STATISTIKA INDUSTRI 2 TIN 4004

Ukuran: px
Mulai penontonan dengan halaman:

Download "STATISTIKA INDUSTRI 2 TIN 4004"

Transkripsi

1 STATISTIKA INDUSTRI 2 TIN 4004

2 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability & Statistics for Engineers & Scientists, 9 th Ed. Prentice Hall, Weiers, Ronald M., Introduction to Business Statistics, 7 th Ed. South-Western, 2011.

3 Uji student t Konsep Dasar Variansi populasi tidak diketahui Digunakan untuk uji rata-rata populasi Sample berdistribusi t (df = n-1) Sample kecil (n < 30) Distribusi t berbentuk kurva bell-shaped (simetris pada µ = 0) namun dengan standard deviasi > 1 Pada n besar, distribusi t akan menyerupai distribusi normal. Pada n =, distribusi t = distribusi normal Jika sample kecil dan tidak membentuk bell-shaped (tidak berdistribusi normal) maka gunakan prosedur nonparametrik

4 Uji t Uji Rata-rata Populasi (Rumus) s 2 = n i=1 (x i x) 2 n 1 d. f = n 1

5 Uji T Uji Rata-rata Populasi (Penentuan Ho & H1) Null Hypotheses Ho: µ = µo Ho: µ µo Ho: µ µo Alternative Hypotheses H1: µ µo Reject Ho: T tα/2 H1: µ < µo Reject Ho: T -tα H1: µ > µo Reject Ho: T tα

6 Latihan Soal Departemen kesehatan menyatakan bahwa level keamanan bakteri yang terkandung dalam air adalah 200. Diketahui data sampling rata-rata bakteria pada 10 sample volume air adalah sbb: Dapatkah disimpulkan bahwa kondisi perairan saat ini baik-baik saja (α = 0.05)?

7 Jawaban Latihan Soal Diket: n = 10 sample air x = bakteri S = bakteri µo = 200 bakteri α = 0.05 df = 10 1 = 9 Ditanya: Ho : µ = 200 bakteri T = = -1,833; 9 H1 : µ < 200 bakteri Jawab: Uji satu arah, Reject Ho: T -tα -tα = -t0.05 = T = ( )/(10.81/ 10) = T = ; REJECT Ho Kesimpulan: kondisi perairan saat ini baik-baik saja

8 Uji Proporsi Populasi Konsep Dasar Distribusi yang paling sesuai untuk uji hipotesis proporsi populasi adalah distribusi binomial Pada sample besar, dapat dilakukan pendekatan distribusi lain yaitu distribusi poisson dan distribusi normal Distribusi poisson dengan parameter μ = np o digunakan jika p o sangat mendekati 0 atau sangat mendekati 1 Jika p o tidak secara ekstrim mendekati 0 atau 1, pendekatan distribusi normal dengan parameter μ = np o dan σ 2 = np o q o akan lebih akurat Ukuran sample dinyatakan besar jika np 5 dan nq 5

9 Z = p p o Z = σ x p p o (p o q o )/n σ x = (p o q o )/n q o = 1 p o Uji Proporsi Populasi Rumus p p o n σ x = sample proportion = hypothesized population proportion = sample size = standard error of the distribution of the sample proportion

10 Uji Proporsi Populasi Aplikasi Beberapa penerapan uji proporsi populasi: Digunakan oleh politikus untuk memperkirakan besarnya pemilih yang akan memilihnya dalam pemilu. Digunakan oleh manufaktur untuk mengetahui proporsi barang reject pada proses produksi atau pada proses pengiriman. Dasar pengetahuan bagi para penjudi untuk menentukan proporsi hasil yang menguntungkan baginya.

11 Uji Z Uji Proporsi Populasi (Penentuan Ho & H1) Null Hypotheses Ho: p = po Ho: p po Ho: p po Alternative Hypotheses H1: p po Reject Ho: Z zα/2 H1: p < po Reject Ho: Z -zα H1: p > po Reject Ho: Z zα

12 Latihan Soal 1. Sensus lima tahun lalu menunjukkan hasil bahwa 20% keluarga di daerah tersebut berada di atas garis kemiskinan (makmur). Hasil terbaru dari sampling 400 keluarga diperoleh data 70 keluarga berada di bawah garis kemiskinan. Apakah terjadi pergeseran hasil sensus setelah lima tahun? (α = 0.05)

13 Jawaban Latihan Soal 1. Diket: n = 400 keluarga p = 330/400 po = 20% qo = 1 20% = 80% α = 0.05 Ditanya: Ho : p = 20% H1 : p 20% = Jawab: Uji dua arah, Reject Ho: Z zα/2 ±zα/2 = ±z0.05/2 = ±z0.025 = ±1.96 Z = ((330/400) 0.2)/( (0.2x0.8)/400) = Z = ; REJECT Ho Kesimpulan: terjadi pergeseran hasil sensus setelah lima tahun Z = = 1.96

14 Latihan Soal 2. Sensus lima tahun lalu menunjukkan hasil bahwa 20% keluarga di daerah tersebut berada di bawah garis kemiskinan. Hasil terbaru dari sampling 400 keluarga diperoleh data 70 keluarga berada di bawah garis kemiskinan. Apakah terjadi pergeseran hasil sensus setelah lima tahun? (α = 0.05)

15 Jawaban Latihan Soal 2. Diket: n = 400 keluarga p = 70/400 po = 20% qo = 1 20% = 80% α = 0.05 Ditanya: Ho : p = 20% H1 : p 20% Z = = Jawab: Uji dua arah, Reject Ho: Z zα/2 ±zα/2 = ±z0.05/2 = ±z0.025 = ±1.96 Z = ((70/400) 0.2)/( (0.2x0.8)/400) = Z = atau ; DO NOT REJECT Ho Kesimpulan: tidak terjadi pergeseran hasil sensus setelah 5 tahun = 1.96

16 Latihan Soal 3. Diasumsikan bahwa proses produksi diluar kendali jika ditemukan produk reject lebih dari 3%. Inspeksi pada 500 produk ditemukan 25 produk cacat. Apakah dapat dinyatakan bahwa produksi minggu ini diluar kendali? (α = 0.05)

17 Jawaban Latihan Soal 3. Diket: n = 500 unit p = 25/500 po = 3% qo = 1 3% = 97% α = 0.05 Ditanya: Ho : p = 3% H1 : p > 3% Jawab: Uji satu arah, Reject Ho: Z zα zα = z0.05 = 1.68 Z = ((25/500) 0.03)/( (0.03x0.97)/500) = 2.62 Z = ; REJECT Ho Kesimpulan: produksi minggu ini diluar kendali Z = 2.62 = 1.68

18 Pertemuan 4 - Persiapan Tugas Baca: Uji Dua Sample Uji Z Uji t Uji proporsi Uji t berpasangan (paired t-test)

19

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji Z: Proportional Populasi Uji Hipotesis 2 populasi: Uji Z Uji pooled t-test Uji paired t-test Referensi: Johnson, R. A., Statistics

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 4 Outline: Uji Dua Sample Uji Z Uji t Uji t gabungan (pooled t-test) Uji t berpasangan (paired t-test) Uji proporsi Uji Chi-Square Referensi: Johnson, R. A., Statistics

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Contingency Uji Homogenitas Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 001.

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Goodness-of-Fit Uji Contingency Uji Homogenitas Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability

Lebih terperinci

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling

STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA DISTRIBUSI SAMPLING PENGANTAR Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 8 Outline: Simple Linear Regression and Correlation Multiple Linear Regression and Correlation Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and

Lebih terperinci

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Kontrak Perkuliahan Pertemuan & Materi RPKPS Penilaian Tugas, short quiz (30%) Quiz 1 & 2 (40%) UAS (30%) Referensi Montgomery, D.C, George C. Runger. Applied Statistic and

Lebih terperinci

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1

PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

Pertemuan 8 STATISTIKA INDUSTRI 2 08/11/2013. Introduction to Linier Regression. Introduction to Linier Regression. Introduction to Linier Regression

Pertemuan 8 STATISTIKA INDUSTRI 2 08/11/2013. Introduction to Linier Regression. Introduction to Linier Regression. Introduction to Linier Regression Pertemuan 8 STATISTIKA INDUSTRI 2 TIN 4004 Outline: Regresi Linier Sederhana dan Korelasi (Simple Linier Regression and Correlation) Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu

Lebih terperinci

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013

Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013 3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:

Lebih terperinci

SILABUS MATA KULIAH. Pengalaman Pembelajaran. 1. Menyusun langkahlangkah. 1. Langkahlangkah. setiap metode penarikan sampel 2.

SILABUS MATA KULIAH. Pengalaman Pembelajaran. 1. Menyusun langkahlangkah. 1. Langkahlangkah. setiap metode penarikan sampel 2. SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-209 Nama Mata Kuliah : Praktikum Statistika Jumlah SKS : 1 Semester : III Mata Kuliah Pra Syarat : TKI-110 Teori Probabilitas

Lebih terperinci

DISTRIBUSI SAMPLING besar

DISTRIBUSI SAMPLING besar DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan

Lebih terperinci

Pertemuan 10 STATISTIKA INDUSTRI 2. Multiple Linear Regression. Multiple Linear Regression. Multiple Linear Regression 19/04/2016

Pertemuan 10 STATISTIKA INDUSTRI 2. Multiple Linear Regression. Multiple Linear Regression. Multiple Linear Regression 19/04/2016 19/04/016 Pertemuan 10 STATISTIKA INDUSTRI TIN 4004 Outline: and Correlation Non Linear Regression Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability for Engineers, 5 th Ed. John

Lebih terperinci

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja.

PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja. RP S1 SP 01 A. CAPAIAN PEMAN : 1. CP 11.1 : Mampu menganalisis data secara kuantitatif baik secara univariat maupun Multivariat serta menerapkannya. 2. CP 8.1 : Memformulasikan masalah ke dalam pemodelan

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS [email protected], [email protected] ABSTRAK

Lebih terperinci

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)

Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal) Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)

Lebih terperinci

Kontrak Kuliah Metode Statistika 2

Kontrak Kuliah Metode Statistika 2 Kontrak Kuliah Metode Statistika 2 Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Deskripsi Mata Kuliah Nama Mata Kuliah : Metode Statistika 2 Semester/SKS : I / 3 SKS Kompetensi

Lebih terperinci

STATISTIKA DASAR MAF Dosen: Dr. Lutfi Rohman Wenny Maulina, M.Si

STATISTIKA DASAR MAF Dosen: Dr. Lutfi Rohman Wenny Maulina, M.Si STATISTIKA DASAR MAF 1212 Dosen: Dr. Lutfi Rohman Wenny Maulina, M.Si Pokok Bahasan Pokok Bahasan KONTRAK PERKULIAHAN UTS 35% UAS 35% TUGAS/QUIZ 20% KEHADIRAN 10% REFERENSI: Walpole, Ronald E. 2011. Probability

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. June 2017 TJ (SU) Estimasi dan Confidence Interval June 2017 1 / 31 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi

STATISTIKA BISNIS PENDUGAAN STATISTIKA. Deden Tarmidi, SE., M.Ak., BKP. Modul ke: Fakultas Ekonomi dan Bisnis. Program Studi Akuntansi Modul ke: STATISTIKA BISNIS PENDUGAAN STATISTIKA Fakultas Ekonomi dan Bisnis Deden Tarmidi, SE., M.Ak., BKP. Program Studi Akuntansi www.mercubuana.ac.id PENDAHULUAN Data yang sudah didapat dari populasi

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

SILABUS MATA KULIAH. Pengalaman Pembelajaran

SILABUS MATA KULIAH. Pengalaman Pembelajaran SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-110 Nama Mata Kuliah : Teori Probabilitas Jumlah SKS : 2 Semester : II Mata Kuliah Pra Syarat : TKI-101 Pengantar Teknik Industri

Lebih terperinci

SILABUS MATA KULIAH. Pengalaman Pembelajaran

SILABUS MATA KULIAH. Pengalaman Pembelajaran SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-204 Nama Mata Kuliah : Statistika Industri Jumlah SKS : 2 Semester : III Mata Kuliah Pra Syarat : TKI-110 Teori Probabilitas Deskripsi

Lebih terperinci

PENGUJIAN HIPOTESIS (2) Debrina Puspita Andriani /

PENGUJIAN HIPOTESIS (2) Debrina Puspita Andriani    / PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Rata-rata Sampel Berukuran Besar 3 Uji Rata-rata untuk Sampel Berukuran

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform

Lebih terperinci

Ukuran Statistik Bagi Data

Ukuran Statistik Bagi Data Ukuran Statistik Bagi Data Ahmad Zakaria, Ph.D. September 19, 2013 1 Ahmad Zakaria, Ph.D. Ukuran Statistik Bagi Data Definisi Parameter 2 Ahmad Zakaria, Ph.D. Ukuran Statistik Bagi Data Definisi Parameter

Lebih terperinci

Ummu Kalsum UNIVERSITAS GUNADARMA

Ummu Kalsum UNIVERSITAS GUNADARMA Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)

Lebih terperinci

DISTRIBUSI DISKRIT KHUSUS

DISTRIBUSI DISKRIT KHUSUS DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi

Lebih terperinci

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.

UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar. DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret

Lebih terperinci

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI

BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI 5.1. Pendahuluan Untuk mendeteksi bagaimana konfigurasi titik dalam ruang apakah bersifat acak atau random, regular, ataupun cluster (kelompok); pertama-tama

Lebih terperinci

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)

10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah) /4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu

Lebih terperinci

Pertemuan 11 s.d. 13 STATISTIKA INDUSTRI 2. Nonparametric. Skala Pengukuran...(review) 27/05/2016. Statistik Non Parametrik

Pertemuan 11 s.d. 13 STATISTIKA INDUSTRI 2. Nonparametric. Skala Pengukuran...(review) 27/05/2016. Statistik Non Parametrik Pertemuan 11 s.d. 13 STATISTIKA INDUSTRI TIN 4004 Outline: Nonparametric Statistics Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability & Statistics for Engineers & Scientists, 9 th

Lebih terperinci

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI

BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI 7.1. Pendahuluan BAB 7 DISTRIBUSI-COMPOUND DAN GENERALIZED SPASIAL MUHAMMAD NUR AIDI Pada bab sebelumnya, penyebaran spatial (konfigurasi spasial) dimana ditunjukan sebagai ragam sampel quadran. Bab ini

Lebih terperinci

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.

STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA. STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data

Lebih terperinci

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar

DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret

Lebih terperinci

PENAKSIRAN NILAI PARAMETER POPULASI

PENAKSIRAN NILAI PARAMETER POPULASI PENAKSIRAN NILAI PARAMETER POPULASI Setelah mengikuti perkuliahan minggu I, mahasiswa BOPR 5204 diharapkan mampu untuk (1) Menjelaskan penaksiran titik dan interval parameter populasi (2) Mengetahui jenis

Lebih terperinci

Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah

Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah Uji Mengenai Variansi dan Proporsi Oleh Azimmatul Ihwah Uji Hipotesis Mengenai Variansi Beda uji hipotesis mengenai variansi dengan uji hipotesis mengenai rataan adalah pada parameter penduga, yaitu menggunakan

Lebih terperinci

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)

Lebih terperinci

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif

PENGUJIAN HIPOTESIS RATA- RATA. Oleh : Riandy Syarif PENGUJIAN HIPOTESIS RATA- RATA Oleh : Riandy Syarif Definisi Pengujian hipotesis tentang rata-rata adalah pengujian hipotesis mengenai rata-rata populasi yg didasarkan atas informasi sampelnya. Pengujian

Lebih terperinci

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi

DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak

Lebih terperinci

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah

Pengantar Uji Hipotesis. Oleh Azimmatul Ihwah Pengantar Uji Hipotesis Oleh Azimmatul Ihwah Hipotesis Merupakan pernyataan/dugaan mengenai parameter dari 1 atau lebih populasi. Misalnya seorang guru Kimia ingin mengetahui apakah metode pembelajaran

Lebih terperinci

PENGARUH FAKTOR LINGKUNGAN FISIK TERHADAP WAKTU PERAKITAN STICK PLAYSTATION

PENGARUH FAKTOR LINGKUNGAN FISIK TERHADAP WAKTU PERAKITAN STICK PLAYSTATION PENGARUH FAKTOR LINGKUNGAN FISIK TERHADAP WAKTU PERAKITAN STICK PLAYSTATION Resa Taruna Suhada dan Ricky Reza Adhavi Program Studi Teknik Industri, Fakultas Teknologi Industri - Universitas Mercu Buana

Lebih terperinci

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012

MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012 Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang

Lebih terperinci

Distribusi Sampling 6.2. Debrina Puspita Andriani /

Distribusi Sampling 6.2. Debrina Puspita Andriani    / 6. Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling

Lebih terperinci

Uji Hipotesis dengan ANOVA (Analysis of Variance)

Uji Hipotesis dengan ANOVA (Analysis of Variance) Uji Hipotesis dengan ANOVA (Analysis of Variance) I. Pengertian Dalam sebuah penelitian, terkadang kita ingin membandingkan hasil perlakuan (treatment) pada sebuah populasi dengan populasi yang lain dengan

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS BESAR PROGRAM PENGAJARAN (GBPP) Nama Mata Kuliah : STATISTIKA-1*/** / 2015 Kode Mata Kuliah/SKS : IT-022250/2 SKS (AKUNTANSI) Deskripsi singkat : Mata Kuliah Keilmuan dan Ketrampilan (MKKK) Statistika-1

Lebih terperinci

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah)

4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah) 4/6/9 Galat (error) Uji Hipotesis H ditolak H benar H salah a P(menolak H H benar) galat tipe I keputusan benar MA 8 Statistika Dasar Kamis, 6 Februari 9 H tidak ditolak keputusan benar P(tidak menolak

Lebih terperinci

ESTIMASI. Arna Fariza PENDAHULUAN

ESTIMASI. Arna Fariza PENDAHULUAN ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik

Lebih terperinci

Apa itu suatu Hypothesis?

Apa itu suatu Hypothesis? Chapter 7 Student Lecture Notes 7-1 Dasar Dasar Hipotesis Apa itu suatu Hypothesis? Hypothesis adalah suatu pernyataan (asumsi) tentang parameter populasi I nyatakan rata-rata IPK kelas ini = 3.5! Contoh

Lebih terperinci

STATISTIK PERTEMUAN X

STATISTIK PERTEMUAN X STATISTIK PERTEMUAN X STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA) Outline Uji Hipotesis Variansi dengan sampel ganda Uji Hipotesis Mean dengan Sampel ganda : - Uji t untuk populasi saling bergantung

Lebih terperinci

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015 Uji Hipotesis Atina Ahdika, S.Si, M.Si Universitas Islam Indonesia 015 Definisi Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: [email protected] 1 Teori Statistik Titik Parameter Interval Teori Statistik Titik Parameter Interval 3 1 PENDUGA TUNGGAL SEBAGAI FUNGSI

Lebih terperinci

Estimasi dan Confidence Interval

Estimasi dan Confidence Interval Estimasi dan Confidence Interval Tjipto Juwono, Ph.D. April 5, 2016 TJ (SU) Estimasi dan Confidence Interval April 2016 1 / 30 Point Estimate Point Estimate: Adalah suatu nilai tunggal (point) yang diperoleh

Lebih terperinci

MA2081 Statistika Dasar

MA2081 Statistika Dasar Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA2081 Statistika

Lebih terperinci

Materi Kuliah: Statistik Inferensial

Materi Kuliah: Statistik Inferensial TEORI PENDUGAAN STATISTIK Prof. Dr. Almasdi Syahza, SE., MP Email: [email protected] 1 Teori Statistik Pengujian Hipotesa Besar Pengujian Hipotesa Kecil Memilih Ukuran Teori Statistik Pengujian Hipotesa

Lebih terperinci

Konsep Dasar Statistik dan Probabilitas

Konsep Dasar Statistik dan Probabilitas Konsep Dasar Statistik dan Probabilitas Pengendalian Kualitas Statistika Ayundyah Kesumawati Prodi Statistika FMIPA-UII September 30, 2015 Ayundyah (UII) Konsep Dasar Statistik dan Probabilitas September

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar

Uji Hipotesis. MA2081 STATISTIKA DASAR Utriweni Mukhaiyar Uji Hipotesis MA081 STATISTIKA DASAR Utriweni Mukhaiyar 8 Maret 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu diuji kebenarannyaa

Lebih terperinci

STATISTIK PERTEMUAN VII

STATISTIK PERTEMUAN VII STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik

Lebih terperinci

PENAKSIRAN PARAMETER TM_3

PENAKSIRAN PARAMETER TM_3 PENAKSIRAN PARAMETER TM_3 Pendahuluan Statistik inverensial membicarakan bgmn mengeneralisasi informasi yg telah diperoleh. Segala aturan, dan cara, yg dpt di pakai sebagai alat dlm mencoba menarik kesimpulan

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

DISTRIBUSI KONTINU. Utriweni Mukhaiyar

DISTRIBUSI KONTINU. Utriweni Mukhaiyar DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U

Lebih terperinci

Distribusi dari Sampling

Distribusi dari Sampling Distribusi dari Sampling Sampling Acak Pengenalan ke Uji Hipotesis dan Estimasi Selang Hal yang harus diingat Populasi- adalah apa yang dibicarakan Sampel- adalah apa yang didapat dari data Distribusi

Lebih terperinci

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011

UJI RATAAN UJIVARIANSI MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 2011 Uji Hipotesis UJI RATAAN UJIVARIANSI MA 081 STATISTIKA DASAR UTRIWENI MUKHAIYAR A PRIL 011 Pengertian Hipotesisadalah i suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lbih lebih

Lebih terperinci

S 10 Studi Simulasi Tentang Penerapan Grafik Pengendali Berdasarkan Analisis Komponen Utama (Principal Component Analysis)

S 10 Studi Simulasi Tentang Penerapan Grafik Pengendali Berdasarkan Analisis Komponen Utama (Principal Component Analysis) PROSIDING ISBN : 978 979 6353 6 3 S 0 Studi Simulasi Tentang Penerapan Grafik Pengendali Berdasarkan Analisis Komponen Utama (Principal Component Analysis) Wirayanti ), Adi Setiawan ), Bambang Susanto

Lebih terperinci

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL

PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang

Lebih terperinci

PENGUJIAN HIPOTESIS (2)

PENGUJIAN HIPOTESIS (2) PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg

Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg Sampling Distributions (Distribusi Penarikan Contoh) Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg

Lebih terperinci

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016 REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS Utriweni Mukhaiyar MA81 Statistika Nonparametrik Kamis, 1 Januari 016 PEUBAH ACAK Peubah acak, yaitu pemetaan X: S R Ruang Sampel, S X x Himpunan Bil.Riil,

Lebih terperinci

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang

Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang Beberapa Peubah Acak Diskret (1) Kuliah 8 Pengantar Hitung Peluang [email protected] Outline Peubah acak Bernoulli Peubah acak binom Peubah acak geometrik Latihan dan Diskusi Review Peubah Acak

Lebih terperinci

UJI HIPOTESIS DALAM SATU POPULASI MINGGU VII

UJI HIPOTESIS DALAM SATU POPULASI MINGGU VII UJI HIPOTESIS DALAM SATU POPULASI MINGGU VII PENGERTIAN HIPOTESIS Hypothesis berasal dari kata Yunani (Greek) Dari kata hypotithenai artinya menduga Kata ini pertama digunakan oleh Circa 1656 Hipotesis

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA. 1.1 Latar Belakang

I. PENDAHULUAN II. TINJAUAN PUSTAKA. 1.1 Latar Belakang I. PENDAHULUAN 1.1 Latar Belakang Statistik sangat sering ditemui dalam kehidupan sehari-hari, tidak hanya dalam dunia pendidikan dan ilmu pengetahuan. Statistik inferensia salah satunya, merupakan satu

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI POISSON

PROSES PERCABANGAN PADA DISTRIBUSI POISSON PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik

Lebih terperinci

Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi

Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi Statistika, Vol. No., Mei Pendugaan Selang Kepercayaan Persentil Bootstrap Nonparametrik untuk Parameter Regresi MARZUKI, HIZIR SOFYAN, ASEP RUSYANA Jurusan Matematika FMIPA Universitas Syiah Kuala Jl.

Lebih terperinci

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012

MODUL PRAKTIKUM STATISTIKA 2. Laboratorium Jurusan. Manajemen Dasar. Fakultas Ekonomi UNIVERSITAS GUNADARMA. Versi 3.1. Tahun Penyusunan 2012 MODUL PRAKTIKUM STATISTIKA 2 Versi 3.1 Tahun Penyusunan 2012 Tim Penyusun 1. Ir. Rina Sugiarti, MM 2. Lies Handrijaningsih, SE.,MM 3. Budi Sulistyo SE.,MM 4. Oktavia Anna Rahayu 5. Intan Permatasari Laboratorium

Lebih terperinci

UJI HIPOTESIS SATU SAMPEL. Chapter 10

UJI HIPOTESIS SATU SAMPEL. Chapter 10 UJI HIPOTESIS SATU SAMPEL Chapter 10 Tujuan 1. Mendefinisikan hypothesis and hypothesis testing. 2. Menjelaskan lima tahapan prosedur uji hipotesis. 3. Membedakan antara uji hipotesis satu sisi dan dua

Lebih terperinci

Evaluasi Deviasi dari Aproksimasi Frekuensi Kejadian Perawatan Korektif dan Preventif

Evaluasi Deviasi dari Aproksimasi Frekuensi Kejadian Perawatan Korektif dan Preventif Petunjuk Sitasi: Rahman, A. (2017). Evaluasi Deviasi Dari Aproksimasi Frekuensi Kejadian Perawatan Korektif Dan Preventif. Prosiding SNTI dan SATELIT 2017 (pp. C181-186). Malang: Jurusan Teknik Industri

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH PROBABILITA TERAPAN (SI) KODE / SKS: KD / 3 SKS

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH PROBABILITA TERAPAN (SI) KODE / SKS: KD / 3 SKS Minggu Pokok Bahasan ke dan TIU 1. 1.Distribusi sampling Memberi penjelasan tentang populasi, sampel, tehnik pengambilan sampel., serta distribusi sampling ratarata Sub Pokok Bahasan dan Sasaran Belajar

Lebih terperinci

Distribusi Normal, Skewness dan Qurtosis

Distribusi Normal, Skewness dan Qurtosis Distribusi Normal, Skewness dan Qurtosis Departemen Biostatistika FKM UI 1 2 SAP Statistika 1, minggu ke-4 4 Membekali mahasiswa agar lebih paham dan menguasai teori terkait: menghitung ukuran penyimpangan

Lebih terperinci

Jurnal Gradien Vol. 10 No. 1 Januari 2014 : 957-962 Analisis Model Regresi Linear Berganda dengan Metode Response Surface * Henoh Bayu Murti, Dian Kurniasari, Widiarti Jurusan Matematika, Fakultas Matematika

Lebih terperinci

PRODI DIII STATISTIKA-FMIPA ITS RENCANA PEMBELAJARAN KODE/ MATA KULIAH/ SKS/ SEMESTER : SS /PENGANTAR METODE STATISTIKA / (2/1/1) I

PRODI DIII STATISTIKA-FMIPA ITS RENCANA PEMBELAJARAN KODE/ MATA KULIAH/ SKS/ SEMESTER : SS /PENGANTAR METODE STATISTIKA / (2/1/1) I CAPAIAN PEMBELAJARAN (Learning outcome) : Mampu melakukan deskripsi, eksplorasi dan interpretasi data serta Mampu menganalisis data dengan metode statistika yang sesuai Penguasaan Pengetahuan 5.1 Mampu

Lebih terperinci

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK Yayuk Nurkotimah dan Fachrur Rozi Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: [email protected]

Lebih terperinci

Teknik Ensemble dengan Additive Noise pada Estimasi Parameter Model Autoregressive Spasial

Teknik Ensemble dengan Additive Noise pada Estimasi Parameter Model Autoregressive Spasial SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Teknik Ensemble dengan Additive Noise pada Estimasi Parameter Model Autoregressive Spasial Sulistiyaningsih 1, Dewi Retno Sari Saputro 2, Purnami Widyaningsih

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Distribusi Peluang. Kuliah 6

Distribusi Peluang. Kuliah 6 Distribusi Peluang Kuliah 6 1. Diskrit 1. Bernoulli 2. Binomial 3. Poisson Distribution 2. Kontinu 1. Normal (Gaussian) 2. t 3. F 4. Chi Kuadrat Distribusi Peluang 1.1. Distribusi Bernoulli Distribusi

Lebih terperinci

PERBANDINGAN BAGAN KENDALI T 2 HOTELLING KLASIK DENGAN T 2 HOTELLING PENDEKATAN BOOTSTRAP PADA DATA BERDISTRIBUSI NON-NORMAL MULTIVARIAT

PERBANDINGAN BAGAN KENDALI T 2 HOTELLING KLASIK DENGAN T 2 HOTELLING PENDEKATAN BOOTSTRAP PADA DATA BERDISTRIBUSI NON-NORMAL MULTIVARIAT Jurnal Matematika UNAND Vol. VI No. 1 Hal. 17 4 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN BAGAN KENDALI T HOTELLING KLASIK DENGAN T HOTELLING PENDEKATAN BOOTSTRAP PADA DATA BERDISTRIBUSI

Lebih terperinci

STATISTIKA II IT

STATISTIKA II IT STATISTIKA II IT-021259 Ummu Kalsum UNIVERSITAS GUNADARMA 2016 KONTRAK KULIAH Waktu: Rabu, 7.30 10.30 dan 12.30 15.30 Jam mulai : 3 sks, maka: Mulai: 8. 00 Selesai: 3 x 50 menit = 150 menit 10.30 Keterlambatan

Lebih terperinci