BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS
|
|
|
- Hengki Hermawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS 3.1. Spesifikasi Perancangan Perangkat Keras Secara sederhana, perangkat keras pada tugas akhir ini berhubungan dengan rancang bangun robot tangan. Sumbu pusat pergerakan alat merupakan bahu yang menjadi penopang sayap dan menjadi sistem koordinat utama semua pergerakan alat. Gerakan alat merupakan gerakan dalam tiga derajat kebebasan dan hanya meliputi gerakan angular di setiap sumbu koordinat (x, y, dan z). Setiap aktuator yang merupakan penggerak benda terletak pada satu sumbu pusat dan dapat diasumsikan sebagai bahu pergerakan kepakan sayap burung. Semua aktuator akan menciptakan gerakan rotasional pada setiap aksis sumbu yang menjadi pusat pergerakan benda uji. Perancangan perangkat keras pada tugas akhir ini meliputi integrasi dari tiga buah subsistem yaitu subsistem pengendali menggunakan mikrokontroler jenis AVR, subsistem aktuator menggunakan servo dan motor DC, dan juga subsistem catu daya. Selain itu, perancangan perangkat keras wahana ini juga meliputi pembuatan rangka yang berfungsi sebagai tempat / penyangga subsistemsubsistem wahana ini (sebagai komponen pendukung). Spesifikasi akhir dari perangkat keras yang digunakan adalah sebagai berikut: Rangka wahana terbuat dari plat aluminium dengan tebal 2 mm yang dibentuk dan dibagi menjadi beberapa bagian untuk mempermudah proses pemasangan subsistem aktuator dan pengembangan wahana di masa mendatang. Perangkat keras dipasang dengan cara digantung pada sistem penggerak aktuator motor DC (yang telah dipasang dan diuji pada penelitian sebelumnya). Rancangan awal perangkat keras berupa tiga buah servo motor yang ditempatkan pada setiap tiga aksis pergerakan (x,y, dan z). Sumbu-sumbu aksis tersebut terletak pada satu sumbu utama untuk mempermudah perhitungan kendali gerakan perangkat keras ini. Jika ketiga servo tersebut belum dapat memenuhi kebutuhan pergerakan benda uji, perangkat keras ini dapat diberi tambahan servo menjadi lima buah servo. 27
2 Empat servo akan dihubungkan secara berdekatan pada sumbu aksis x dan y (dua servo membentuk pergerakan rotasi dengan pusat sumbu x dan dua servo yang lain pada sumbu y). Satu servo yang lain diletakkan pada sumbu z untuk menghasilkan gerakan rotasi di sumbu ini. Gambar Gambar rancangan rangka wahana dan peletakan servo pada sumbu x,y, dan z Bagian aktuator wahana menggunakan servo motor standar yang menggerakkan benda / rangka wahana secara rotasional. Jika servo tersebut tidak dapat / tidak kuat menggerakkan benda uji DPIV, servo standar tersebut dapat diganti dengan servo yang lebih kuat atau dengan menambah jumlah servo yang ada (maksimum lima buah). Bagian pengendali menggunakan mikrokontroler 8-bit AVR ATMega8535 dengan kecepatan 4 MIPS (frekuensi kristal 4 MHz) Batasan Perancangan Perangkat Keras Perancangan perangkat keras wahana ini dibuat dengan batasan-batasan sebagai berikut: Pergerakan perangkat keras merupakan pergerakan kepakan sayap burung yang sederhana (maksimal dapat menghasilkan gerak kurva / angka 8). Perangkat keras digunakan untuk menggerakkan benda uji dan dapat 28
3 menghasilkan gerak tiga derajat kebebasan. Gerakan tiga derajat kebebasan meliputi gerakan rotasi pada sumbu x, y, dan z dengan kasus pergerakan membentuk (yang paling kompleks) gerakan sinusoidal (bolak-balik); membentuk gabungan kurva fungsi trigonometri pada sumbu x dan y (membentuk gerakan seperti angka delapan). Pergerakan ini merupakan gerakan kaku (kotak-kotak) yang membentuk kurva berbentuk angka 8 secara bolak-balik (sebagai pemodelan gerak kepakan burung ke atas-ke bawah) Gambar Kurva pergerakan berbentuk angka 8 / Jarak peletakan servo tidak terbatas, tetapi sistem aktuator ini (poros putaran servo) harus terletak pada satu sumbu utama. Sistem dinamik yang dibentuk bersifat open-loop atau error pergerakan derajat putaran perangkat dianggap tidak ada, dengan kata lain pergerakan perangkat dianggap telah sesuai dengan pergerakan yang dibuat oleh servo dan pergerakan servo dianggap telah sesuai dengan instruksi dari komputer. Catu daya yang digunakan diambil dari catu daya pada komputer agar tingkat kesulitan pada desain rangkaian elektronika tetap rendah dan menjamin keamanan perangkat elektronika yang terletak di dalam kotak (tidak mengganggu sinyal perangkat mikrokontroler). Sistem perangkat keras belum mencapai bentuk yang real time karena adanya delay pada sistem komunikasi antarperangkat elektronika, walaupun delay tersebut sangat kecil. 29
4 3.3. Arsitektur Sistem Perangkat Keras Arsitektur sistem perangkat keras wahana terdiri dari tiga bagian besar, yaitu: subsistem pengendali, aktuator dan subsistem catu daya yang terintegrasi menjadi satu kesatuan sistem yang utuh sebagai berikut: Gambar Arsitektur perangkat keras wahana Pada gambar di atas, user input merupakan perintah yang dimasukkan ke dalam komputer melalui perangkat lunak. Perintah tersebut kemudian disalurkan ke mikrokontroler untuk menggerakkan subsistem aktuator Subsistem Pengendali Subsistem ini menggunakan sebuah mikrokontroler 8-bit ATMega8535 yang mempunyai frekuensi kristal sebesar 4 MHz. Rangkaian mikrokontroler tersebut dihubungkan dengan komputer melalui COM1 (komunikasi serial) dengan kecepatan komunikasi bits per second. Rangkaian yang digunakan adalah sebagai berikut: 30
5 Gambar Rangkaian DT-AVR low cost micro system (ATMega8535) Pada sistem yang digunakan, RX/TX ATMega8535 (PORT D pin 0 dan pin 1/pada gambar 3. 4., J13 no 3 dan 4) digunakan sebagai sarana komunikasi dengan komputer (J1 pada gambar 3. 4.). PORT D pin 2, 3, dan 5 (J13 pin no 5, 6, dan 8) digunakan sebagai output pengendalian gerakan motor DC dengan keterangan sebagai berikut: jika pin 2 bernilai hi dan pin 3 bernilai lo, gerakan motor adalah clockwise (cw), jika pin 2 bernilai lo dan pin 3 bernilai hi, gerakan motor adalah counter clockwise (ccw), dan pin 5 merupakan pin penghasil Pulse Width Modulation (PWM) yang digunakan untuk mengendalikan kecepatan putar motor DC. 31
6 PORT B pin 0 sampai dengan pin 5 (J11 no 3 s.d. 8) merupakan output penghasil pulsa yang digunakan sebagai unit pengendali sudut shaft servo (jumlah maksimum servo yang dapat dikendalikan adalah enam servo). RX/TX serial Oscillator 4 MHz ATMega8535 PORTB Regulator LM 7805 Input Voltage PORTD Gambar Modul mikrokontroler wahana Komponen H-Bridge yang digunakan adalah IC L293D yang dapat beroperasi pada tegangan input 5-36 Volt DC. IC ini akan mengendalikan gerakan motor DC (arah putaran dan kecepatan putar) berdasarkan nilai pin 2 dan 3 (PORT D) dan PWM yang dihasilkan pada PORT D pin 5 mikrokontroler ATMega Modul H-Bridge (L293D) Gambar Rangkaian subsistem pengendali wahana 32
7 Subsistem Aktuator Subsistem aktuator menggunakan lima buah servo motor standard (input tegangan 4,8-6 Volt) dan sebuah motor DC (input tegangan 12 Volt DC). Kelima servo dihubungkan dengan PORT B mikronkontroler sedangkan motor DC dihubungkan dengan modul H-Bridge. Gambar Modul motor DC dan gear box Gambar Sebuah servo standar yang terpasang pada rangka Sumber tegangan yang digunakan untuk kelima servo adalah sumber tegangan yang berasal dari catu daya sebesar 5 Volt DC. Penyambungan catu daya dengan pin ground dan power di servo dilakukan melalui terminal block. 33
8 Terminal block Gambar Rangkaian kabel subsistem pengendali wahana Catu Daya Catu daya yang digunakan berasal dari power supply untuk komputer dengan sumber utamanya berasal dari tegangan jala-jala. Untuk catu daya motor DC, digunakan tegangan 12 volt melalui terminal block yang dihubungkan dengan modul IC L293D (modul H-Bridge). Sedangkan untuk catu daya ke mikrokontroler digunakan IC regulator LM7805 (yang telah terpasang pada board DT-AVR low cost micro system) untuk menurunkan tegangan 12 volt menjadi tegangan 5 volt teregulasi. Catu daya ke servo langsung dihubungkan ke pin power servo sebesar 5 volt melalui terminal block. Catu daya wahana Gambar Catu daya dan subsistem pengendali wahana 34
9 Gambar Diagram catu daya yang digunakan pada wahana Rangka Rangka merupakan sistem pendukung yang berfungsi sebagai tempat peletakan sistem aktuator (terutama servo). Rangka dapat dibagi menjadi beberapa bagian yang dapat dirangkai menjadi suatu penyangga bagi subsistem aktuator wahana. Bagian-bagian tersebut dipasang satu sama lain sedemikian rupa untuk mendukung pergerakan atau simulasi gerakan yang dihasilkan oleh subsistem aktuator. Rangka wahana ini juga dikembangkan dalam bentuk bongkar/pasang menggunakan sistem mur-baud untuk memudahkan pengembangan wahana di masa mendatang. Gambar Rangka dan subsistem aktuator wahana 35
BAB I PENDAHULUAN. Gambar Glider (salah satu pendekatan cara terbang burung)
BAB I PENDAHULUAN 1.1. LATAR BELAKANG Di masa lalu, banyak orang berusaha memahami bagaimana burung dapat mengambang di udara. Mereka ingin tahu bagaimana burung yang lebih berat dari udara dapat mengalahkan
BAB IV PERANCANGAN DAN REALISASI PERANGKAT LUNAK
BAB IV PERANCANGAN DAN REALISASI PERANGKAT LUNAK 4.1. Spesifikasi Perancangan Perangkat Lunak Perangkat lunak pada wahana bertujuan untuk memudahkan proses interaksi antara wahana dengan pengguna. Pengguna
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Dalam bab ini penulis akan membahas prinsip kerja rangkaian yang disusun untuk merealisasikan sistem alat, dalam hal ini potensiometer sebagai kontroler dari motor servo, dan
BAB III PENGENDALIAN GERAK MEJA KERJA MESIN FRAIS EMCO F3 DALAM ARAH SUMBU X
BAB III PENGENDALIAN GERAK MEJA KERJA MESIN FRAIS EMCO F3 DALAM ARAH SUMBU X Pada bab ini akan dibahas mengenai diagram alir pembuatan sistem kendali meja kerja mesin frais dalam arah sumbu-x, rangkaian
BAB IV PENGUJIAN ALAT DAN ANALISA
BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat
BAB III ANALISA SISTEM
BAB III ANALISA SISTEM 3.1 Gambaran Sistem Umum Pembuka pintu otomatis merupakan sebuah alat yang berfungsi membuka pintu sebagai penganti pintu konvensional. Perancangan sistem pintu otomatis ini merupakan
BAB III PERANCANGAN DAN PEMBUATAN ALAT
39 BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik Eskalator. Sedangkan untuk pembuatan
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat
Rancang Bangun Quadropod Robot Berbasis ATmega1280 Dengan Desain Kaki Kembar
Rancang Bangun Quadropod Robot Berbasis ATmega1280 Dengan Desain Kaki Kembar I Wayan Dani Pranata*), Ida Bagus Alit Swamardika, I Nyoman Budiastra Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana
BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK
BAB III RANGKAIAN PENGENDALI DAN PROGRAM PENGENDALI SIMULATOR MESIN PEMBEGKOK Pada bab ini dibahas tentang perangkat mekanik simulator mesin pembengkok, konstruksi motor DC servo, konstruksi motor stepper,
Gambar 2.1 Mikrokontroler ATMega 8535 (sumber :Mikrokontroler Belajar AVR Mulai dari Nol)
BAB II TINJAUAN PUSTAKA 2.1 Mikrokontroler Mikrokontroler merupakan keseluruhan sistem komputer yang dikemas menjadi sebuah chip di mana di dalamnya sudah terdapat Mikroprosesor, I/O Pendukung, Memori
3. METODE PENELITIAN
3. METODE PENELITIAN 3.1. Tempat dan waktu penelitian Penelitian dilakukan di Laboratorium Akustik dan Instrumentasi Kelautan IPB. Waktu penelitian dilaksanakan secara efektif selama 4 bulan terhitung
BAB 2 LANDASAN TEORI. robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam
BAB 2 LANDASAN TEORI 2.1 Jenis Jenis Motor DC Motor DC merupakan jenis motor yang paling sering digunakan di dalam dunia robotika. Salah satu alasannya adalah arah putaran motor DC, baik searah jarum jam
SISTEM BENDUNGAN OTOMATIS MENGGUNAKAN INTERFACING
SISTEM BENDUNGAN OTOMATIS MENGGUNAKAN INTERFACING Latar Belakang Masalah Fungsi bendungan dalam kehidupan sehari-hari Cara pengoperasian bendungan secara manual Cara pengoperasian bendungan secara otomatisasi
BAB IV PENGUJIAN DAN ANALISA RANGKAIAN
BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Dalam bab ini penulis akan mengungkapkan dan menguraikan mengenai persiapan komponen dan peralatan yang dipergunakan serta langkah langkah praktek, kemudian menyiapkan
BAB 3 PERANCANGAN SISTEM. Computer. Parallel Port ICSP. Microcontroller. Motor Driver Encoder. DC Motor. Gambar 3.1: Blok Diagram Perangkat Keras
BAB 3 PERANCANGAN SISTEM 3.1 Blok Diagram Perangkat Keras Sistem perangkat keras yang digunakan dalam penelitian ini ditunjukkan oleh blok diagram berikut: Computer Parallel Port Serial Port ICSP Level
METODE PENELITIAN. Dalam melakukan penelitian ini ialah dengan melakukan eksperimen secara
III. METODE PENELITIAN Dalam melakukan penelitian ini ialah dengan melakukan eksperimen secara langsung, dengan melakukan percobaan dan tahap-tahap untuk mendapatkan hasil yang dibutuhkan dalam penelitian
BAB II DASAR TEORI. mikrokontroler yang berbasis chip ATmega328P. Arduino Uno. memiliki 14 digital pin input / output (atau biasa ditulis I/O,
BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino Uno R3 adalah papan pengembangan mikrokontroler yang berbasis chip ATmega328P. Arduino Uno memiliki 14 digital pin input / output (atau biasa ditulis I/O,
SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8
SELF-STABILIZING 2-AXIS MENGGUNAKAN ACCELEROMETER ADXL345 BERBASIS MIKROKONTROLER ATmega8 I Nyoman Benny Rismawan 1, Cok Gede Indra Partha 2, Yoga Divayana 3 Jurusan Teknik Elektro, Fakultas Teknik Universitas
III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat
III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar
BAB IV PROTOTYPE ROBOT TANGGA BERODA. beroda yang dapat menaiki tangga dengan metode pengangkatan beban pada roda
BAB IV PROTOTYPE ROBOT TANGGA BERODA 4.1 Desain Sistem Sistem yang dibangun pada tugas akhir ini bertujuan untuk membangun robot beroda yang dapat menaiki tangga dengan metode pengangkatan beban pada roda
PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID
Mikrotiga, Vol 1, No. 2 Mei 2014 ISSN : 2355-0457 19 PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID Muhammad Ariansyah Putra 1*,
BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM. secara otomatis. Sistem ini dibuat untuk mempermudah user dalam memilih
BAB III METODE PENELITIAN DAN PERANCANGAN SISTEM 3.1 Model Penelitian Pada perancangan tugas akhir ini menggunakan metode pemilihan locker secara otomatis. Sistem ini dibuat untuk mempermudah user dalam
BAB III ANALISIS DAN DESAIN SISTEM
BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi jari animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya terdapat
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT Dalam bab ini akan dibahas mengenai prinsip kerja rangkaian yang disusun untuk merealisasikan sistem alat, dalam hal ini Bluetooth sebagai alat komunikasi penghubung
PENGONTROL ROBOT. Dosen : Dwisnanto Putro, S.T, M.Eng. Published By Stefanikha69
PENGONTROL ROBOT Dosen : Dwisnanto Putro, S.T, M.Eng Pengontrol Pengendali atau Pengontrol merupakan suatu instrument atau alat yang berfungsi untuk mengendalikan sesuatu yang akan dikendalikan. Pengendali
PERANCANGAN SISTEM KENDALI GERAK PADA PLATFORM ROBOT PENGANGKUT
PERANCANGAN SISTEM KENDALI GERAK PADA PLATFORM ROBOT PENGANGKUT Ripki Hamdi 1, Taufiq Nuzwir Nizar 2 1,2 Jurusan Teknik Komputer Unikom, Bandung 1 [email protected], 2 [email protected] ABSTRAK
BAB IV PENGUJIAN ALAT DAN ANALISA
BAB IV PENGUJIAN ALAT DAN ANALISA 4.1 Tujuan Tujuan dari pengujian alat pada tugas akhir ini adalah untuk mengetahui sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebabpenyebab ketidaksempurnaan
BAB III PERANCANGAN DAN KERJA ALAT
BAB III PERANCANGAN DAN KERJA ALAT 3.1 DIAGRAM BLOK sensor optocoupler lantai 1 POWER SUPPLY sensor optocoupler lantai 2 sensor optocoupler lantai 3 Tombol lantai 1 Tbl 1 Tbl 2 Tbl 3 DRIVER ATMEGA 8535
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller
BAB III ANALISIS DAN DESAIN SISTEM
BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan dan implementasi wajah animatronik berbasis mikrokontroler ini menggunakan beberapa metode rancang bangun yang pembuatannya
BAB III PERANCANGAN DAN REALISASI SISTEM
BAB III PERANCANGAN DAN REALISASI SISTEM Pada bab ini akan dijabarkan mengenai perancangan dan realisasi dari perangkat keras dan perangkat lunak dari setiap modul yang menjadi bagian dari sistem ini.
IMPLEMENTASI MIKROKONTROLER PIC 16F877A DALAM PERANCANGAN ROBOT OBSTACLE AVOIDANCE
IMPLEMENTASI MIKROKONTROLER PIC 16F877A DALAM PERANCANGAN ROBOT OBSTACLE AVOIDANCE HARMON VICKLER D. LUMBANRAJA, S.T., M.Kom (SEKOLAH TINGGI ILMU EKONOMI SURYA NUSANTARA) ABSTRAK Dalam pemrograman robot
III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu
37 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dan dilaksanakan mulai bulan Maret 2012 sampai
MICROCONTROLER AVR AT MEGA 8535
MICROCONTROLER AVR AT MEGA 8535 Dwisnanto Putro, S.T., M.Eng. MIKROKONTROLER AVR Jenis Mikrokontroler AVR dan spesifikasinya Flash adalah suatu jenis Read Only Memory yang biasanya diisi dengan program
BAB IV PERANCANGAN. 4.1 Flowchart
BAB IV PERANCANGAN Bab ini membahas tentang perancangan sistem gerak Robo Bin, mulai dari alur kerja sistem gerak robot, perancangan alat dan sistem kendali, proses pengolahan data hingga menghasilkan
BAB II KONSEP DASAR PERANCANGAN
BAB II KONSEP DASAR PERANCANGAN Pada bab ini akan dijelaskan konsep dasar sistem keamanan rumah nirkabel berbasis mikrokontroler menggunakan modul Xbee Pro. Konsep dasar sistem ini terdiri dari gambaran
BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM
BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Dalam perancangan sistem otomatisasi pemakaian listrik pada ruang belajar berbasis mikrokontroler terdapat beberapa masalah yang harus
TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer
TUGAS MATAKULIAH APLIKASI KOMPUTER DALAM SISTEM TENAGA LISTRIK FINAL REPORT : Pengendalian Motor DC menggunakan Komputer disusun oleh : MERIZKY ALFAN ADHI HIDAYAT AZZA LAZUARDI JA FAR JUNAIDI 31780 31924
BAB III PERENCANAAN DAN PEMBUATAN ALAT
BAB III PERENCANAAN DAN PEMBUATAN ALAT 3.1. Gambaran Umum Merupakan alat elektronika yang memiliki peranan penting dalam memudahkan pengendalian peralatan elektronik di rumah, kantor dan tempat lainnya.
BAB IV PENGUJIAN DAN ANALISA RANGKAIAN
BAB IV PENGUJIAN DAN ANALISA RANGKAIAN Dalam bab ini penulis akan mengungkapkan dan menguraikan mengenai persiapan komponen dan peralatan yang dipergunakan serta langkah langkah praktek, kemudian menyiapkan
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT Pada bab ini akan membahas proses yang akan dilakukan terhadap alat yang akan dibuat, mulai dari perancangan pada rangkaian hingga hasil jadi yang akan difungsikan.
III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas
III. METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung, dari bulan Februari 2014 Oktober 2014. 3.2. Alat dan Bahan Alat
BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS
BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS 3.1. Pendahuluan Perangkat pengolah sinyal yang dikembangkan pada tugas sarjana ini dirancang dengan tiga kanal masukan. Pada perangkat pengolah sinyal
DAFTAR ISI. LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii. LEMBAR PENGESAHAN PENGUJI...
DAFTAR ISI COVER...i LEMBAR PENGESAHAN PEMBIMBING... Error! Bookmark not defined. LEMBAR PERNYATAAN KEASLIAN... iii LEMBAR PENGESAHAN PENGUJI... iv HALAMAN PERSEMBAHAN... v HALAMAN MOTTO... vi KATA PENGANTAR...
DAFTAR ISI. HALAMAN PENGESAHAN... i. KATA PENGANTAR... iii. DAFTAR ISI... v. DAFTAR TABEL... x. DAFTAR GAMBAR... xi. DAFTAR LAMPIRAN...
DAFTAR ISI Halaman HALAMAN PENGESAHAN... i ABSTRAKSI... ii KATA PENGANTAR... iii DAFTAR ISI... v DAFTAR TABEL... x DAFTAR GAMBAR... xi DAFTAR LAMPIRAN... xiv DAFTAR ISTILAH DAN SINGKATAN... xv BAB I PENDAHULUAN
SISTEM PENGENDALI ROBOT LENGAN MENGGUNAKAN PEMROGRAMAN VISUAL BASIC
SISTEM PENGENDALI ROBOT LENGAN MENGGUNAKAN PEMROGRAMAN VISUAL BASIC Syarifah Hamidah [1], Seno D. Panjaitan [], Dedi Triyanto [3] Jurusan Sistem Komputer, Fak.MIPA Universitas Tanjungpura [1][3] Jurusan
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN Penelitian ini menggunakan metode penelitian eksperimen (uji coba). Tujuan dari penelitian ini yaitu membuat suatu alat yang dapat mengontrol piranti rumah tangga yang ada pada
BAB III METODOLOGI PENELITIAN. Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1.
23 BAB III METODOLOGI PENELITIAN 3.1 Blok Diagram Modul Baby Incubator Adapun blok diagram modul baby incubator ditunjukkan pada Gambar 3.1. PLN THERMOSTAT POWER SUPPLY FAN HEATER DRIVER HEATER DISPLAY
BAB 4 IMPLEMENTASI DAN EVALUASI
BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Sistem 4.1.1 Spesifikasi Perangkat Keras Proses pengendalian mobile robot dan pengenalan image dilakukan oleh microcontroller keluarga AVR, yakni ATMEGA
BAB 4 IMPLEMENTASI DAN EVALUASI. (secara hardware).hasil implementasi akan dievaluasi untuk mengetahui apakah
BAB 4 IMPLEMENTASI DAN EVALUASI Pelaksanaan dari perancangan telah dibuat dan dijelaskan pada Bab 3, kemudian perancangan tersebut diimplementasi ke dalam bentuk yang nyata (secara hardware).hasil implementasi
BAB IV HASIL KERJA PRAKTEK. elektronika dan sensor sebagai alat pendukung untuk membuat sebuah remote control
4.1 Garis Besar Perancangan Sistem BAB IV HASIL KERJA PRAKTEK Perlu diketahui bahwa system yang penulis buat ini menggunakan komponen elektronika dan sensor sebagai alat pendukung untuk membuat sebuah
BAB II DASAR TEORI Arduino Mega 2560
BAB II DASAR TEORI Pada bab ini akan dijelaskan teori-teori penunjang yang diperlukan dalam merancang dan merealisasikan skripsi ini. Bab ini dimulai dari pengenalan singkat dari komponen elektronik utama
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Sudah menjadi trend saat ini bahwa pengendali suatu alat sudah banyak yang diaplikasikan secara otomatis, hal ini merupakan salah satu penerapan dari perkembangan teknologi dalam
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1 Definisi Perancangan Perancangan adalah proses menuangkan ide dan gagasan berdasarkan teoriteori dasar yang mendukung. Proses perancangan dapat dilakukan dengan cara pemilihan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Robot telah banyak dikembangkan, karena robot berguna untuk membantu kerja manusia misalnya, untuk pekerjaan dengan resiko bahaya ataupun melakukan pekerjaan yang membutuhkan tenaga
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan
BAB 3 PERANCANGAN SISTEM
BAB 3 PERACAGA SISTEM Pada bab ini penulis akan menjelaskan mengenai perencanaan modul pengatur mas pada mobile x-ray berbasis mikrokontroller atmega8535 yang meliputi perencanaan dan pembuatan rangkaian
III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013.
III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2012 sampai dengan Januari 2013. Perancangan alat penelitian dilakukan di Laboratorium Elektronika, Laboratorium
BAB III PERANCANGAN Gambaran Alat
BAB III PERANCANGAN Pada bab ini penulis menjelaskan mengenai perancangan dan realisasi sistem bagaimana kursi roda elektrik mampu melaksanakan perintah suara dan melakukan pengereman otomatis apabila
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT Dalam bab ini akan dibahas mengenai proses perancangan mekanik pembersih lantai otomatis serta penyusunan rangkaian untuk merealisasikan sistem alat. Dalam hal ini
Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID
Sistem Pengaturan Kecepatan Motor DC Pada Alat Penyiram Tanaman Menggunakan Kontoler PID 1 Ahmad Akhyar, Pembimbing 1: Purwanto, Pembimbing 2: Erni Yudaningtyas. Abstrak Alat penyiram tanaman yang sekarang
BAB III MODIFIKASI MEKANISME PENGGERAK PAHAT ARAH SUMBU-Z DAN PROGRAM MEKANISME PENGGERAK PAHAT MESIN ROUTER ARAH SUMBU-Z
BAB III MODIFIKASI MEKANISME PENGGERAK PAHAT ARAH SUMBU-Z DAN PROGRAM MEKANISME PENGGERAK PAHAT MESIN ROUTER ARAH SUMBU-Z Pada bab ini akan dibahas tentangperhitunggan torsi ulir daya, modifikasi mekanisme
III. METODE PENELITIAN. Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro
III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Pengerjaan tugas akhir ini bertempat di laboratorium Terpadu Teknik Elektro Jurusan Teknik Elektro Universitas Lampung pada bulan Desember 2013 sampai
III. METODE PENELITIAN. Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011
III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dan perancangan tugas akhir dilakukan di Laboratorium Terpadu Teknik Elektro Universitas Lampung dilaksanakan mulai bulan Desember 2011 sampai dengan
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN Metodologi penelitian yang digunakan dalam perancangan sistem ini antara lain studi kepustakaan, meninjau tempat pembuatan tahu untuk mendapatkan dan mengumpulkan sumber informasi
BAB III METODE PENELITIAN. diperlukan dengan beberapa cara yang dilakukan, antara lain:
BAB III METODE PENELITIAN Dalam pembuatan kendali robot omni dengan accelerometer dan keypad pada smartphone dilakukan beberapa tahapan awal yaitu pengumpulan data yang diperlukan dengan beberapa cara
BAB III ANALISIS DAN PERANCANGAN
BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan Alat Pengaduk Adonan Kue ini, terdapat beberapa masalah yang harus dipecahkan. Permasalahan-permasalahan tersebut antara
BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun
BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun keseluruhan sistem, prosedur pengoperasian sistem, implementasi dari sistem dan evaluasi hasil pengujian
BAB III ANALISIS DAN PERANCANGAN SISTEM
BAB III ANALISIS DAN PERANCANGAN SISTEM 3. 1. Spesifikasi Sistem Pada tugas akhir ini, penulis membuat sebuah prototype dari kendaraan skuter seimbang. Skuter seimbang tersebut memiliki spesifikasi sebagai
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT 3.1. Identifikasi Kebutuhan Proses pembuatan alat penghitung benih ikan ini diperlukan identifikasi kebutuhan terhadap sistem yang akan dibuat, diantaranya: 1. Perlunya rangkaian
Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu
Pemodelan Sistem Kontrol Motor DC dengan Temperatur Udara sebagai Pemicu Brilliant Adhi Prabowo Pusat Penelitian Informatika, LIPI [email protected] Abstrak Motor dc lebih sering digunakan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Proses alur penelitian Dalam penelitian ini ada beberapa tahap atau langkah-langkah yang peneliti lakukan mulai dari proses perancangan model hingga hasil akhir dalam
BAB IV ANALISA DAN PEMBAHASAN. Pengujian sistem elektronik terdiri dari dua bagian yaitu: - Pengujian tegangan catu daya - Pengujian kartu AVR USB8535
BAB IV ANALISA DAN PEMBAHASAN 4.1. Pengujian Alat Adapun urutan pengujian alat meliputi : - Pengujian sistem elektronik - Pengujian program dan mekanik 4.1.1 Pengujian Sistem Elektronik Pengujian sistem
Gambar 3.1 Susunan perangkat keras sistem steel ball magnetic levitation
Bab III Perancangan Perangkat Keras Sistem Steel Ball Magnetic Levitation Dalam perancangan perangkat keras sistem Steel Ball Magnetic Levitation ini dibutuhkan pengetahuan dasar tentang elektromagnetik,
BAB III PERANCANGAN SISTEM
BAB III PERANCANGAN SISTEM Bab ini menguraikan perancangan mekanik, perangkat elektronik dan perangkat lunak untuk membangun Pematrian komponen SMD dengan menggunakan conveyor untuk indutri kecil dengan
BAB III PERANCANGAN DAN PEMBUATAN ALAT
BAB III PERANCANGAN DAN PEMBUATAN ALAT Dalam bab ini akan dibahas mengenai proses perancangan mekanik pintu gerbang otomatis serta penyusunan rangkaian untuk merealisasikan sistem alat. Dalam hal ini sensor
Elektronika Daya dan Electrical Drives. AC & DC Driver Motor
Elektronika Daya dan Electrical Drives AC & DC Driver Motor Driver Motor AC Tujuan : Dapat melakukan pengontrolan dan pengendalian pad motor AC : Motor induksi atau motor asinkron adalah motor arus bolak-balik
BAB III ANALISA DAN PERANCANGAN. Blok Diagram adalah alur kerja sistem secara sederhana yang
BAB III ANALISA DAN PERANCANGAN 3.1 Blok Diagram Blok Diagram adalah alur kerja sistem secara sederhana yang bertujuan untuk menerangkan cara kerja sistem tersebut secara garis besar berupa gambar dengan
SISTEM PENGATURAN STARTING DAN PENGEREMAN MOTOR UNTUK PINTU GESER OTOMATIS
SISTEM PENGATURAN STARTING DAN PENGEREMAN MOTOR UNTUK PINTU GESER OTOMATIS Raditya Fahmi B. 2208 030 029 Disusun oleh : Aris Wijaya 2208 030 064 DOSEN PEMBIMBING Pujiono, ST., MT. NIP. 196802151994031022
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari alat peraga Oscillating Water Column. 3.1. Gambaran Alat Alat yang
BAB 3 PERANCANGAN SISTEM
BAB 3 PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan dari prototype yang dibuat, yaitu konsep dasar alat, diagram blok, perancangan elektronika yang meliputi rangkaian rangkaian elektronika
JOBSHEET 5. Motor Servo dan Mikrokontroller
JOBSHEET 5 Motor Servo dan Mikrokontroller A. Tujuan Mahasiswa mampu merangkai motor servo dengan mikrokontroller Mahasiswa mampu menggerakkan motor servo dengan mikrokontroller B. Dasar Teori MOTOR SERVO
IMPLEMENTASI LOGIKA FUZZY SEBAGAI PERINTAH GERAKAN TARI PADA ROBOT HUMANOID KRSI MENGGUNAKAN SENSOR KAMERA CMUCAM4
1 IMPLEMENTASI LOGIKA FUZZY SEBAGAI PERINTAH GERAKAN TARI PADA ROBOT HUMANOID KRSI MENGGUNAKAN SENSOR KAMERA CMUCAM4 Gladi Buana, Pembimbing 1:Purwanto, Pembimbing 2: M. Aziz Muslim. Abstrak-Pada Kontes
BAB III PERANCANGAN DAN PEMBUATAN APLIKASI
BAB III PERANCANGAN DAN PEMBUATAN APLIKASI Dalam bab ini akan dibahas mengenai perancangan dan pembuatan aplikasi dengan menggunakan metodologi perancangan prototyping, prinsip kerja rangkaian berdasarkan
BAB IV ANALISIS DAN PEMBAHASAN
BAB IV ANALISIS DAN PEMBAHASAN 4. a Batasan masalah pembuatan tugas akhir ini adalah terbatas pada sistem kontrol bagaimana solar cell selalu menghadap kearah datangnya sinar matahari, analisa dan pembahasan
BAB III ANALISIS DAN PERANCANGAN
BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Masalah Dalam Perancangan Robot Rubik s cube 3x3x3 Berbasis Mikrokontroler Menggunakan Metode Jessica Fridrich yang pembuatan nya terdapat beberapa masalah
BAB III. Perencanaan Alat
BAB III Perencanaan Alat Pada bab ini penulis merencanakan alat ini dengan beberapa blok rangkaian yang ingin dijelaskan mengenai prinsip kerja dari masing-masing rangkaian, untuk mempermudah dalam memahami
III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Agustus
III. METODE PENELITIAN A. Tempat dan Waktu Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Agustus 2009, dilakukan di Laboratorium Konversi Energi Elektrik dan Laboratorium Sistem
BAB III PERANCANGAN ALAT
BAB III PERANCANGAN ALAT Pada bab ini menjelaskan tentang perancangan sistem alarm kebakaran menggunakan Arduino Uno dengan mikrokontroller ATmega 328. yang meliputi perancangan perangkat keras (hardware)
BAB III DESKRIPSI DAN PERANCANGAN SISTEM
BAB III DESKRIPSI DAN PERANCANGAN SISTEM 3.1. DESKRIPSI KERJA SISTEM Gambar 3.1. Blok diagram sistem Satelit-satelit GPS akan mengirimkan sinyal-sinyal secara kontinyu setiap detiknya. GPS receiver akan
APLIKASI KENDALI LOGIKA FUZZY PADA SISTEM TRACKING AKTIF MATAHARI TIPE SINGLE-AXIS PANEL SURYA
APLIKASI KENDALI LOGIKA FUZZY PADA SISTEM TRACKING AKTIF MATAHARI TIPE SINGLE-AXIS PANEL SURYA CATUR HILMAN 2405100027 DOSEN PEMBIMBING: IMAM ABADI, ST., MT. DR.IR.AULIA SITI AISYAH, MT, research project
ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari
Nur Hudi, Lestari; Robot Omni Directional Steering Berbasis Mikrokontroler ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER Muchamad Nur Hudi. Dyah Lestari Abstrak: Robot Omni merupakan seperangkat
PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM
PENGATURAN KECEPATAN DAN POSISI MOTOR AC 3 PHASA MENGGUNAKAN DT AVR LOW COST MICRO SYSTEM Fandy Hartono 1 2203 100 067 Dr. Tri Arief Sardjono, ST. MT. 2-1970 02 12 1995 12 1001 1 Penulis, Mahasiswa S-1
BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai
BAB II DASAR TEORI 2.1 Arduino Uno R3 Arduino adalah pengendali mikro single-board yang bersifat open-source, diturunkan dari Wiring platform, dirancang untuk memudahkan penggunaan elektronik dalam berbagai
Kampus PENS-ITS Sukolilo, Surabaya
1. JUDUL PROYEK AKHIR Rancang Bangun Sistem Monitoring dan Kontrol Kecepatan Motor DC Secara Nirkabel Untuk Jarak Jauh. 2. ABSTRAK Untuk menunjang teori yang telah dipelajari, praktikum menjadi suatu bagian
