STATISTIK INDUSTRI 1. Distribusi Sampling. Distribusi Sampling
|
|
|
- Inge Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA DISTRIBUSI SAMPLING PENGANTAR Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi populasi (μ & σ diketahui), tetapi membuat pernyataan peluang nilai parameter sampel Distribusi peluang suatu statistik: Distribusi sampling rataan Distribusi sampling proporsi Distribusi sampling variansi DISTRIBUSI SAMPLING: RATAAN Rataan Variabel acak: rata-rata sampel X Distribusi sampling rataan X dengan ukuran sample n: Distribusi yang dihasilkan dari eksperimen yang dilakukan berulang-ulang (selalu dengan ukuran sampel n) dan memberikan banyak nilai X Menggambarkan sebaran rata-rata sampel seputar rata-rata populasi μ Jika Populasi berdistribusi normal (μ, σ ), maka Sampel acak yang diambil akan berdistribusi normal sama dengan populasinya. Jika distribusi Populasi tidak diketahui tetapi nilai μ dan σ diketahui, pada kondisi jumlah sample acak besar (n 30), maka distribusi sampling X tetap mendekati normal dengan rata-rata μ dan variansi σ /n. Untuk mengetahui peluang rataan X dari distribusi sampling normal / mendekati normal dapat digunakan: CENTRAL LIMIT THEOREM 1
2 Rataan CENTRAL LIMIT THEOREM X μ Z = σ/ n n, distribusi normal standar n(z; 0,1) Rataan Diketahui usia produk lampu yang diproduksi oleh perusahaan ABC berdistribusi normal, dengan rata 800 jam dan standard deviasi 40 jam. Hitung peluang 16 sampel yang diambil secara acak akan memiliki rata-rata usia produk kurang dari 775 jam. μ x = 800; σ x = = 10 z = =.5 10 P X < 775 = P Z <.5 = Jika diketahui dua populasi dengan masing-masing rata-rata dan variansi adalah μ 1, σ 1 dan μ, σ. X 1 adalah rata-rata sampel acak populasi pertama dengan ukuran sample n 1, dan X adalah rata-rata sampel acak populasi pertama dengan ukuran sample n. Jika kedua sampel acak tersebut independen, dan syarat pendekatan normal dipenuhi, maka perhitungan perbandingan peluang dua populasi (μ 1 μ ), dapat dihitung dengan: μ X1 X = μ 1 μ dan σ X1 X = σ 1 + σ n 1 Z = X 1 X μ 1 μ σ 1 + σ n 1 n n Dua eksperimen dilakukan secara independen untuk membandingkan waktu kering dua jenis cat. Delapan plat dicat menggunakan cat tipe A, dan waktu kering yang diperlukan adalah 1 jam untuk masing-masing plat. Hal yang sama dilakukan pada cat tipe B. Standard deviasi kedua populasi diketahui sebesat 1 jam. Jika diasumsikan bahwa waktu kering kedua populasi adalah sama, hitung P X A X B > 1, dengan n A = n B = 18 μ = μ XA XB A μ B = 0 dan σ XA XB z = 1 (μa μb) = 1 0 = 3.0 1/9 1/9 = σ A na + σ B P Z > 3.0 = 1 P Z < 3.0 = = nb = = 1 9 Latihan soal: Jika diketahui informasi mengenai lifetime dua merk tabung telivisi merk A dan B sebagai berikut: Berapakah peluang rata-rata lifetime sampling merk A paling sedikit 1 tahun lebih lama dibanding sampling merk B? DISTRIBUSI SAMPLING: PROPORSI
3 Proporsi Variabel acak (p): proporsi kejadian sukses (x) dibanding total percobaan n jumlah kerjadian sukses p = = x jumlah percobaan n Jika n(1 π) 5, maka pendekatan dengan distribusi normal dapata dilakukan. π = P = proporsi populasi n = ukuran sampel Berdasarkan hasil sensus diketahui bahwa 85.% penduduk dewasa di Kota Malang berpendidikan minimal SMA. Berapakah peluang tidak lebih dari 80% dari 00 penduduk dewasa kota Malang yang dipilih secara acak berpendidikan minimal SMA? π = P = 0.85; p = 0.8; n = 00 σ p = z = p π Proporsi σp π(1 π) n = 0.85(1 0.85) = = = P p 0.8 = P Z.07 = Proporsi Dua Populasi Pada distribusi sampling beda dua proporsi berlaku hal-hal sbb: Rata-rata: Std deviasi: Jika n 1 dan n (n 1, n 30) cukup besar, distribusi sampling proporsi akan mendekati distribusi normal, dengan variabel random standar yang rumus Z-nya: Berdasarkan sebuah penelitian, 1% orang yang tidak merokok terkena TBC dan dari populasi orang perokok, 5% orang di antaranya terkena TBC. Jika diambil sampel masing-masing 100 orang dari populasi orang merokok dan populasi orang tidak merokok yang terkena TBC lebih besar dari 5%? P1 = proporsi populasi perokok yang terkena TBC P = proporsi populasi bukan perokok yang terkena TBC = 5% - 1% = 4% Finite Population Jika sampling dilakukan tanpa pergantian dan pada populasi yang finite, maka perhitungan standard deviasi akan berbeda, menjadi: 3
4 DISTRIBUSI SAMPLING: VARIANSI Variansi Variabel acak: variansi sampel S Distribusi sampling variansi S dengan ukuran sample n: Distribusi yang dihasilkan dari eksperimen yang dilakukan berulang-ulang (selalu dengan ukuran sampel n) dan memberikan banyak nilai S Memberikan informasi sebaran nilai variansi s sebagai inferensi nilai σ S dapat dihitung dengan menggunakan rumus: Variansi Variansi 4
5 Referensi Walpole, Ronald B., Myers, Raymond H., Myers, Sharon L., Ye, Keying, Probability & Statistics for Engineers and Scientist, 9 th ed, Prentice Hall Int., New Jersey, 01. Weiers, R.M., 011, Introduction to Business Statistics, Cengage Learning, OH,
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013
3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji t Uji Proportional Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 2001. Walpole, R.E.,
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Contingency Uji Homogenitas Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 001.
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Goodness-of-Fit Uji Contingency Uji Homogenitas Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji Z: Proportional Populasi Uji Hipotesis 2 populasi: Uji Z Uji pooled t-test Uji paired t-test Referensi: Johnson, R. A., Statistics
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 4 Outline: Uji Dua Sample Uji Z Uji t Uji t gabungan (pooled t-test) Uji t berpasangan (paired t-test) Uji proporsi Uji Chi-Square Referensi: Johnson, R. A., Statistics
Distribusi Sampling 6.2. Debrina Puspita Andriani /
6. Debrina Puspita Andriani E-mail : [email protected] / [email protected] Outline Pengertian dan Konsep Dasar Distribusi Sampling Distribusi Sampling Mean Distribusi Sampling Proporsi Distribusi Sampling
Populasi dan Sampel. Materi 1 Distribusi Sampling
Materi 1 Distribusi Sampling UNIVERSITAS GUNADARMA 2013 Populasi dan Sampel Populasi : keseluruhan objek yang menjadi pusat perhatian dalam statistika Parameter besaran yang menggambarkan karakteristik
DISTRIBUSI SAMPLING. Berdistribusi normal dengan rataan. Dan variasi
DISTRIBUSI SAMPLING Definisi : distribusi sampling adalah distribusi peluang untuk nilai statistik yang diperoleh dari sampel acak untuk menggambarkan populasi. 1. Distribusi rata rata Misal sampel acak
MA2081 Statistika Dasar
Catatan Kuliah MA2081 Statistika Dasar Orang Cerdas Belajar Statistika Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA2081 Statistika
Percobaan terdiri dari 1 usaha. Peluang sukses p Peluang gagal 1-p Misalkan. 1, jika terjadi sukses X jika terjadi tidak sukses (gagal)
Percobaan Bernoulli 5 Percobaan terdiri dari 1 usaha Sukses Usaha Gagal Peluang sukses p Peluang gagal 1-p Misalkan 1, jika terjadi sukses X 0, jika terjadi tidak sukses (gagal) Distribusi Bernoulli 6
Distribusi dari Sampling
Distribusi dari Sampling Sampling Acak Pengenalan ke Uji Hipotesis dan Estimasi Selang Hal yang harus diingat Populasi- adalah apa yang dibicarakan Sampel- adalah apa yang didapat dari data Distribusi
STATISTIKA INDUSTRI I. Agustina Eunike, ST., MT., MBA.
STATISTIKA INDUSTRI I Agustina Eunike, ST., MT., MBA. PERTEMUAN-1 DATA Data Hasil pengamatan pada suatu populasi Untuk mendapatkan informasi yang akurat Pengumpulan data Pengolahan data Penyajian data
STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Probabilitas PELUANG Eksperimen Aktivitas / pengukuran / observasi suatu fenomena yang bervariasi outputnya Ruang Sampel / Sample Space Semua output
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS U N I F O R M ( S E R A G A M ) B E R N O U L L I B I N O M I A L P O I S S O N MA 4085 Pengantar Statistika 26 Februari 2013 Utriweni Mukhaiyar M U L T I N O M I A L H I P E
PRODI. Dosen : MM No.Revisi : 00. Semester : I Hal: 1 dari 5. kelompok. Deskripsi 2 populasi. Kemampuan. Kemampuan kerja.
RP S1 SP 01 A. CAPAIAN PEMAN : 1. CP 11.1 : Mampu menganalisis data secara kuantitatif baik secara univariat maupun Multivariat serta menerapkannya. 2. CP 8.1 : Memformulasikan masalah ke dalam pemodelan
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)
UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, MA 2081 Statistika Dasar.
DISTRIBUSI DISKRIT UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON BEBERAPA DISTRIBUSI LAINNYA : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 2081 Statistika Dasar Utriweni Mukhaiyar 7 Maret
The Central Limit Theorem
Kesumawati Prodi Statistika FMIPA-UII March 30, 2015 Sifat-Sifat Distribusi Sampel Sifat-sifat dari distribusi sampel tersebut dikenal dengan Central Limit Theorem 1. Bentuk distribusi dari rata-rata sampel
Pertemuan 8 STATISTIKA INDUSTRI 2 08/11/2013. Introduction to Linier Regression. Introduction to Linier Regression. Introduction to Linier Regression
Pertemuan 8 STATISTIKA INDUSTRI 2 TIN 4004 Outline: Regresi Linier Sederhana dan Korelasi (Simple Linier Regression and Correlation) Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS Uniform Bernoulli Binomial Poisson Distribusi Lainnya: Multinomial Hipergeometrik Geometrik Binomial Negatif BI5106 Analisis Biostatistika 27 September 2012 Distribusi uniform
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS Uniform U (seragam) MultinomialM l i i l Bernoulli Hipergeometrik Binomial Geometrik Poisson Binomial Negatif MA 2081 Statistika Dasar Utriweni Mukhaiyar 27 September 2012 2 Distribusi
DISTRIBUSI KONTINU. Uniform Normal Gamma & Eksponensial. MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA3181 Teori Peluang 3 November 2014 Utriweni Mukhaiyar Distribusi Uniform 2 Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p: f(x)
1. PENGERTIAN. Manfaat Sampling :
1. PENGERTIAN Sampel adalah sebagian dari anggota populasi yang dipilih dengan cara tertentu yang akan diteliti sifat-sifatnya dalam penelitian. Nilai-nilai yang berasal dari data sampel dinamakan dengan
STATISTIK PERTEMUAN VII
STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 8 Outline: Simple Linear Regression and Correlation Multiple Linear Regression and Correlation Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and
Metode Sampling dan Teorema Central Limit
Metode Sampling dan Teorema Central Limit Tjipto Juwono, Ph.D. Oct 28, 2016 TJ (SU) Metode Sampling dan Teorema Central Limit Oct 2016 1 / 52 Mengapa Perlu Sampling? Contoh Kita ingin mengetahui elektabilitas
PENAKSIRAN NILAI PARAMETER POPULASI
PENAKSIRAN NILAI PARAMETER POPULASI Setelah mengikuti perkuliahan minggu I, mahasiswa BOPR 5204 diharapkan mampu untuk (1) Menjelaskan penaksiran titik dan interval parameter populasi (2) Mengetahui jenis
DISTRIBUSI DISKRIT. MA 2081 Statistika Dasar Utriweni Mukhaiyar
DISTRIBUSI DISKRIT Uniform (seragam) Bernoulli Binomial Poisson Beberapa distribusi lainnya : MULTINOMIAL, HIPERGEOMETRIK, GEOMETRIK, BINOMIAL NEGATIF MA 081 Statistika Dasar Utriweni Mukhaiyar 5 Maret
DISTRIBUSI KONTINU. Utriweni Mukhaiyar
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2081 Statistika ti tik Dasar Utriweni Mukhaiyar Maret 2012 By NN 2008 Distribusi Uniform Distribusi kontinu yang paling sederhana Notasi: X ~ U
STATISTIKA II IT
STATISTIKA II IT-011227 Ummu Kalsum UNIVERSITAS GUNADARMA 2017 Keterlambatan : KONTRAK KULIAH MOHON KETERLAMBATAN TIDAK LEBIH 15 MENIT Sanksi atau hukuman, sebagai contoh: Menguraikan pengetahuan tentang
Bab 5 Distribusi Sampling
Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.
KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya
Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015
Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan
PROSES PERCABANGAN PADA DISTRIBUSI POISSON
PROSES PERCABANGAN PADA DISTRIBUSI POISSON Nur Alfiani Santoso, Respatiwulan, dan Nughthoh Arfawi Kurdhi Program Studi Matematika FMIPA UNS Abstrak. Proses percabangan merupakan suatu proses stokastik
SILABUS MATA KULIAH. Pengalaman Pembelajaran
SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-204 Nama Mata Kuliah : Statistika Industri Jumlah SKS : 2 Semester : III Mata Kuliah Pra Syarat : TKI-110 Teori Probabilitas Deskripsi
SILABUS MATA KULIAH. Pengalaman Pembelajaran. 1. Menyusun langkahlangkah. 1. Langkahlangkah. setiap metode penarikan sampel 2.
SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-209 Nama Mata Kuliah : Praktikum Statistika Jumlah SKS : 1 Semester : III Mata Kuliah Pra Syarat : TKI-110 Teori Probabilitas
dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 6.
Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi
BAB II KAJIAN PUSTAKA
4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi
SEBARAN PENARIKAN CONTOH
STATISTIK A (MAM 4137) SEBARAN PENARIKAN CONTOH By Syarifah Hikmah Julinda Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean
MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH PROBABILITA TERAPAN (SI) KODE / SKS: KD / 3 SKS
Minggu Pokok Bahasan ke dan TIU 1. 1.Distribusi sampling Memberi penjelasan tentang populasi, sampel, tehnik pengambilan sampel., serta distribusi sampling ratarata Sub Pokok Bahasan dan Sasaran Belajar
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Kontrak Perkuliahan Pertemuan & Materi RPKPS Penilaian Tugas, short quiz (30%) Quiz 1 & 2 (40%) UAS (30%) Referensi Montgomery, D.C, George C. Runger. Applied Statistic and
STATISTIK PERTEMUAN X
STATISTIK PERTEMUAN X STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA) Outline Uji Hipotesis Variansi dengan sampel ganda Uji Hipotesis Mean dengan Sampel ganda : - Uji t untuk populasi saling bergantung
Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
Sampling Distributions (Distribusi Penarikan Contoh) Sebaran (Distribusi) Peluang teoritis Peubah Acak : Statistik Sample, misal Rata-rata dan proporsi sample Hasil semua kemungkinan Sample dg ukuran yg
SATUAN ACARA PERKULIAHAN MATA KULIAH PROBABILITA TERAPAN (IA) KODE / SKS : KD / 3 SKS
1 1. Distribusi Sampling TIU : Memberi penjelasan tentang populasi, sampel, teknik pengambilan sampel, serta distribusi sampling rata-rata 2 1.2. Distribusi Sampling Rata-rata 1.1. Konsep Dasar Sampling
Ukuran Statistik Bagi Data
Ukuran Statistik Bagi Data Ahmad Zakaria, Ph.D. September 19, 2013 1 Ahmad Zakaria, Ph.D. Ukuran Statistik Bagi Data Definisi Parameter 2 Ahmad Zakaria, Ph.D. Ukuran Statistik Bagi Data Definisi Parameter
ANALISIS VARIANSI. Utriweni Mukhaiyar. 2 November 2011
1 ANALISIS VARIANSI Utriweni Mukhaiyar MA 2181 Analisis Data 2 November 2011 Analisis Variansi 2 1. Tujuan Analisis Variansi 2. Asumsi-asumsi dalam Analisis Variansi 3. Hipotesis yang diuji dalam analisis
MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU
DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan
MA2181 Analisis Data - U. Mukhaiyar 1
DISTRIBUSI KONTINU Uniform Normal Gamma & Eksponensial MA 2181 Analisis Data Utriweni Mukhaiyar September 20 By NN 2008 DISTRIBUSI UNIFORM Distribusi kontinu yang paling sederhana Notasi: X ~ U (a,b) f.k.p:
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah Kode / SKS Program Studi Fakultas : Statistika 2 / Probabilitas Terapan : IT012249 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1. Distribusi sampling populasi, sampel, tehnik
Sampling, Estimasi dan Uji Hipotesis
Sampling, Estimasi dan Uji Hipotesis Tujuan Pembelajaran Memahami perlunya suatu sampling (pengambilan sampel) serta keuntungan- keuntungan melakukannya Menjelaskan pengertian sampel acak untuk sampling
STATISTIKA II IT
STATISTIKA II IT-021259 Ummu Kalsum UNIVERSITAS GUNADARMA 2016 KONTRAK KULIAH Waktu: Rabu, 7.30 10.30 dan 12.30 15.30 Jam mulai : 3 sks, maka: Mulai: 8. 00 Selesai: 3 x 50 menit = 150 menit 10.30 Keterlambatan
STATISTICS WEEK 7. By: Hanung N. Prasetyo POLTECH TELKOM/HANUNG NP
STATISTICS WEEK 7 By: Hanung N. Prasetyo Ada macam, sampel probabilitas dan non probabilitas. Sampel probabilitas ada empat teknik yang semuanya dapat dilakukan dengan pengembalian atau tanpa pengembalian,
Regresi Linear Sederhana
Regresi Linear Sederhana dan Korelasi 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI : SISTEM KOMPUTER, SISTEM INFORMASI, DAN TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NAROTAMA
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI : SISTEM KOMPUTER, SISTEM INFORMASI, DAN TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NAROTAMA MATA KULIAH KODE MATA KULIAH Mata Kuliah Prasyarat Big
BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain
KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3
JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 241-248 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN
Statistika Farmasi
Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu
DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4.
* 1. Model Regresi Linear dan Penaksir Kuadrat Terkecil 2. Prediksi Nilai Respons 3. Inferensi Untuk Parameter-parameter Regresi 4. Kecocokan Model Regresi 5. Korelasi Utriweni Mukhaiyar MA 2081 Statistika
PEMILIHAN DATA (SAMPEL) PENELITIAN PERTEMUAN KE 5
PEMILIHAN DATA (SAMPEL) PENELITIAN PERTEMUAN KE 5 Data, Populasi Dan Sampel Data merupakan bahan baku informasi yang dapat memberikan gambaran tentang sesuatu. Data merupakan bentuk jamak dari datum. Contoh
PENENTUAN TINGKAT KESULITAN GAME BERBASIS DISTRIBUSI GAUSSIAN MENGGUNAKAN METODE BOX MULLER PADA PEMBELAJARAN MATEMATIKA
PENENTUAN TINGKAT KESULITAN GAME BERBASIS DISTRIBUSI GAUSSIAN MENGGUNAKAN METODE BOX MULLER PADA PEMBELAJARAN MATEMATIKA Anik Vega vitianingsih 1) Supeno Mardi S. N 2) 1) Jurusan Teknik Informatika, Fakultas
GARIS BESAR PROGRAM PENGAJARAN (GBPP)
GARIS BESAR PROGRAM PENGAJARAN (GBPP) Nama Mata Kuliah : STATISTIKA-2 **/ 2015 Kode Mata Kuliah/SKS : IT-022251/2 SKS Deskripsi singkat : Mata Kuliah Keilmuan dan Ketrampilan (MKKK) Statistika-2 merupakan
4/16/2009. H 0 ditolak. H 0 tidak ditolak. ditolak. P(menolak H 0 H 0 benar) keputusan benar. = galat lttipe II = β. P(tidak menolak H 0 H 0 salah)
4/6/9 Galat (error) Uji Hipotesis H ditolak H benar H salah a P(menolak H H benar) galat tipe I keputusan benar MA 8 Statistika Dasar Kamis, 6 Februari 9 H tidak ditolak keputusan benar P(tidak menolak
SILABUS MATA KULIAH. Pengalaman Pembelajaran
SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-110 Nama Mata Kuliah : Teori Probabilitas Jumlah SKS : 2 Semester : II Mata Kuliah Pra Syarat : TKI-101 Pengantar Teknik Industri
10/14/2010 UJI HIPOTESIS PENGERTIAN GALAT (ERROR) salah)
/4/ UJI HIPOTESIS UJI RATAAN UJIVARIANSI MA 8 Analisis Data Utriweni Mukhaiyar Oktober PENGERTIAN Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang perlu
11/8/2010 ANALISIS VARIANSI ILUSTRASI
11/8/010 ANALISIS VARIANSI 1 Utriweni Mukhaiar MA 181 Analisis Data 8 November 010 ANALISIS VARIANSI 1. Tujuan Analisis Variansi. Asumsi-asumsi dalam Analisis Variansi 3. Hipotesis ang diuji dalam analisis
Statistika (MMS-1403)
Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM MMS-1403 p.1/93 Distribusi Sampling Statistik Populasi: himpunan keseluruhan obyek yang
PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL
PERKIRAAN SELANG KEPERCAYAAN UNTUK PARAMETER PROPORSI PADA DISTRIBUSI BINOMIAL Jainal, Nur Salam, Dewi Sri Susanti Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung
BUKU REFERENSI MATERI KULIAH DISTRIBUSI SAMPLING STATISTIK
BUKU REFERENSI Ronald E. Walpole, Pengantar Statistika, Edisi Terjemahan, Penerbit Gramedia, Jakarta, 1992. Sudjana, Metoda Statistika, Penerbit Tarsito, Bandung, 1993. Anto Dayan, Pengantar Metode Statistik
BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI
BAB 5 FUNDAMENTAL DISTRIBUSI PELUANG MUHAMMAD NUR AIDI 5.1. Pendahuluan Untuk mendeteksi bagaimana konfigurasi titik dalam ruang apakah bersifat acak atau random, regular, ataupun cluster (kelompok); pertama-tama
Wilcoxon Signed-Rank Test Single-Sample (Ade Heryana, SST, MKM) April 16, 2017
BINOMIAL SIGN TEST FOR A SINGLE-SAMPLE (Uji Tanda Binomial untuk Satu Sampel) Oleh: Ade Heryana, SST, MKM Prodi Kesehatan Masyarakat, FIKES Univ. Esa Unggul PENDAHULUAN Uji Binomial Sign Single-sample
MA2081 STATISTIKA DASAR. Utriweni Mukhaiyar 1 November 2012
Uji Hipotesis MA081 STATISTIKA DASAR MA081 STATISTIKA DASAR Utriweni Mukhaiyar 1 November 01 Pengertian Hipotesis adalah suatu anggapan yang mungkin benar atau tidak mengenai satu populasi atau lebih yang
BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat
BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan
ESTIMASI PARAMETER MODEL REGRESI MULTIVARIAT BAYESIAN DENGAN DISTRIBUSI PRIOR INFORMATIF 1. PENDAHULUAN
ESTIMASI PARAMETER MODEL REGRESI MULTIVARIAT BAYESIAN DENGAN DISTRIBUSI PRIOR INFORMATIF Dina Ariek Prasdika, Dewi Retno Sari Saputro, Purnami Widyaningsih Program Studi Matematika Fakultas Matematika
Fungsi Peluang Gabungan
Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS
DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat
PENARIKAN SAMPEL & PENDUGAAN PARAMETER
PENARIKAN SAMPEL & PENDUGAAN PARAMETER Arti Penarikan Sampel Populasi ( Universe) adalah totalitas dari semua objek atau individu yang memiliki karakteristik tertentu, jelas dan lengkap yang akan diteliti
METODA REPLIKASI PADA SIMULASI SISTEM ANTRIAN M/M/1
Media Informatika Vol. 4 No. 3 (2005) METODA REPLIKASI PADA SIMULASI SISTEM ANTRIAN M/M/1 Ekabrata Yudhistyra Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. H. Juanda 96 Bandung 40132
SATUAN ACARA PERKULIAHAN
SATUAN ACARA PERKULIAHAN Topik/ Pokok Bahasan 1 : Penjelasan silabus dan prosedur Kompetensi : Mahasiswa memiliki pengetahuan konseptual tentang silabus dan prosedur 1 Pengantar mengenai silabus dan prosedur
Peluang & Aturan Bayes. MA 2081 STATISTIKA DASAR, 6 FEBRUARI 2012 Utriweni Mukhaiyar
Peluang & Aturan Bayes MA 2081 STATISTIKA DASAR, 6 FEBRUARI 2012 Utriweni Mukhaiyar 1 Eksperimen Ciri-ciri i i i eksperimen acak (Statistik): ti tik) Dapat dulangi baik oleh si pengamat sendiri maupun
REGRESI LINEAR SEDERHANA
REGRESI LINEAR SEDERHANA DAN KORELASI 1. Model Regresi Linear 2. Penaksir Kuadrat Terkecil 3. Prediksi Nilai Respons 4. Inferensi Untuk Parameter-parameter Regresi 5. Kecocokan Model Regresi 6. Korelasi
Ummu Kalsum UNIVERSITAS GUNADARMA
Ummu Kalsum UNIVERSITAS GUNADARMA 2016 Inferensia Statistika : Mencakup semua metode yang digunakan untuk penarikan kesimpulan atau generalisasi mengenai populasi dengan melakukan pengambilan sampel (sampling)
Uji Hipotesa Dua Sampel
Uji Hipotesa Dua Sampel Tjipto Juwono, Ph.D. April 19, 2016 TJ (SU) Uji Hipotesa Dua Sampel April 2016 1 / 28 Membandingkan Dua Populasi Contoh 1 Apakah ada perbedaan jumlah rata-rata penjualan rumah oleh
Tentang MA5283 Statistika BAB 1 STATISTIKA DESKRIPTIF MA5283 STATISTIKA. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Orang Cerdas Belajar Statistika
Orang Cerdas Belajar Statistika Bentuk perkuliahan Jadwal Kuliah Buku teks Penilaian Matriks kegiatan perkuliahan Jadwal Kuliah 1 Tatap muka di kelas 2 Praktikum di Lab. Statistika dan Komputasi Bentuk
METODE SAMPLING. Met. Sampling-T.Parulian
METODE SAMPLING Dari populasi hingga sampel Proses pengambilan sampel (sampling) dari populasi merupakan proses utama dalam statistika induktif. Sampling dilakukan karena seorang peneliti tidak mungkin
SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak
TK 403 SISTM PNGOLAHAN ISYARAT Kuliah Sinyal Acak Indah Susilawati, S.T., M.ng. Program Studi Teknik lektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 009 KULIAH SISTM PNGOLAHAN
PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR
1 PELUANG & ATURAN BAYES MA 2181 ANALISIS DATA, 15 AGUSTUS 2011 UTRIWENI MUKHAIYAR Eksperimen 2 Ciri-ciri eksperimen acak (Statistik): Dapat dulangi baik oleh si pengamat sendiri maupun orang lain. Proporsi
BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang
BAB I PENDAHULUAN 1.1 Latar Belakang Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang dimaksud di sini adalah peristiwa kegagalan yang dapat berupa tidak berfungsinya benda tersebut
METODE DAN DISTRIBUSI SAMPLING. Oleh : Riandy Syarif
METODE DAN DISTRIBUSI SAMPLING Oleh : Riandy Syarif HUBUNGAN SAMPEL DAN POPULASI Populasi Sampel DEFINISI Populasi kumpulan dari semua kemungkinan orang-orang, benda-benda, dan ukuran lain yang menjadi
Hukum Iterasi Logaritma
Hukum Iterasi Logaritma Sorta Purnawanti 1, Helma 2, Dodi Vionanda 3 1 Mathematics Department State University of Pag, Indonesia 2,3 Lecturers of Mathematics Department State University of Pag, Indonesia
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah,, ST., MT UJI KERANDOMAN (RANDOMNESS TEST / RUN TEST) Uji KERANDOMAN Untuk menguji apakah data sampel yang diambil merupakan data yang acak / random Prosedur
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
