standar deviasi sampel dari dua populasi n 1, n : Jumlah sampel setiap populasi 8 INTERVAL KEYAKINAN UNTUK SELISIH PROPORSI Probabilitas Probabilitas ((p 1 -p ) - Z α/. s p1-p ) <(P 1 -P ) < (p 1 -p ) + Z α/. s p1-p ) Di mana standar error dari nilai selisih proporsi adalah: s = p1(1 p1) p(1 p) + n1 1 n 1 p1 p= p 1, p : sampel dari dua populasi S p1, s p1 : Standar error selisih proporsi dari dua populasi n 1, n : Jumlah sampel setiap populasi 9 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran 30 10
11 FAKTOR UKURAN SAMPEL Faktor yang mempengaruhi jumlah sampel 1. Tingkat keyakinan yang dipilih.. Kesalahan maksimum yang diperbolehkan. 3. Variasi dari populasi. 31 RUMUS JUMLAH SAMPEL UNTUK MENDUGA RATA-RATA POPULASI Rumus jumlah sampel dalam populasi dirumuskan sebagai berikut: n = [(Z α/.σ)/ε] Rumus tersebut diturunkan dari interval keyakinan sebagaimana diuraikan sebagai berikut: P ( Z α/ < Z < Z α/ ) = C = 1 α ( Z α/ < ( µ)/(σ/ n) < Z α/ ) ( Z α/ (σ/ n) < ( µ) < Z α/ (σ/ n)) (x µ) < Z α/ (σ/ n); ingat bahwa error ε = µ ε < Z α/ (σ/ n); ε = (Z α/ ) (σ /n); n = [(Z α/.σ)/ε] 3 RUMUS JUMLAH SAMPEL UNTUK MENDUGA RATA-RATA PROPORSI POPULASI Untuk mendapatkan rumus jumlah sampel dalam pendugaan proporsi populasi dapat diturunkan sebagai berikut: P ( Z α/ < Z < Z α/ ) = C = 1 α ( Z α/ < (p 1 p )/(σ/ n) <Z α/ ) ( Z α/ ( [(p(1 p)]/n 1) < (p 1 p ) < Z α/ ( [p(1 p)]/n 1) (p1 p) < Z α/ ( [(p(1 p)]/n 1); ingat bahwa error ε = p 1 p ε < Z α/ ( [(p(1 p)]/n 1); dikuadratkan kedua sisi menjadi ε = (Z α/ ) [(p(1 p)]/n 1; dipindahkan n 1 ke sisi kiri n 1 = (Z α/.) p(1 p) sehingga n menjadi ε n = (Z α/.) p(1 p) + 1 ε 33 11
12 TERIMA KASIH 34 1
Materi Kuliah: Statistik Inferensial
TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: [email protected] 1 Teori Statistik Titik Parameter Interval Teori Statistik Titik Parameter Interval 3 1 PENDUGA TUNGGAL SEBAGAI FUNGSI
TEORI PENDUGAAN STATISTIK. Oleh : Riandy Syarif
TEORI PENDUGAAN STATISTIK Oleh : Riandy Syarif Pendugaan adalah proses menggunakan sampel (penduga) untuk menduga parameter (Populasi) yg tidak diketahui. Ilustrasi : konferensi perubahan iklim di Bali
STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi
Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi
Pengujian hipotesis. Mata Kuliah: Statistik Inferensial. Hipotesis
PENGUJIAN HIPOTESIS Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] 1 Hipotesis Hipotesis adalah suatu pernyataan mengenai nilai suatu parameter populasi yang dimaksudkan untuk pengujian
Ummu Kalsum UNIVERSITAS GUNADARMA
Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)
ESTIMASI. Arna Fariza PENDAHULUAN
ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik
PENAKSIRAN PARAMETER TM_3
PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan
PENARIKAN SAMPEL & PENDUGAAN PARAMETER
PENARIKAN SAMPEL & PENDUGAAN PARAMETER Arti Penarikan Sampel Populasi ( Universe) adalah totalitas dari semua objek atau individu yang memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti
TEORI PENDUGAAN. diketahui berdasarkan informasi sampel.
TEORI PENDUGAAN Estimasi / Pendugaan Suatu pernyataan mengenai parameter populasi yang diketahui berdasarkan informasi sampel. Penduga atau Estimator Suatu statistik ti tik (harga sampel) yang digunakan
Mata Kuliah: Statistik Inferensial
DATA BERPERINGKAT Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] Uji Jumlah Peringkat Wilcoxon PENGERTIAN STATISTIKA NONPARAMETRIK Statistika nonparametrik untuk data berperingkat: Statistika
MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR
TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang
(ESTIMASI/ PENAKSIRAN)
ESTIMASI PENDAHULUAN Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik tenaga, waktu, maupun
Mata Kuliah: Statistik Inferensial
DATA BERPERINGKAT Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] PENGERTIAN STATISTIKA NONPARAMETRIK Statistika nonparametrik untuk data berperingkat: Statistika yang menggunakan data
Penduga : x p s r b. Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER
Pertemuan Ke 9. BAB V PENDUGAAN PARAMETER 5.1 Pengertian Pendugaan Parameter. Pendugaan merupakan suatu bagian dari statistik inferensia yaitu suatu pernyataan mengenai parameter populasi yang tidak diketahui
SESI 11 STATISTIK BISNIS
Modul ke: SESI 11 STATISTIK BISNIS Sesi 11 ini bertujuan agar Mahasiswa dapat mengetahui teori Hipoesa Sampel Besar statistik yang berguna sebagai alat analisis data Ekonomi dan Bisnis. Fakultas EKONOMI
1. PENGERTIAN. Manfaat Sampling :
1. PENGERTIAN Sampel adalah sebagian dari anggota populasi yang dipilih dengan cara tertentu yang akan diteliti sifat-sifatnya dalam penelitian. Nilai-nilai yang berasal dari data sampel dinamakan dengan
ESTIMASI. Podojoyo, SKM, M.Kes. Podojoyo 1
ESTIMASI Podojoyo, SKM, M.Kes Podojoyo 1 Definisi Estimasi Suatu metode dimana kita dapat memperkirakan nilai populasi (parameter) dengan memakai nilai sampel (statistik) Podojoyo 2 Didalam estimasi nilai
DISTRIBUSI SAMPLING besar
DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
Mata Kuliah: Statistik Inferensial
UJI CHI-KUADRAT Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] 1 Uji chi-kuadrat Uji Chi-Kuadrat untuk Keselarasan Uji Chi-Kuadrat untuk uji Kenormalan Uji Chi-Kuadrat untuk uji Independensi
Bab 5 Distribusi Sampling
Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n
PENGERTIAN PENGUJIAN HIPOTESIS
PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
Sampling, Estimasi dan Uji Hipotesis
Sampling, Estimasi dan Uji Hipotesis Tujuan Pembelajaran Memahami perlunya suatu sampling (pengambilan sampel) serta keuntungan- keuntungan melakukannya Menjelaskan pengertian sampel acak untuk sampling
SEBARAN PENARIKAN CONTOH
STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean
statistika untuk penelitian
statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,
Estimasi dan Confidence Interval
Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. April 5, 2016 TJ (SU) Estimasi dan Confidence Interval April 2016 1 / 30 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh
Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu
Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat
Pengertian Pengujian Hipotesis
PENGUJIAN HIPOTESIS Pengertian Pengujian Hipotesis HUPO BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau pernyataan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang
ESTIMASI. Widya Setiafindari
ESTIMASI Widya Setiafindari Tujuan Pembelajaran Menjelaskan konsep-konsep dasar yang mendukung pendugaan rata-rata populasi, persentase dan varians Menghitung dugaan-dugaan (estimates) rata-rata populasi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole
PENS. Probability and Random Process. Topik 8. Estimasi Parameter. Prima Kristalina Juni 2015
Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 8. Estimasi Parameter Prima Kristalina Juni 2015 1 2 Outline 1. Terminologi Estimasi Parameter
Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:
Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji
Metode Statistika. Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan)
Metode Statistika Statistika Inferensia: Pendugaan Parameter (Selang Kepercayaan) Pengantar Seringkali kita tertarik dengan karakteristik umum dari suatu populasi parameter Misalnya saja berapa rata-rata
PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut :
PENGUJIAN HIPOTESIS A. Pengertian Pengujian Hipotesis Hipotesis berasal dari bahasa Yunani, yaitu hupo dan thesis. Hupo berarti lemah, kurang, atau di bawah dan thesis berarti teori, proposisi, atau pernyataan
J U R U S A N M A N A J E M E N F A K U L T A S E K O N O M I UNIVERSITAS HALUOLEO K E N D A R I
J U R U S A N M A N A J E M E N F A K U L T A S E K O N O M I UNIVERSITAS HALUOLEO K E N D A R I 2 0 0 8 1 DAFTAR ISI HALAMAN JUDUL DAFTAR ISI KATA PENGANTAR Hal : i ii iii POKOK BAHASAN POKOK BAHASAN
DISPERSI DATA. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)
DISPERSI DISPERSI DATA Ukuran penyebaran suatu kelompok data terhadap pusat data. - Jangkauan (Range) - Simpangan/deviasi Rata-rata (Mean Deviation) - Variansi (Variance) - Standar Deviasi (Standart Deviation)
DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1
DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori
STATISTIKA. Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll.
STATISTIKA Statistika pengkuantifikasian (pengkuantitatifan) hasil-hasil pengamatan terhadap kejadian, keberadaan, sifat/karakterisitik, tempat, dll. Statistika deskriptif: pencatatan dan peringkasan hasil
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi
QUIZ AKHIR SEMESTER GANJIL 2004/2005 TULISKAN PADA LEMBAR JAWABAN ANDA :
QUIZ KHIR SEMESTER GNJIL 2004/2005 TULISKN PD LEMR JWN ND : NM : NIM : MT KULIH : STTISTIK PROILITS KELS / RUNG : D3.. /. TNGGL UJIN :. 2004 1. Dalam pendugaan interval rata-rata µ, distribusi t digunakan
Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah
Pengantar Uji Hipotesis Oleh Azimmatul Ihwah Hipotesis Merupakan pernyataan/dugaan mengenai parameter dari 1 atau lebih populasi. Misalnya seorang guru Kimia ingin mengetahui apakah metode pembelajaran
KONSISTENSI ESTIMATOR
KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)
Mata Kuliah: Statistik Inferensial
ANALISIS REGRESI DAN KORELASI LINIER 1 OUTLINE Bagian I Statistik Induktif Metode dan Distribusi Sampling Pengertian Korelasi Sederhana Teori Pendugaan Statistik Pengujian Hipotesa Sampel Besar Uji Signifikansi
TIN309 - Desain Eksperimen Materi #5 Genap 2016/2017 TIN309 DESAIN EKSPERIMEN
Materi #5 TIN3 DESAIN EKSPERIMEN ANOVA ANOVA pada dasarnya merupakan suatu metode yang menguraikan sumber keragaman (varian) dari suatu perbedaan rata-rata lebih dari dua populasi. Dengan mempergunakan
Metode Sampling dan Teorema Central Limit
Metode Sampling dan Teorema Central Limit Tjipto Juwono, Ph.D. Oct 28, 2016 TJ (SU) Metode Sampling dan Teorema Central Limit Oct 2016 1 / 52 Mengapa Perlu Sampling? Contoh Kita ingin mengetahui elektabilitas
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : [email protected] FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 IV. PENDUGAAN PARAMETER Populasi Sampling Sampel N n Rata-rata : μ Simp.
Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30
Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga
DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial
DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal
Interval Estimation. Tjipto Juwono, Ph.D. May 20, TJ (SU) Interval Estimation May / 24
Interval Estimation Tjipto Juwono, Ph.D. May 20, 2015 TJ (SU) Interval Estimation May 2015 1 / 24 Outline 1 Pendahuluan 2 Pengertian Confidence Interval 3 Menghitung t 4 Menyusun Confidence Interval 5
6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono
6. Teori Estimasi EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Pendahuluan Inferensi statistik adalah metoda untuk menarik inferensi atau membuat generalisasi dari suatu populasi. Ada
Contoh Solusi PR 4 Statistika & Probabilitas. 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution.
Contoh Solusi PR 4 Statistika & Probabilitas 1. Nilai probabilitas pada masing-masing soal mengacu pada tabel Standard Normal Distribution. a X := curah hujan satu tahun. X : N 42,16. Dit: PX > 50. 50
PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif
PENGUJIAN HIPOTESIS RATA- RATA Oleh : Riandy Syarif Definisi Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yg didasarkan atas informasi sampelnya. Pengujian
Interval Estimation. Tjipto Juwono, Ph.D. May 13, TJ (SU) Interval Estimation May / 17
Interval Estimation Tjipto Juwono, Ph.D. May 13, 2016 TJ (SU) Interval Estimation May 2015 1 / 17 Pendahuluan Point Estimator Perhatikan MPC pada persamaan regresi Ŷ i = ˆβ 1 + ˆβ 2 X i = 2.3121+0.5231X
Pengantar Statistika Bab 1
BAB 14 PENGUJIAN HIPOTESA SAMPEL KECIL 1 Pengujian Hipotesa Sampel Kecil 4 DEFINISI Pengertian Sampel Kecil Sampel kecil yang jumlah sampel kurang dari 30, maka nilai standar deviasi (s) berfluktuasi relatif
3. KATA KUNCI: Arti Statistika, Data, Skala Pengukuran & Variabel
1 1. TUJUAN UMUM Diharapkan mahasiswa mampu menjelaskan secara komprehensip konsep, kegunaan dan pengertian statistika ekonomi serta penerapannya dalam kehidupan nyata. 2. TUJUAN KHUSUS a. Mahasiswa diharapkan
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi
BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu
BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.
TEORI PENDUGAAN (TEORI ESTIMASI)
TEORI PENDUGAAN (TEORI ESTIMASI) Tujuan Pembelajaran Mempelajari bagaimana cara melakukan pendugaan parameter populasi berasarkan statistik yang dihitung dari sampel A. Pendahuluan Pendahuluan : Tujuan
Estimasi dan Confidence Interval
Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. June 2017 TJ (SU) Estimasi dan Confidence Interval June 2017 1 / 31 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh
PENGUJIAN HIPOTESIS 1
PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang
Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
Sampling Distributions (Distribusi Penarikan Contoh) Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1
Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Menarik suatu kesimpulan adalah tujuan mengumpulkan data kuantitatif Umumnya parameter populasi [rata-rata populasi & varians
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,
Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi
ESTIMASI TITIK Setiap karakteristik dari distribusi populasi disebut dengan parameter. Statistik adalah variabel random yang hanya tergantung pada harga observasi sampel. Statistik merupakan bentuk dari
PENGUJIAN HIPOTESIS 2
PENGUJIAN HIPOTESIS. Menguji Kesamaan Dua Rata-rata a. Uji Dua Pihak Misalkan ada dua populasi berdistribusi normal dengan masing-masing rata-rata dan simpangan baku secara berturut-turut μ dan μ dan σ
BAB IV ANALISIS HASIL PENELITIAN
BAB IV ANALISIS HASIL PENELITIAN 4.1 Menghitung Return Karena penelitian ini mengukur potensi kerugian maksimum dari saham BMRI. Maka, langkah pertama adalah menghitung return hariannya dengan rumus (2-3)
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata
Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi
Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas
Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode
STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI
STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
BAB 3: NILAI RINGKASAN DATA
BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum
UJI HIPOTESA PERBEDAAN. t-test
UJI HIPOTESA PERBEDAAN t-test T-test Digunakan untuk menguji hipotesa komparatif (uji perbedaan) Digunakan untuk sample kecil & varian populasi tidak diketahui Merupakan salah satu tehnik statistik parametrik
6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.
Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat
KONSEP DASAR SAMPLING
TEKNIK SAMPLING KONSEP DASAR SAMPLING LOGO HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND TEKNIK SAMPLING Metode pengambilan sebagian anggota populasi sedemikian rupa sehingga contoh yang
16-Aug-15. Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1
Haryoso Wicaksono, S.Si., M.M., M.Kom. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Menarik suatu kesimpulan adalah tujuan mengumpulkan data kuantitatif Umumnya parameter populasi [rata-rata populasi & varians
BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier
BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Linier Berganda Analisis regresi pertama kali dikembangkan oleh Sir Francis Galton pada abad ke-19. Analisis regresi dengan satu peubah prediktor dan satu peubah
BAB 3 METODOLOGI PENELITIAN. dengan menggunakan jenis penelitian eksplanatif dan metode penelitian kuantitatif.
BAB 3 METODOLOGI PENELITIAN 3.1 Desain Penelitian Jenis dan metode penelitian yang digunakan dalam penelitian ini adalah dengan menggunakan jenis penelitian eksplanatif dan metode penelitian kuantitatif.
Pendugaan Parameter Populasi Secara Statistik
Pendugaan Parameter Populasi Secara Statistik Julian Adam Ridjal PS Agribisnis Universitas Jember www.adamjulian.net Pendugaan Parameter Populasi Secara Statistik Pendugaan Parameter Populasi secara Statistik
TINJAUAN PUSTAKA. Model Regresi Linier Ganda
TINJAUAN PUSTAKA Model Regresi Linier Ganda Hubungan antara y dan X dalam model regresi linier umum adalah y = X ß + e () dengan y merupakan vektor pengamatan pada peubah respon (peubah tak bebas) berukuran
METODE DAN DISTRIBUSI SAMPLING. Oleh : Riandy Syarif
METODE DAN DISTRIBUSI SAMPLING Oleh : Riandy Syarif HUBUNGAN SAMPEL DAN POPULASI Populasi Sampel DEFINISI Populasi kumpulan dari semua kemungkinan orang-orang, benda-benda, dan ukuran lain yang menjadi
Distribusi Sampling 6.2. Debrina Puspita Andriani /
6. Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK
BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK Dalam melakukan estimasi pada suatu kasus regresi nonparametrik, ada banyak metode yang dapat digunakan. Yasin (2009) dalam makalahnya melakukan estimasi regresi
Statistika (MMS-1403)
Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM MMS-1403 p.1/93 Distribusi Sampling Statistik Populasi: himpunan keseluruhan obyek yang
Mata Kuliah: Statistik Inferensial
PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)
Estimasi dan Uji Hipotesis
Modul 7 Estimasi dan Uji Hipotesis Bambang Prastyo, S.Sos. PENDAHULUAN pa yang akan Anda lakukan setelah Anda selesai melakukan penelitian? A Tentunya Anda akan mengambil suatu kesimpulan. Nah seperti
The Central Limit Theorem
Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel
Kuliah 4. Ukuran Penyebaran Data
Kuliah 4. Ukuran Penyebaran Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. 21 Maret 2012 Prodi Perikanan Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran Content Rentang Data Rentang
Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh:
Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi, SP., MSc. Start Home Contact Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Contingency Table Test)
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,
PENAKSIRAN NILAI PARAMETER POPULASI
PENAKSIRAN NILAI PARAMETER POPULASI Setelah mengikuti perkuliahan minggu I, mahasiswa BOPR 5204 diharapkan mampu untuk (1) Menjelaskan penaksiran titik dan interval parameter populasi (2) Mengetahui jenis
PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )
PENGUJIAN HIPOTESIS PROSEDUR UMUM Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) misalnya: H 0 : µ = 100 H 1 : μ 100 atau H 1 : μ> 100 atau H 1 : μ< 100 PROSEDUR UMUM Langkah : tentukan
Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR
Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : [email protected] Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,
Econometric Modeling: Model Specification
Econometric : Model Specification Tjipto Juwono, Ph.D. Nov 18, 2015 Model Spesification Error Salah satu asumsi dalam CLRM adalah bahwa model regresi yang digunakan dalam analisa adalah model yang dispesifikasi
PENGUJIAN HIPOTESIS (2)
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel
Ukuran Simpangan/Penyebaran
Ukuran Simpangan/Penyebaran Anief Fauzan Rozi, S. Kom., M. Eng. Phone/WA: 0856 4384 6541 PIN BB: 29543EC4 Sertakan idenotas Anda keoka akan add contact Email : [email protected] Blog: anief.mercubuana-
Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai
Distribusi Normal Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika. Distribusi normal baku adalah distribusi
