BAB III PERANCANGAN SISTEM

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERANCANGAN SISTEM"

Transkripsi

1 BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari algoritma robot Gambaran Sistem Sistem yang dibuat untuk tugas akhir ini adalah berupa sebuah sistem perencanaan gerakan berjalan robot humanoid. Sistem menerima masukan berupa permintaan gerakan dan mengolah parameter gerakan yang sesuai dengan permintaan tersebut menjadi sebuah pola gerakan berjalan, seperti dapat dilihat pada diagram alir dalam Gambar 3.1. Dalam hal ini pembuatan sistem inverse kinematic untuk mengaktualisasikan gerakan dan sistem kontrol keseimbangan tidak tercakup dalam lingkup tugas akhir ini. Start Tidak Apakah ada permintaan gerakan? Ya Tentukan parameter gerakan Fungsi pembangkit Bagian sistem yang dikerjakan penulis dalam tugas akhir Baca sudut kemiringan dan kecepatan sudut robot Offset nilai servo Bagian sistem yang dikerjakan oleh Novembri Priyadmaji W. N. Kinematika terbalik Aktuator Bagian sistem yang dikerjakan oleh Bangkit M. Gambar 3.1 Diagram alir sistem 11

2 3.2. Perancangan Sistem Pembangkit Lintasan Untuk membangkitkan pola gerakan berjalan robot ditinjau dari ruang kartesian x- y-z, digunakan persamaan pembangkit pola berdasarkan sistem online pattern generation seperti yang diformulasikan oleh Park et al. [3][5] di mana terdapat 3 fungsi pola, yaitu pada arah x, arah y, dan arah z Pembangkitan Nilai Koordinat x(t) Lintasan arah x dilihat dari sisi sagital, di mana menunjukkan jarak langkah kaki robot saat berjalan seperti pada Gambar 3.2. Titik A adalah engkel robot dan titik P adalah panggul robot. Gambar 3.2 Penampang sagital menunjukkan gerakan robot pada arah x dan y. x a(t) = (b + f) ( t t1 1 t t1 sin (2π )) b (1) t2 t1 2π t2 t1 x p(t) = 3 i=0 (2) a i ( t t1 t2 t1 )i Hubungan nilai koordinat x terhadap waktu pada engkel kaki robot diperlihatkan pada persamaan kurva cycloid (1) di mana b merupakan jarak antar kaki sebelum melangkah pada t1 dan f merupakan jarak setelah melangkah pada t2. Periode langkah adalah dari t1 hingga t2, dan t adalah waktu sekarang. Persamaan (2) adalah kurva polinomial orde 3 yang menunjukkan hubungan hubungan nilai koordinat x terhadap waktu pada panggul robot. Koefisien a i mendefinisikan batas awal dan akhir tiap langkah yang didapatkan dari persamaan (3) di mana ditentukan batas posisi awal x p(0) dan batas kecepatan awal x p (0), serta batas posisi akhir x p(1) dan batas kecepatan akhir x p (1). 12

3 Koefisien αx merupakan faktor bentuk kurva. Kemudian didapatkan nilai a i berdasarkan normalisasi skala waktu seperti pada persamaan (4). Faktor bentuk α menentukan bentuk dari kurva lintasan panggul. x p(0) x p (0) x p(1) [ x p (1)] b 2 α x b = f 2 [ α x f ] a x p(0) a 2 x p (0) [ ] [ a ] = 1 x p(1) a 0 [ x p (1)] (3) (4) Pembangkitan Nilai Koordinat y(t) Lintasan arah y menunjukkan tinggi engkel saat kaki mengayun. Hubungan nilai koordinat y terhadap waktu pada engkel robot direpresentasikan pada persamaan (5) di mana h merupakan faktor tinggi dari langkah kaki (Gambar 3.2). y(t) = {2 [cos (2π t t1 ) + 1]} h t2 t1 2 (5) Pembangkitan Nilai Koordinat z(t) Lintasan arah z pada robot menunjukkan goyangan panggul ke samping saat melangkah, langkah geser ke samping, dan langkah putar robot. Lintasan posisi engkel pada arah z dihasilkan dengan 2 langkah, langkah pertama adalah untuk berubah dari sikap siap menuju sikap terbuka, dan langkah selanjutnya untuk memulihkan dari sikap terbuka kembali ke sikap siap. Sikap terbuka adalah saat single support phase (SSP) dan sikap siap adalah saat double support phase (DSP). 13

4 Gambar 3.3 Penampang frontal menunjukkan gerakan robot pada arah sumbu z. Pada Gambar 3.3 ditunjukkan langkah pertama dari t 1 hingga t 0 dan langkah kedua dari t 0 hingga t 2. Persamaan posisi engkel terhadap waktu untuk arah z dibentuk seperti persamaan (6), (7), (8), dan (9). Za l 1(t) dan Za r 1(t) merupakan posisi koordinat engkel pada arah z terhadap waktu untuk kaki kiri dan kanan pada langkah pertama, Za l 2(t) dan Za r 2(t) merupakan posisi koordinat engkel pada arah z terhadap waktu untuk kaki kiri dan kanan pada langkah kedua. Di mana η merupakan rasio langkah samping, End l dan End r merupakan koordinat akhir langkah kiri dan kanan pada arah z, St l dan St r merupakan koordinat awal langkah kaki pada arah z. Nilai End l, End r, St l, dan St r didapatkan dari parameter lebar langkah A. Pergerakan langkah samping ditunjukkan pada Gambar 3.4. Za l 1(t) = ( (End l Za r 1(t) = ( (Endr Za l 2(t) = ( (End l Za r 2(t) = ( (Endr 2 )(1 η) St l 2 2 )(1+η) St r 2 2 )(1 η) St l 2 2 )(1+η) St r 2 ) (1 + cos (π t+t 2 2t 1 )) + St t 2 t l (6) 1 ) (1 + cos (π t+t 2 2t 1 )) + St t 2 t r (7) 1 ) (1 cos (π t t 1 )) + St t 2 t l (8) 1 ) (1 cos (π t t 1 )) + St t 2 t r (9) 1 14

5 Gambar 3.4 Penampang frontal menunjukkan gerakan langkah samping robot. Untuk persamaan posisi panggul arah z terhadap waktu digunakan persamaan interpolasi polinomial orde 3 seperti pada arah x, tetapi dibagi menjadi 2 langkah yaitu untuk t 1 < t < t 0 dan t 0 < t < t 2 di mana t0 adalah setengah periode atau t2/2. Seperti pada persamaan (10) dan (11), di mana bentuk kurva ditentukan dari faktor bentuk α z dan jarak koordinat arah z ditentukan oleh S y. Z p1(t) = 3 i=0 ( t t 1 a i t 0 t 1 ) i (10) Di mana, Z p1(t 1 ) = 0; Z p1(t 1 ) = α z ; Z p1(t 0 ) = S y ; Z p1(t 0 ) = 0 Z p2(t) = 3 i=0 ( t t 0 a i t 2 t 0 ) i (11) Di mana, Z p2(t 2 ) = 0; Z p2(t 2 ) = α z ; Z p2(t 0 ) = S y ; Z p2(t 0 ) = 0 Untuk mendapatkan nilai a i dilakukan normalisasi skala waktu seperti persamaan (12) dan (13). z p(0) z p (0) z p(1) [ z p (1)] 0 α = [ z S y 0 ] (12) 15

6 a z p(0) a 2 z p (0) [ ] [ a ] = 1 z p (1) a 0 [ z p (1)] (13) Dan untuk arah putaran kaki atau heading digunakan rumus (14) untuk kaki kiri dan (15) untuk kaki kanan, persamaan tersebut menentukan simpangan kaki robot. Di mana h l 0 dan h r0 adalah heading awal kaki kiri dan kanan, sedangkan h l1 dan h r1 merupakan heading akhir. Ilustrasi dari arah putaran kaki dapat dilihat pada Gambar 3.5. H l (t) = h l 0 + (h l1 h t t1 )( l0 ) (14) t2 t1 H r (t) = h r 0 + (h r1 h t t1 )( r0 ) (15) t2 t1 Gambar 3.5 Penampang transverse telapak kaki robot yang menunjukkan langkah putar Perancangan Perangkat Keras Perangkat keras yang telah direalisasikan yaitu modifikasi terhadap kit robot bioloid GP yang sebagian besar rangka robot diganti menggunakan desain rangka dari robot Darwin-OP seperti pada Gambar 3.6 untuk mengakomodasi penggunaan servo MX- 28 yang lebih kuat. Robot memiliki tinggi total 49 cm dan memiliki 20 derajat kebebasan dengan perincian 2 servo kepala, 6 servo tangan, dan 12 servo kaki. Kontroler utama berupa 16

7 Odroid XU-4 berada di dalam torso robot. Akses servo dilakukan secara langsung melalui usb to serial FTDI sehingga tidak memerlukan adanya kontroler sekunder. Gambar 3.6 Desain robot Bioloid-GP yang dimodifikasi Perancangan Perangkat Lunak Dalam tugas akhir ini dibuat sebuah sistem perencanaan gerakan berjalan robot yang merupakan bagian dari sebuah sistem berjalan robot yang mencakup 2 bagian yaitu pembangkitan lintasan atau trayektori engkel dan panggul dan pengaturan pola langkah berjalan. Pada Gambar 3.7 ditunjukkan diagram alir untuk pembangkit lintasan pada engkel dan panggul di mana parameter gerakan yang telah ditentukan diolah melalui rumus lintasan yang ada untuk menghasilkan kurva lintasan langkah robot. Hasil akhir berupa koordinat titik x, y, dan z untuk kaki kiri dan kanan robot yang merupakan hasil selisih dari koordinat engkel dan panggul. Perhitungan selisih dilakukan karena koordinat yang digunakan untuk sistem inverse kinematic merupakan koordinat dari satu titik end effector. 17

8 Start Terima input waktu dan parameter gerakan. Ya Langkah kaki kanan? Tidak Kalkulasi koordinat engkel dan panggul kaki kanan pada arah x,y, dan z, koordinat kaki kiri = 0. Kalkulasi koordinat engkel dan panggul kaki kiri pada arah x,y, dan z, koordinat kaki kanan = 0. Lintasan akhir = koordinat engkel lintasan panggul End Gambar 3.7 Diagram alir algoritma pembangkit lintasan. Berikut adalah penjelasan diagram alir algoritma pembangkit lintasan pada Gambar 3.7: 1. Algoritma dimulai setelah adanya permintaan gerakan. 2. Masukan dari sistem adalah penanda waktu dan parameter gerakan yang telah ditentukan sebelumnya sesuai dengan permintaan gerakan. Parameter gerakan mencakup panjang langkah engkel (f), tinggi langkah engkel (h), lebar langkah engkel ke samping (A), rasio langkah samping (η), faktor bentuk lintasan panggul arah x (αx), faktor bentuk lintasan panggul arah z (αz), jarak simpangan panggul arah z (Sy), dan arah langkah (heading). Untuk parameter jarak (f), tinggi (h), lebar samping (A), dan simpangan panggul (Sy) dalam satuan milimeter. Sedangkan heading dalam derajat. 3. Tentukan apakah kaki yang akan melangkah adalah kaki kanan atau kaki kiri. 4. Bila yang melangkah adalah kaki kanan, maka dikalkulasikan koordinat x,y, dan z untuk kaki kanan. Kaki kiri tetap pada posisi sebelumnya. 5. Bila yang melangkah adalah kaki kiri, maka dikalkulasikan koordinat x,y, dan z untuk kaki kiri. Kaki kanan tetap pada posisi sebelumnya. 18

9 6. Dilakukan perhitungan selisih antara koordinat engkel dengan koordinat panggul. 7. Hasil perhitungan selisih merupakan koordinat pembentuk lintasan yang dihasilkan untuk gerakan berjalan, dan direalisasikan menggunakan inverse kinematic. Pada Gambar 3.8 ditunjukkan diagram alir untuk algoritma pengaturan pergantian langkah kaki, di mana perubahan parameter gerakan dan perubahan langkah dilakukan setiap counter waktu t > periode. Start Ya Tidak Counter waktu sekarang > periode Ubah parameter gerakan Ya Langkah kaki kanan? Tidak Lakukan perhitungan lintasan Langkah = kiri Langkah = kanan Tambah counter waktu Lakukan perhitungan lintasan Waktu awal = waktu akhir Waktu akhir = periode Tambah counter waktu End Gambar 3.8 Diagram alir algoritma pergantian langkah. 19

10 Berikut adalah penjelasan diagram alir algoritma pembangkit pola langkah berjalan pada Gambar 3.8: 1. Awal algoritma dimulai dengan menentukan apakah penanda/counter waktu saat ini telah melebihi periode atau tidak. 2. Bila waktu belum melebihi periode yang ditentukan, maka dilakukan perhitungan lintasan dengan sistem pembangkit lintasan pada Gambar Setelah itu counter waku t ditambah satu atau diincrement. Counter waktu (t) adalah counter yang berjalan selama satu kali perulangan program dan bukan waktu dalam satuan detik. 4. Ketika waktu telah melebihi periode, maka dilakukan penentuan ulang parameter gerakan. 5. Lalu ditentukan apakah langkah sebelumnya adalah langkah kaki kanan atau langkah kaki kiri. Kemudian penanda langkah kaki dirubah untuk melanjutkan ke langkah kaki berikutnya. 6. Kemudian dilakukan perhitungan lintasan menggunakan algoritma pembangkit lintasan seperti Gambar Setelah itu dilakukan pengaturan counter waktu, di mana waktu awal (t1) selanjutnya adalah waktu akhir (t2) sebeumnya, dan waktu akhir (t2) ditambah dengan periode. Sedangkan counter waktu sekarang (t) ditambah satu atau diincrement. 20

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan ditampilkan dan dijelaskan mengenai pengujian sistem dan dokumuentasi data-data percobaan yang telah direalisasikan sesuai dengan spesifikasi yang telah

Lebih terperinci

BAB II DASAR TEORI. Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang sistem.

BAB II DASAR TEORI. Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang sistem. BAB II DASAR TEORI Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang sistem. 2.1. Kajian Pustaka 2.1.1. Perancangan Sistem Kontrol dan Algoritma Untuk Optimalisasi

Lebih terperinci

SISTEM PERENCANAAN GERAKAN BERJALAN ROBOT HUMANOID R2C- R9 BIOLOID GP MENGGUNAKAN METODE PROYEKSI BIDANG KARTESIAN

SISTEM PERENCANAAN GERAKAN BERJALAN ROBOT HUMANOID R2C- R9 BIOLOID GP MENGGUNAKAN METODE PROYEKSI BIDANG KARTESIAN SISTEM PERENCANAAN GERAKAN BERJALAN ROBOT HUMANOID R2C- R9 BIOLOID GP MENGGUNAKAN METODE PROYEKSI BIDANG KARTESIAN Oleh Evan Narendra Angragani NIM: 612012010 Skripsi Untuk melengkapi salah satu syarat

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian.

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem yang dirancang. Teori-teori yang digunakan dalam realisasi skripsi ini antara

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan sistem dari perangkat keras, serta perangkat lunak robot. 3.1. Gambaran Sistem Sistem yang direalisasikan dalam skripsi ini

Lebih terperinci

BAB III PERANCANGAN 3.1. Bagian Perangkat Keras Robot Humanoid Kondo KHR-3HV

BAB III PERANCANGAN 3.1. Bagian Perangkat Keras Robot Humanoid Kondo KHR-3HV BAB III PERANCANGAN Pada bab ini akan dibahas perancangan tugas akhir yang meliputi mekanik robot yang dibuat, sistem kontrol robot, dan algoritma perangkat lunak pada robot. 3.1. Bagian Perangkat Keras

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan mekanik robot, perangkat lunak dari algoritma robot, serta metode pengujian robot. 3.1. Perancangan Mekanik Robot Bagian ini

Lebih terperinci

BAB II DASAR TEORI 2.1. Metode Trial and Error

BAB II DASAR TEORI 2.1. Metode Trial and Error BAB II DASAR TEORI Pada bab ini akan dibahas teori-teori pendukung yang digunakan sebagai acuan dalam merancang robot menggunakan algoritma kinematika balik. 2.1. Metode Trial and Error Metode trial and

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dijelaskan mengenai pengujian algoritma dan pengukuran pada output dari robot yang telah dibuat dan analisis tentang kinerja algoritma. 4.1. Contoh Perhitungan

Lebih terperinci

BAB 4 EVALUASI DAN ANALISA DATA

BAB 4 EVALUASI DAN ANALISA DATA BAB 4 EVALUASI DAN ANALISA DATA Pada bab ini akan dibahas tentang evaluasi dan analisa data yang terdapat pada penelitian yang dilakukan. 4.1 Evaluasi inverse dan forward kinematik Pada bagian ini dilakukan

Lebih terperinci

PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK. Oleh Bangkit Meirediansyah NIM:

PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK. Oleh Bangkit Meirediansyah NIM: PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK Oleh Bangkit Meirediansyah NIM: 612012025 Skripsi Untuk melengkapi salah satu syarat memperoleh Gelar

Lebih terperinci

Penerapan Inverse Kinematic Pada Pengendalian Gerak Robot

Penerapan Inverse Kinematic Pada Pengendalian Gerak Robot Penerapan Inverse Kinematic Pada Pengendalian Gerak Robot Danang Yufan Habibi - 090038 Jurusan Teknik Elektro - FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih - Sukolilo Surabaya 0 ABSTRAK:

Lebih terperinci

BAB II KAJIAN LITERATUR...

BAB II KAJIAN LITERATUR... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN PEMBIMBING... ii HALAMAN PENGESAHAN PENGUJI... iii SURAT PERNYATAAN KARYA ASLI TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v KATA PENGANTAR... vi ABSTRAK...

Lebih terperinci

PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt

PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt PENENTUAN SUDUT LENGAN ROBOT HUMANOID BERDASARKAN KOORDINAT YANG DIKIRIM DARI PC MENGGUNAKAN USER INTERFACE YANG DIBUAT DARI Qt Adiyatma Ghazian Pratama¹, Ir. Nurussa adah, MT. 2, Mochammad Rif an, ST.,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan dunia robotika memiliki unsur yang sedikit berbeda dengan ilmu-ilmu dasar atau terapan lainnya. Ilmu dasar biasanya berkembang dari suatu asas atau hipotesa

Lebih terperinci

Pengembangan Algoritma untuk Penyempurnaan Gerakan dan Kestabilan Robot Humanoid berbasis Kondo KHR 3HV

Pengembangan Algoritma untuk Penyempurnaan Gerakan dan Kestabilan Robot Humanoid berbasis Kondo KHR 3HV Pengembangan lgoritma untuk Penyempurnaan Gerakan dan Kestabilan Robot Humanoid berbasis Kondo KHR 3HV Daniel Santoso 1, Deddy Susilo 2, Yonas ditya Darmawan 3 Program Studi Teknik Elektro, Fakultas Teknik

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM 3.1 Metode Perancangan Perancangan sistem didasarkan pada teknologi computer vision yang menjadi salah satu faktor penunjang dalam perkembangan dunia pengetahuan dan teknologi,

Lebih terperinci

HALAMAN JUDUL ANALISIS INVERSE KINEMATICS TERSEGMENTASI BERBASIS GEOMETRIS PADA ROBOT HUMANOID SAAT BERJALAN

HALAMAN JUDUL ANALISIS INVERSE KINEMATICS TERSEGMENTASI BERBASIS GEOMETRIS PADA ROBOT HUMANOID SAAT BERJALAN HALAMAN JUDUL TUGAS AKHIR TE 141599 ANALISIS INVERSE KINEMATICS TERSEGMENTASI BERBASIS GEOMETRIS PADA ROBOT HUMANOID SAAT BERJALAN Praditya Handi Setiawan NRP 2213106026 Dosen Pembimbing Ir. Rusdhianto

Lebih terperinci

BAB III PERANCANGAN. Gambar 3.1. Sistem instruksi dan kontrol robot.

BAB III PERANCANGAN. Gambar 3.1. Sistem instruksi dan kontrol robot. BAB III PERANCANGAN Membahas perancangan sistem yang terdiri dari gambaran umum sistem dan bagaimana mengolah informasi yang didapat dari penglihatan dan arah hadap robot di dalam algoritma penentuan lokasi

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN ANALISIS

BAB IV HASIL PENGUJIAN DAN ANALISIS BAB IV HASIL PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai hasil pengujian alat serta analisisnya. Tujuan dari pengujian ini adalah untuk mengetahui sejauh mana hasil perancangan alat yang

Lebih terperinci

BAB 3 PERANCANGAN. 3.1 Desain Alur Penentuan Keputusan Robot

BAB 3 PERANCANGAN. 3.1 Desain Alur Penentuan Keputusan Robot BAB 3 PERANCANGAN 3.1 Desain Alur Penentuan Keputusan Robot Aplikasi ini bertujuan untuk menentukan perilaku robot yang diinginkan dalam pertandingan sepak bola antar robot. Dari berbagai kondisi lapangan,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Dalam bab ini penulis akan membahas prinsip kerja rangkaian yang disusun untuk merealisasikan sistem alat, dalam hal ini potensiometer sebagai kontroler dari motor servo, dan

Lebih terperinci

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN UNIVERSITAS BINA NUSANTARA Jurusan Sistem Komputer Skripsi Sarjana Komputer Semester Genap tahun 2003/2004 SIMULASI KINEMATIKA LENGAN ROBOT INDUSTRI DENGAN 6 DERAJAT KEBEBASAN Andy Rosady 0400530056 Riza

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN ANALISIS

BAB IV HASIL PENGUJIAN DAN ANALISIS BAB IV HASIL PENGUJIAN DAN ANALISIS Membahas hasil pengujian algoritma yang dirancang dan analisa. 4.1. Pengujian Penentuan Lokasi 4.1.1. Pengujian Posisi Robot di Lapangan Mengacu pada Tiang Gawang Musuh

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana hasil perancangan alat yang

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dijelaskan tentang pengujian dimensi robot, algoritma dari robot yang telah dibuat dan analisis mengenai kinerja dari algoritma tersebut. 4.1. Pengujian

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan mekanik robot, perangkat lunak dari algoritma robot, serta metode pengujian robot. 3.1. Perancangan Mekanik Robot Bagian ini

Lebih terperinci

Optimalisasi dan Perancangan Algoritma Pergerakan dan Komunikasi pada Robot Penyerang Humanoid Soccer

Optimalisasi dan Perancangan Algoritma Pergerakan dan Komunikasi pada Robot Penyerang Humanoid Soccer Optimalisasi dan Perancangan Algoritma Pergerakan dan Komunikasi pada Robot Penyerang Humanoid Soccer Daniel Santoso 1, Deddy Susilo 2, Bob William Chandra 3 Program Studi Teknik Elektro, Fakultas Teknik

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari sistem instruksi, perangkat keras, serta perangkat lunak dari algoritma robot. 3.1 Sistem Instruksi Robot Sistem instruksi

Lebih terperinci

BAB 3 DESAIN HUMANOID ROBOT

BAB 3 DESAIN HUMANOID ROBOT BAB 3 DESAIN HUMANOID ROBOT Dalam bab ini berisi tentang tahapan dalam mendesain humanoid robot, diagaram alir penelitian, pemodelan humanoid robot dengan software SolidWorks serta pemodelan kinematik

Lebih terperinci

GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA

GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA Disusun oleh : Nama : Christian Hadinata NRP : 0822017 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria Sumantri, MPH No. 65,

Lebih terperinci

Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot Humanoid Menggunakan Metode Inverse Kinematic

Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot Humanoid Menggunakan Metode Inverse Kinematic Jurnal Pengembangan Teknologį Įnformasį dan Įlmu Komputer e-įssn: 2548-964X Vol. 2, No. 8, Agustus 2018, hlm. 2753-2760 http://j-ptįįk.ub.ac.įd Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot

Lebih terperinci

PATH TRACKING PADA MOBILE ROBOT DENGAN UMPAN BALIK ODOMETRY

PATH TRACKING PADA MOBILE ROBOT DENGAN UMPAN BALIK ODOMETRY PATH TRACKING PADA MOBILE ROBOT DENGAN UMPAN BALIK ODOMETRY Bayu Sandi Marta (1), Fernando Ardilla (2), A.R. Anom Besari (2) (1) Mahasiswa Program Studi Teknik Komputer, (2) Dosen Program Studi Teknik

Lebih terperinci

Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP

Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP PENDAHULUAN 1. Sistem navigasi robot banyak dipakai dimanfaatkan untuk berbagai kebutuhan misalnya untuk membantu departemen pemadam

Lebih terperinci

BAB 4 ANALISA SISTEM

BAB 4 ANALISA SISTEM 52 BAB 4 ANALISA SISTEM 4.1 Analisa Input Seperti yang dijelaskan pada bab sebelumnya, variabel - variabel input yang digunakan dalam program disesuaikan dengan rumus yang sudah didapat. Hal ini dimaksudkan

Lebih terperinci

DESAIN DAN PEMODELAN HUMANOID ROBOT

DESAIN DAN PEMODELAN HUMANOID ROBOT Available online at Website http://ejournal.undip.ac.id/index.php/rotasi DESAIN DAN PEMODELAN HUMANOID ROBOT *Munadi, Beni Anggoro Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Jl. Prof.

Lebih terperinci

SISTEM PENGENDALI ROBOT LENGAN MENGGUNAKAN PEMROGRAMAN VISUAL BASIC

SISTEM PENGENDALI ROBOT LENGAN MENGGUNAKAN PEMROGRAMAN VISUAL BASIC SISTEM PENGENDALI ROBOT LENGAN MENGGUNAKAN PEMROGRAMAN VISUAL BASIC Syarifah Hamidah [1], Seno D. Panjaitan [], Dedi Triyanto [3] Jurusan Sistem Komputer, Fak.MIPA Universitas Tanjungpura [1][3] Jurusan

Lebih terperinci

DAFTAR ISI. HALAMAN PENGESAHAN... i. PERNYATAAN... ii. HALAMAN PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR TABEL...

DAFTAR ISI. HALAMAN PENGESAHAN... i. PERNYATAAN... ii. HALAMAN PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR TABEL... vi DAFTAR ISI HALAMAN PENGESAHAN... i PERNYATAAN... ii HALAMAN PERSEMBAHAN... iii KATA PENGANTAR...iv DAFTAR ISI...vi DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LISTING PROGRAM... xiv DAFTAR SINGKATAN...

Lebih terperinci

Path Tracking Pada Mobile Robot Dengan Umpan Balik Odometry

Path Tracking Pada Mobile Robot Dengan Umpan Balik Odometry The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Path Tracking Pada Mobile Robot Dengan Umpan Balik

Lebih terperinci

Tugas Besar 1. Mata Kuliah Robotika. Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron

Tugas Besar 1. Mata Kuliah Robotika. Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron Tugas Besar 1 Mata Kuliah Robotika Forward dan Inverse Kinematics Robot Puma 560, Standford Manipulator, dan Cincinnati Milacron Oleh : DWIKY HERLAMBANG.P / 2212105022 1. Forward Kinematics Koordinat posisi

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

BAB II DASAR TEORI Kajian Pustaka a. Algoritma Pengambilan Keputusan Pada Kiper Robot Sepak Bola [1]

BAB II DASAR TEORI Kajian Pustaka a. Algoritma Pengambilan Keputusan Pada Kiper Robot Sepak Bola [1] BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari 2.1.

Lebih terperinci

BAB III PERANCANGAN. Pada bab ini akan dijelaskan perancangan perangkat keras serta perangkat lunak algoritma pergerakan dan komunikasi robot.

BAB III PERANCANGAN. Pada bab ini akan dijelaskan perancangan perangkat keras serta perangkat lunak algoritma pergerakan dan komunikasi robot. BAB III PERANCANGAN Pada bab ini akan dijelaskan perancangan perangkat keras serta perangkat lunak algoritma pergerakan dan komunikasi robot. 3.1.Gambaran Sistem Sistem instruksi pergerakan pada robot

Lebih terperinci

Rancang Bangun Program Visualisasi Pergerakan Differential Drive Mobile Robot

Rancang Bangun Program Visualisasi Pergerakan Differential Drive Mobile Robot Rancang Bangun Program Visualisasi Pergerakan Erni Dwi Wahyuni Jurusan Teknik Informatika Politeknik Elektronika Negeri Surabaya Institut Teknologi Sepuluh Nopember E-mail : ernidw@student.eepis-its.edu

Lebih terperinci

REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI

REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI REALISASI PROTOTIPE SISTEM GERAK ROBOT DENGAN DUA KAKI Disusun Oleh: Raymond Wahyudi 0422022 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof.Drg.Suria Sumantri, MPH no.65,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari algoritma robot. 3.1. Sistem Kontrol Sistem kontrol pergerakan pada robot dibagi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Di dalam dunia kedokteran gigi, dikenal suatu teknologi yang dinamakan dental unit. Dental unit digunakan sebagai tempat periksa untuk pasien dokter gigi yang telah

Lebih terperinci

BAB 4 ANALISA DAN BAHASAN. Tahap pengujian adalah sebagai berikut : Trajectory planning jalan lurus: dengan mengambil sample dari track KRCI

BAB 4 ANALISA DAN BAHASAN. Tahap pengujian adalah sebagai berikut : Trajectory planning jalan lurus: dengan mengambil sample dari track KRCI BAB 4 ANALISA DAN BAHASAN 4.1 Tahap Pengujian Tahap pengujian adalah sebagai berikut : Menguji masing-masing gait, dengan mengukur parameter waktu dan posisi error. Trajectory planning jalan lurus: dengan

Lebih terperinci

Bab 3 PERUMUSAN MODEL KINEMATIK DDMR

Bab 3 PERUMUSAN MODEL KINEMATIK DDMR Ba 3 PERUMUSAN MODEL KINEMATIK DDMR Model kinematika diperlukan dalam menganalisis pergerakan suatu root moil. Model kinematik merupakan analisis pergerakan sistem yang direpresentasikan secara matematis

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dari perangkat keras, serta perangkat lunak dari algoritma robot. 3.1. Sistem Instruksi dan Kontrol Robot Gambar 3.1. Blok diagram

Lebih terperinci

BAB 3 PERANCANGAN SISTEM Pemodelan Robot Dengan Software Autocad Inventor. robot ular 3-DOF yang terdapat di paper [5].

BAB 3 PERANCANGAN SISTEM Pemodelan Robot Dengan Software Autocad Inventor. robot ular 3-DOF yang terdapat di paper [5]. BAB 3 PERANCANGAN SISTEM 3.1 Metodologi Penelitian Pada bab ini, dibahas mengenai tahapan perancangan robot dimulai dari perancangan model 3D robot menggunakan Autocad Inventor hingga simulasi dan pengambilan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Robot merupakan perangkat otomatis yang dirancang untuk mampu bergerak sendiri sesuai dengan yang diperintahkan dan mampu menyelesaikan suatu pekerjaan yang diberikan.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi di dunia telah mengalami kemajuan yang sangat pesat, terutama di bidang robotika. Saat ini robot telah banyak berperan dalam kehidupan manusia. Robot adalah

Lebih terperinci

BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT. Dengan telah dibangunnya model matematika robot dan robot sesungguhnya,

BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT. Dengan telah dibangunnya model matematika robot dan robot sesungguhnya, 92 BAB 4 ANALISIS SIMULASI KINEMATIKA ROBOT Dengan telah dibangunnya model matematika robot dan robot sesungguhnya, maka diperlukan analisis kinematika untuk mengetahui seberapa jauh model matematika itu

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Konstruksi Prototipe Manipulator Manipulator telah berhasil dimodifikasi sesuai dengan rancangan yang telah ditentukan. Dimensi tinggi manipulator 1153 mm dengan lebar maksimum

Lebih terperinci

BAB 3 METODE PENELITIAN. Bab ini membahas perancangan sistem yang digunakan pada robot hexapod.

BAB 3 METODE PENELITIAN. Bab ini membahas perancangan sistem yang digunakan pada robot hexapod. BAB 3 METODE PENELITIAN Bab ini membahas perancangan sistem yang digunakan pada robot hexapod. Perancangan sistem terdiri dari perancangan perangkat keras, perancangan struktur mekanik robot, dan perancangan

Lebih terperinci

8 Lintasan, Kurva Mulus, dan Titik Singular

8 Lintasan, Kurva Mulus, dan Titik Singular 8 Lintasan, Kurva Mulus, dan Titik Singular Pada bab sebelumnya kita sudah membahas bagaimana kita dapat menentukan banyak sisi dan banyak titik sudut suatu bangun datar dengan mengamati lintasan tepi

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana hasil perancangan alat yang

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Bab ini berisi penjelasan mengenai perancangan sistem baik bagian mekanik, perangkat lunak dan algoritma robot, serta metode pengujian yang akan dilakukan. 3.1. Perancangan Mekanik

Lebih terperinci

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap

Lebih terperinci

4.1 Pengujian Tuning Pengontrol PD

4.1 Pengujian Tuning Pengontrol PD BAB IV PENGUJIAN DAN ANALISA Pada bab ini akan membahas mengenai pengujian dan analisa dari sistem yang dibuat, yaitu sebagai berikut : 4.1 Pengujian Tuning Pengontrol PD Prinsip kerja dari perancangan

Lebih terperinci

ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO

ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO TUGAS AKHIR - TE141599 ANALISIS INVERSE KINEMATICS TERSEGMENTASI PADA DANCING ROBOT HUMANOID MENGGUNAKAN METODE FUZZY TAKAGI-SUGENO Thri Noerma Agil Rhomadhoni NRP 2213106025 Dosen Pembimbing Ir. Rusdhianto

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Bab ini akan menjelaskan mengenai perancangan serta realisasi perangkat keras maupun perangkat lunak pada perancangan skripsi ini. Perancangan secara keseluruhan terbagi menjadi

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. hexapod. Dalam bab tersebut telah dibahas mengenai struktur robot, analisa

BAB 4 IMPLEMENTASI DAN EVALUASI. hexapod. Dalam bab tersebut telah dibahas mengenai struktur robot, analisa BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab 3 telah dibahas tahapan yang dilakukan dalam merancang sistem hexapod. Dalam bab tersebut telah dibahas mengenai struktur robot, analisa keseimbangan, analisa pusat

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS 3.1. Spesifikasi Perancangan Perangkat Keras Secara sederhana, perangkat keras pada tugas akhir ini berhubungan dengan rancang bangun robot tangan. Sumbu

Lebih terperinci

BAB II DASAR TEORI 2.1. Kajian Pustaka a. Implementasi Dynamic Walking pada Humanoid Robot Soccer

BAB II DASAR TEORI 2.1. Kajian Pustaka a. Implementasi Dynamic Walking pada Humanoid Robot Soccer BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem. Teori-teori yang digunakan dalam pembuatan skripsi ini terdiri dari 2.1.

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR

BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR 51 BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR 5.1 Data Airborne LIDAR Data yang dihasilkan dari suatu survey airborne LIDAR dapat dibagi menjadi tiga karena terdapat tiga instrumen yang bekerja secara

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

PERANCANGAN DAN PEMBUATAN ROBOT HUMANOID SOCCER DENGAN PEMROGRAMAN MOTION. Abstrak

PERANCANGAN DAN PEMBUATAN ROBOT HUMANOID SOCCER DENGAN PEMROGRAMAN MOTION. Abstrak 1 PERANCANGAN DAN PEMBUATAN ROBOT HUMANOID SOCCER DENGAN PEMROGRAMAN MOTION Roni Setiawan (08518241014) Prodi Pendidikan Teknik Mekatronika Fakultas Teknik, Universitas Negeri Yogyakarta Abstrak Humanoid

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI SISTEM PENDETEKSIAN OBJEK MENGGUNAKAN METODE YCBCR PADA ROBOWAITER DRU99RWE4-V13

PERANCANGAN DAN IMPLEMENTASI SISTEM PENDETEKSIAN OBJEK MENGGUNAKAN METODE YCBCR PADA ROBOWAITER DRU99RWE4-V13 PERANCANGAN DAN IMPLEMENTASI SISTEM PENDETEKSIAN OBJEK MENGGUNAKAN METODE YCBCR PADA ROBOWAITER DRU99RWE4-V13 Ferry Ebitnaser 1, Taufiq Nuzwir Nizar 2, John Adler 3 1,2,3 Jurusan Teknik Komputer Unikom,

Lebih terperinci

RANCANG BANGUN ALAT PEMOTONG KABEL ROBOTIK TIPE WORM GEAR

RANCANG BANGUN ALAT PEMOTONG KABEL ROBOTIK TIPE WORM GEAR RANCAN BANUN ALAT PEMOTON KABEL ROBOTIK TIPE WORM EAR Estiko Rijanto Pusat Penelitian Tenaga Listrik dan Mekatronik (Telimek) LIPI Kompleks LIPI edung 0, Jl. Cisitu No.1/154D, Bandung 40135, Tel: 0-50-3055;

Lebih terperinci

SIMAK UI 2009 Matematika Dasar

SIMAK UI 2009 Matematika Dasar SIMAK UI 009 Matematika Dasar Kode Soal 94 Doc. Name: SIMAKUI009MATDAS94 Version: 0-0 halaman 0. Perhatikan gambar berikut! Dalam sistem pertidaksamaan y x, y x,y x 0,y x 9 nilai minimum dari -y - x dicapai

Lebih terperinci

Remote Control Robot Kaki Enam (Hexapod) Berbasis Android dengan Menggunakan Metode Inverse Kinematics

Remote Control Robot Kaki Enam (Hexapod) Berbasis Android dengan Menggunakan Metode Inverse Kinematics Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015 281 Remote Control Robot Kaki Enam (Hexapod) Berbasis Android dengan Menggunakan Metode Inverse Kinematics Hasbullah Ibrahim

Lebih terperinci

BAB III PERANCANGAN. 3.1 Perancangan mekanik

BAB III PERANCANGAN. 3.1 Perancangan mekanik BAB III PERANCANGAN 3.1 Perancangan mekanik Dalam perancangan mekanik robot ini saya menggunakan software AutoCad 2009 untuk mendesign mekanik dan untuk bahan saya menggunakan Acrylic dengan ketebalan

Lebih terperinci

PERANCANGAN ROBOT OKTAPOD DENGAN DUA DERAJAT KEBEBASAN ASIMETRI

PERANCANGAN ROBOT OKTAPOD DENGAN DUA DERAJAT KEBEBASAN ASIMETRI Asrul Rizal Ahmad Padilah 1, Taufiq Nuzwir Nizar 2 1,2 Jurusan Teknik Komputer Unikom, Bandung 1 asrul1423@gmail.com, 2 taufiq.nizar@gmail.com ABSTRAK Salah satu kelemahan robot dengan roda sebagai alat

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

PENERAPAN INVERS KINEMATIKA UNTUK PERGERAKAN KAKI ROBOT BIPED

PENERAPAN INVERS KINEMATIKA UNTUK PERGERAKAN KAKI ROBOT BIPED TINF - 05 ISSN : 407 846 e-issn : 460 846 PENERAPAN INVERS KINEMATIKA UNTUK PERGERAKAN KAKI ROBOT BIPED Surya Setiawan, Firdaus, Budi Rahmadya 3*, Derisma 4,3,4 Jurusan Sistem Komputer Fakultas Teknologi

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

BAB III METODE YANG DIUSULKAN

BAB III METODE YANG DIUSULKAN BAB III METODE YANG DIUSULKAN Pada bab ini akan dijelaskan tentang metode pengenalan manusia dengan menggunakan citra dental radiograph yang diusulkan oleh peneliti. Pengenalan ini akan dilakukan dalam

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN. memungkinkan terjadinya kegagalan atau kurang memuaskan kerja alat yang telah dibuat.

BAB III PERANCANGAN DAN PEMBUATAN. memungkinkan terjadinya kegagalan atau kurang memuaskan kerja alat yang telah dibuat. BAB III PERANCANGAN DAN PEMBUATAN 3.1 Perancangan Peranvangan merupakan suatu langkah kerja yang penting dalam penyusunan dan pembuatan alat dalam proyek akhir ini, sebab tanpa adanya perancangan yang

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA Dalam bab ini membahas pengujian dan analisa alat yang telah dirancang dan dibuat. Pengujian alat dimulai dari masing-masing komponen alat sampai dengan pengujian keseluruhan

Lebih terperinci

Keseimbangan Robot Humanoid Menggunakan Sensor Gyro GS-12 dan Accelerometer DE-ACCM3D

Keseimbangan Robot Humanoid Menggunakan Sensor Gyro GS-12 dan Accelerometer DE-ACCM3D i Keseimbangan Robot Humanoid Menggunakan Sensor Gyro GS-12 dan Accelerometer DE-ACCM3D Disusun Oleh : Nama : Rezaly Andreas Nrp : 0822010 Jurusan Teknik Elektro, Fakultas Teknik Universitas Kristen Maranatha

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada BAB 2 LANDASAN TEORI 2.1 Metode Kendali Umpan Maju Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada fenomena berkendara ketika berbelok, dimana dilakukan pemodelan matematika yang

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-47 Swing-Up menggunakan Energy Control Method dan Stabilisasi Menggunakan Fuzzy-LQR pada Pendulum Cart System Agus Lesmana,

Lebih terperinci

Kontrol PID Pada Miniatur Plant Crane

Kontrol PID Pada Miniatur Plant Crane Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Kontrol PID Pada Miniatur Plant Crane E. Merry Sartika 1), Hardi Sumali 2) Jurusan Teknik Elektro Universitas Kristen

Lebih terperinci

keseluruhan dari sistem menggunakan sebuah mikrokontroler dan servo.

keseluruhan dari sistem menggunakan sebuah mikrokontroler dan servo. 57 BAB III PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK 3.1. Umum Perancangan sistem ini merupakan tahap awal dari pembuatan sebuah software. Sebelum merancang perangkat lunak, yang perlu diketahui adalah

Lebih terperinci

Muhammad Riza A Pembimbing : Hendra Cordova ST, MT. NIP :

Muhammad Riza A Pembimbing : Hendra Cordova ST, MT. NIP : Muhammad Riza A. 248 1 67 Pembimbing : Hendra Cordova ST, MT. NIP : 19695319941211 Latar Belakang Kontrol ph dilakukan untuk menjaga harga ph pada nilai tertentu yang diharapkan. Nilai ph dipengaruhi dari

Lebih terperinci

BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain:

BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain: BAB III METODE PENELITIAN Dalam pembuatan kendali robot omni dengan accelerometer dan keypad pada smartphone dilakukan beberapa tahapan awal yaitu pengumpulan data yang diperlukan dengan beberapa cara

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan

Lebih terperinci

BAB 3 PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM BAB 3 PERANCANGAN SISTEM Sistem vision yang akan diimplementasikan terdiri dari 2 bagian, yaitu sistem perangkat keras dan perangkat lunak. Perangkat lunak yang digunakan dalam sistem vision ini adalah

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai perancangan dari perangkat keras, serta perangkat lunak dari algoritma robot. 3.1. Perancangan Perangkat Keras Pada bagian ini akan dijelaskan

Lebih terperinci

Teori kesalahan melalui grafik

Teori kesalahan melalui grafik Teori kesalahan melalui grafik Hasil praktikum adakalanya dinyatakan dalam bentuk grafik fungsi dari variabel-variabel yang digunakan Besaran yang akan kita peroleh pun adakalanya merupakan perilaku kurva

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Hasil Penelitian Setelah alat dan bahan didapat dan dipersiapkan maka perangkat-keras dan perangkat-lunak telah berhasil dibuat sesuai dengan rancangan awal walau

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem BAB III PERANCANGAN Pada bab ini akan dijelaskan mengenai perancangan sistem yang meliputi sistem kontrol logika fuzzy, perancangan perangkat keras robot, dan perancangan perangkat lunak dalam pengimplementasian

Lebih terperinci

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai gambaran alat, perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari alat peraga sistem kendali pendulum terbalik. 3.1.

Lebih terperinci